D. Gryffroy and R.E. Vandenberghe, Cation distribution, cluster structure and ionic ordering of the spinel series lithium nickel manganese titanium oxide (LiNiO.5Mn1.5−xTixO4) and lithium nickel magnesium manganese oxide (LiNi0.5-vMgyMn1.504); J.Phys. Chem. Solids (1992), 53(6), 777-84 (Abstract only). |
D. Gryffroy; R.E. Vandenberghe; and D. Poelman; Optical absorption of nickel (Ni2+ (d8)) and manganese (Mn4+ (d3)) in some spinel oxides; Solid State Commun. (1992), 82(7), 497-500 (Abstract only). |
A. Van der Ven, M.K. Aydinol, G. Ceder, G. Kresse and J. Hafner; First principles investigation of phase stability in LixCoO2; 1998 The American Physical Society, vol. 58, No. 6, pp. 2975-2987. |
C. Pouillerie, L. Croguennec, PH. Biensan, P. Willmann and C. Delmas; Synthesis and Characterization of New LiNi1−yMgyO2 Positive Electrode Materials for Lithium-Ion Batteries; Journal of The Electrochemical Society, 147 (6) pp. 2061-2069 (2000). |
J.R. Dahn, E.W. Fuller, M. Obrovac and U. Von Sacken; Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells; Solid State Ionics 69, pp. 265-270 (1994). |
T. Ohzuku, A. Ueda and M. Koughuchi; Synthesis and Characterization of LiAl1/4Ni3/4O2 (R3m) for Lithium-Ion (Shuttlecock) Batteries; J. Electrochem. Soc., vol. 142, No. 12, pp. 4033-4039, Dec. 1995. |
Momchilov et al.; Rechargeable lithium battery with spinel-related MnO2 II. Optimization of the LiMn2O4 synthesis conditions; Journal of Power Sources, 41, pp. 305-314 (1993). |
Thackeray et al.; Lithium Insertion into Manganese Spinels; Mat. Res. Bulletin, vol. 18, pp. 461-472, 1983. |
Manev et al.; Rechargeable lithium battery with spinel-related λ-MnO2 I. Synthesis of λ-MnO2 for battery applications; Journal of Power Sources, 43-44, pp. 551-559 (1993). |
W.F. Howard, Jr.; The Chemistry of LiMn2O4 Formation; Covalent Associates, Inc., Date not available. |
Jiang et al.; Preparation and Electrochemical Characterization of Micron-Sized Spinel LiMn2O4; Electrochem. Soc., vol. 143, No. 5, pp. 1591-1598; May 1996. |
Gao et al.; Characterizing Li1+xMn2−xO4 for Li-ion Battery Applications; 1046b Extended Abstracts, Abstract No. 77; Fall Meeting Oct. 8-13, 1995, St. Louis, Missouri. |
Gao et al., Synthesis and Characterization of Li1−xMn2−XO4 for Li-Ion Battery Applications; Journal of the Electrochemical Society 143 Jan. 1996, No. 1, pp. 100-114. |
Gao et al; Thermogravimetric analysis to determine the lithium to manganese atomic rationin Li1+xMn2−xO4; Applied Physics Letters, 66 (19) pp. 2487-2489, May 8, 1995. |
Thackeray et al., Spinel Electrodes from the Li—Mn—O System for Rechargeable Lithium Battery Applications; J. Electrochem. Soc., vol. 139, No. 2, pp. 363-366, Feb. 1992. |
Rossouw et al.; Structural Aspects of Lithium-Manganese-Oxide Electrodes for Rechargeable Lithium Batteries; Mat. Res. Bulletin, vol. 25, pp. 173-182, 1990. |
Pistoia et al.; Synthesis of an efficient LiMn2O4 for lithium-ion cells; Journal of Power Sources 58, pp. 135-138, 1996. |
Guyomard et al.; Rechargeable Li1+xMn2O4/Carbon Cells with a New Electrolyte Composition; Journal of the Electrochemical Society 140, No. 11, pp. 3071-3081, Nov. 1993. |
Saidi et al.; A model lithium-ion system based on the insertion properties of the spinel phase LixMnn2O4 (0<x>2); Journal of Power Sources 58, pp. 145-151, (1996). |
Manev et al.; Rechargeable lithium battery with spinel-related λ-MnO2 III. Scaling-up problems associated with LiMn2O4 synthesis; Journal of Power Sources 54, No. 2, pp. 323-328, Apr. 1995. |
Krutzsch et al.; Uber das system Li1−x..yCuxMnRuO4; Journal of the Less-Common Metals, 124, pp. 155-164 (1986). |
Krutzsch et al., Spinelle IM System Li1-2Cu2RhRu1−xMnxO4; Journal of the Less-Common Metals, 132, pp. 37-42 (1987). |
Reimers et al.; Structure and electrochemistry of LixFeyNi1−yO2; Solid State Ionics 61, pp. 335-344 (1993). |
Ceder et al., The Stability of Orthorhombic and Monoclinic-Layered LiMnO2, Electrochemical and Solid-State Letters, (1999), pp. 550-552, 2 (11). |
Dahn et al., Structure and Electrochemistry of Li2CrxMn2−xO4 for 1.0 ≦x ≧1.5, J. Electrochem. Soc., Mar. 1998, pp. 851-859, vol. 145, No. 3. |
Jang et al., Stabilization of LiMnO2 in the α-NaFeO2 Structure Type by LiA1O2 Addition, Electrochemical and Solid-State Letters, (1998), pp. 13-16, 1 (1). |
Wickham et al., Crystallographic and Magnetic Properties of Several Spinels Containing Trivalent JA-1044 Manganese, J. Phys. Chem. Solids, Pergamon Press 1958, pp. 351-360, vol. 7. |
De Kock et al., The effect of multivalent cation dopants on lithium manganese spinel cathodes, Journal of Power Sources, vol. 70, Issue 2, Feb. 1998, pp. 247-252. |
Gummow et al., Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells, Solid State Ionics, (1994). |
Tarascon et al., The Spinel Phase of LiMn2O4 as a Cathode in Secondary Lithium Cells, J. Electrochem. Soc., Oct. 1991, vol. 138, No. 10, pp. 2859-2864. |
Padhi et al., Ambient and High-Pressure Structures of LiMnVO4 and Its Mn3+/Mn2+ Redox Energy, Journal of Solid State Chemistry, (1997), 128, Article No. SC967217, pp. 267-272. |
Amine et al., Preparation and Electrochemical Investigation of LiMn1.5Me0.5O4 (Me:Ni,Fe) Cathode Materials For Secondary Lithium Batteries, Fundamental Technology Laboratory, Corporate R&D Center, Japan Storage Battery Co., Ltd. 11-B-34. |
Amine et al., Preparation and electrochemical investigation of LiMn2−xMexO4 (Me: Ni, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries, Journal of Power Sources, 68, (1997), pp. 604-608. |
Pistoia et al., Doped Li—Mn Spinels: Physical/Chemical Characteristics and Electrochemical Performance in Li Batteries, American Chemical Society, 9, (1997), pp. 1443-1450. |
Suzuki et al., Valence Analysis of Transition Metal Ions in Spinel LiMnMO4 (M═Ti, Cr, Mn, Co) by Electron Energy Loss Spectroscopy, J. Phys. Chem. Solids, (1996), vol. 57, No. 12, pp. 1851-1856. |
Rossen et al., Structure and electrochemistry of LixMnyNi1−yO2, Solid State Ionics, (1992), pp. 311-318. |
Banov et al., Lithium Manganese Cobalt Spinel Cathode for 4V Lithium Batteries, 8th International Meeting on Lithium Batteries, Jun. 16-21, 1996, Nagoya Japan, pp. 451-453. |
Moshtev et al., Chemically Desodiated Thiochromites as Cathode Materials in Secondary Lithium Cells, Journal of Power Sources, 26, (1989), pp. 285-292. |
Hernan et al., Use of Li—M—Mn—O [M═Co, Cr, Ti] spinels prepared by a sol-gel method as cathodes in high-voltage lithium batteries, Solid State Ionics, 118, (1999) pp. 179-185. |
Armstrong et al., Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries, Nature, (Jun. 6, 1996), vol. 381, pp. 499-500. |