The present invention generally relates to the field of integrated circuits, and particularly to a voltage doubling and voltage regulating integrated circuit.
Voltage multipliers are used in various applications where a device or circuit, such as an integrated circuit, requires a higher voltage than that provided by the power supply. The voltage multiplier can only supply up to a certain rated current that is less than the power supply maximum current. During each clock cycle, enough charge must be moved from the doubling capacitors to the load capacitors to support the maximum rated current for an entire clock cycle until the next pulse of charge is delivered to the load. To increase the amount of load current the multiplier can supply, the designer generally can either add capacitance or increase the clock frequency (thereby increasing the number of times per second the charge is deposited on the load). There are two problems associated with adding more capacitance in conventional voltage multiplier circuits. One problem is that the buffers needed to drive these capacitors become very large. As the charging capacitors increase in size, the power needed to supply them with ‘fast’ edges increases exponentially. The reason for this is the non-ideality of the inverters and their increasing ON resistance as the voltage at their outputs nears VDD or VSS. Therefore, increasing the capacitor size to increase output drive will begin to lower the multiplier's efficiency and, at some point, the inefficiency of the multiplier will limit the design. The second problem introduced by increasing capacitor size is that the switches needed to carry the charge to the output capacitor become very large since they must be in or near their triode region during normal operation. Increasing the frequency of the clock increases the current driving capabilities of the voltage multiplier to a certain point. Then, the efficiency of the multiplier begins to go down dramatically. One reason for this is that the clocks entering the multiplier must never be at a LOW level at the same time (i.e., the inactive or LOW level portions must be non-overlapping). This requirement means that at higher frequency operation, the active level overlap time becomes a much larger percentage of the clock period. Another reason the multiplier becomes less efficient as the frequency increases is that the ability for charge to actually transfer from the multiplying capacitors to the load capacitor diminishes as the time of transfer goes down. These fundamental problems limit voltage multipliers to low current applications and limit their overall usefulness.
Therefore, it would be desirable to provide a highly efficient high current voltage multiplier.
Accordingly, the present invention is directed to a circuit and method for supplying voltage multiplication at an ‘effective’ high frequency of operation and with large current drive capabilities.
In a first aspect of the present invention, a high current, multi-phase voltage multiplier includes a multiple phase active level overlapping clock generator that generates a plurality of unique phase clocks. Each phase clock is paired with another phase clock such that the two phase clocks of a pair are never inactive at the same time. The phase clock pairs each activate a charging circuit that includes two pairs of voltage dividers and two charging capacitors. The voltage dividers are each formed of two switches (or other active or passive elements) tied together. Preferably, the two switches are an NMOS transistor and a PMOS transistor electrically connected through their respective drain terminals. The charging capacitors are driven by the multiple phase active level overlapping clock generator.
In a second aspect of the present invention, a method for multiplying a voltage involves setting a length of the phase clock period and setting a duty cycle that favors the active HIGH level. The phase clocks are paired such that at least one of the phase clocks is at the HIGH level. The phase clocks are used to charge and discharge capacitors that drive the voltage multiplication circuitry.
The circuit of the present invention solves the problems associated with high load current voltage multiplier circuits. The circuit reduces the inefficiency due to the active level overlapping portion of the clock at high frequencies. It reduces the inefficiency due to extremely large drive currents on the inverters supplying current to the multiplying capacitors C1(*) and C2(*). It increases the efficiency of the multiplier by allowing M-1 phases to charge the output at any given time and also increases the time given to each capcitor to fully charge and discharge. The multi-phase voltage multiplier has an added benefit that the ripple on the output is much smaller than in single phase multipliers. This multi-phase voltage multiplier is unique in that it can supply very large current to the load and remain very efficient.
It is to be understood that both the forgoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate an embodiment of the invention and together with the general description, serve to explain the principles of the invention.
The numerous advantages of the present invention may be better understood by those skilled in the art by reference to the accompanying figures in which:
Reference will now be made in detail to the presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings.
The present invention relates to a circuit and method for a high current, high frequency voltage multiplier. In the present invention, parallel circuit combinations perform a twice per phase clock charge pump and dump onto the voltage multiplier output line. Multiple parallel circuit combinations, each slightly out of phase with the others, ensure that the multiplier output continually has available a sufficient amount of charge for a driving current. Each parallel circuit combination includes two voltage dividers and two charging capacitors. The voltage dividers are formed from active or passive elements tied together: one end is fed through the power supply, the middle controls charging and discharging, and the other end provides the multiplied voltage.
The voltage multiplier of the present invention uses multiple clock phases to relieve the problems associated with conventional voltage multipliers. By using multiple, slower clock phases to provide charge to the output, several benefits are realized: the size of each multiplying capacitor is reduced, the time each multiplying capacitor has to discharge onto the load capacitor remains large, and the active level overlap time of the clocks becomes a lower percentage of the clock period. The buffers used to drive the multiplying capacitors can be reduced and the current needed to supply ‘fast’ edges to these clocks is reduced significantly. An added benefit of the present invention is that the amount of voltage ripple on the load decreases significantly from a design that uses larger capacitors or a higher frequency to create a higher drive current. Since only a portion of the charge is delivered to the load each phase during a much lengthened delivery (or, charge transfer) time, ripple is very small on the load. If there are M clock phases, at any given time, at least M-1 charging capacitors are supplying charge at the same time. The active level overlap time becomes a much smaller percentage of the overall period. Since the multiplier is not delivering charge when the clocks are both at a HIGH level, active level overlap time results in inefficiency. By using multiple clock phases, the percentage of time the clocks are overlapped at the active HIGH level is reduced as described by the relationship Tnol(mf)=Tnol(ck)/M, where M is the number of clock phases, Tnol(mf) is the percentage of time the dual phase clocks are active level overlapped in multiple dual phase clocks, and Tnol(ck) is the percentage of time the clocks are active level overlapped in a single dual phase clock pair. For example, if the efficiency due to active level overlapping clocks for the single dual phase clock is approximately 66%, meaning the single dual phase clocks are active level (i.e., HIGH level) overlapping ⅓ of the time, then by using two dual phase clock pairs, the efficiency due to active level overlapping clocks is now approximately 83% (clocks active level overlap ⅙ of the time) and, for four dual phase clock pairs, the efficiency would not be approximately 92% (clocks active level overlap {fraction (1/12)} of the time). This shows the enormous advantage of using multiple dual phase clock pairs instead of a single dual phase clock pair.
The circuit of
The operation of the multi-phase clocked voltage multiplier is described by referring to
Variations of the present invention may be implemented. For example, duty cycle processing may be accomplished through various Booleans expressions. Alternatively, flip flops may be used to provide the phase clocks. The supply voltage VDDA may be provided to the voltage multiplier through a current limiting resistor or through a capacitor. Varying the multiplication factor may be accomplished by various techniques. The multiplication factor may be a fraction, such as ⅔ or ½, or may be a number greater than one, such as 1.5, 3, or 4. Instead of a voltage divider formed of one NMOS transistor and one PMOS transistor tied together at their drains, two PMOS transistors may be arranged with one NMOS transistor. The transistors may also be scaled dimensionally so as to vary their effective resistance. There are many ways to make voltage multipliers, such as though a capacitor and a diode or through various combinations of capacitors, diodes, resistors, and transistors. The multi-phase technique may be used for all clocked multipliers to increase current capabilities, efficiency, etc.
It is believed that the present invention and many of its attendant advantages will be understood by the forgoing description. It is also believed that it will be apparent that various changes may be made in the form, construction and arrangement of the components thereof without departing from the scope and spirit of the invention or without sacrificing all of its material advantages, the form hereinbefore described being merely an explanatory embodiment thereof. It is the intention of the following claims to encompass and include such changes.