Asymmetric reduction of prochiral ketones to obtain enantiomerically pure alcohols is of one of the most important transformations in organic synthesis. In the last 25 year, a large variety of asymmetric catalysts prepared by the reaction alumino- and borohydrides with chiral diols or amino alcohols have been developed for the enantioselective carbonyl reduction with great success. In particular, the 1,2,3-oxazaborolidines derived from chiral amino alcohols have been recognized as exceptional catalysts in the reduction of aromatic ketones and in other enantioselective reactions. B-H oxazaborolidines are prepared by the reaction of the corresponding amino alcohol with borane-THF or borane dimethyl sulphide complex. Due to the extreme sensitivity of these reagents to air-moisture, they are difficult to isolate and purify, consequently, they are normally prepared in situ for subsequent reactions. However, B-H oxazaborolidines can form dimers or other species that can alter the true nature of the catalyst. In addition, other impurities present in the reaction mixture cause a detrimental effect on the enantiomeric purity of desired products and, often, the reported data is not reproducible by others. On the other hand, B-substituted oxazaborolidines, show excellent enantioselectivity and synthetic utility but, require careful purification steps to eliminate traces of boronic acid and boronic esters. Therefore, the prices of commercially available reagents are excessively high. More recently, a new enantioselective reducing reagent system has shown good to high enantioselectivities. As shown in
Additional background is provided by the following references, each of which are incorporated by reference in their entirety:
The borate 2, shown in
The yield shown in Table 1 was of product purified by Kugelrohr distillation. For entries 2, 3 and 7, the yield shown is for the crude product. The enantioselectivity was determined by GC on a chiral column (CP-Chiralsil-DexCB). For entries 9 and 10, two equivalents of borane and a 24 hour work up with methanol were required. Column 2 is the molar fraction of catalyst 2.
To increase the enantioselectivity, a modification of the catalytic system was made. Specifically, the structure of the chiral spiroborate ester was changed to a less strained ring system. A series of new reagents 3-12, shown in
11B NMR δ(ppm)
The first column identifies the catalyst (as shown in
To assess the enantioselectivity of the prepared chiral spiroborates 3-10 for the reduction of aromatic ketones, acetophenone was used as a model compound. The reduction was carried out varying the amounts of catalyst with one molar equivalent of borane-DMS complex at room temperature in THF. During reduction of the acetophenone using catalyst 3, two aliquots of the reaction mixture were taken and quenched with methanol followed by water. After extraction with diethyl ether the samples were analyzed by chiral GC. The analysis showed that the reaction was complete within 15 min after entire addition of the substrate. Except for compound 4 that had lower reactivity and produced a racemic alcohol, excellent enantioselectivities were achieved with up to 10% mol of catalyst, in particular for the catalysts 6, 7 and 10. In all cases, the reactions took place with excellent reproducibility. The expensive enantio pure amino alcohols can also quantitatively recover. Table 3 summarizes the results of the enantioselective borane reduction of acetophenone with spiroborates 3-10 used as catalysts. The general form of the reduction reaction is shown in
The first column lists the entry or reaction number. The second column identifies the catalyst used in that reaction. The third column identifies the mol percent of catalyst used. The fourth column lists the percent yield from the reaction. The product yield was purified by Kugelrohr distillation. The fifth column lists the enantioselectivity as a percentage of the yield. This is determined by GC on a chiral column (CP-Chiralsil-DexCB). For entries 1 and 4, the percentage yield is for crude product. For entry 4 traces of ketone were left after three hours. The last column identifies the chirality of the product as R or S.
The spiroborate 10 derived from (−)-α,α-diphenylpyrrolidinemethanol was particularly stable and compared in enantioselectivity to the B-substituted oxazaborolidines, offering an excellent alternative for asymmetric synthesis.
Synthesis of Catalysts:
The synthesis of 1-[([1,3,2]Dioxaborolan-2-yloxy)-diphenyl-methyl]-2-methylpropylamine (Rx 165a) is shown in
An analysis of the product gave the following results:
1H-NMR (400 MHz, CDCl3): δ 0.29 (d, J=6.4, 3H, CH3), 0.78 (d, J=6.8, 3H, CH3), 2.07 (s, 1H, C3—H), 3.83 (m, 4H, CH2), 3.90 (s, 1H, C2—H), 4.72 (s, 2H, NH2), 7.49-7.19 (m, 10H, Aromatic)
13C-NMR (100 MHz, CDCl3): δ 16.2 (CH3), 21.9 (CH3), 27.4 (C3), 64.0 (C2), 65.8 (CH2), 83.7 (C1), 126.7, 127.0, 127.2, 127.5, 127.9, 128.1, 143.4, 146.9 (Aromatic)
11B-NMR (128 MHz, CDCl3): δ 9.59 (bs)
Specific Rotation or [α]20D=+98 (C=0.05, CHCl3)
Melting point: 207°-209° C.
The preparation of (1R,2S)-1-(1′,3′,2′-dioxaborolan-2′-yloxy)-1-phenylpropan-2-amine is shown in
An analysis of the product gave the following results:
1H NMR (d6-DMSO): 7.36-7.27 (m, 4H, Hm and Ho); 7.23-7.18 (m, 1H, Hp); 5.75 (br.s, 2H, NH2); 4.86 (d, 1H, J=5.4 Hz, C1—H); 3.67 (s, 4H, CH2); 3.45 (br.tr, 1H, J=5.7 Hz, C2—H); 0.67 (d, 3H, J=6.8 Hz, Me).
13C NMR (d6-DMSO): 141.3 (C-i); 127.6 (C-m); 126.6 (C-p); 126.1 (C-o); 76.4 (c-1); 63.3 (CH2); 51.7 (C-2); 13.9 (Me).
11B NMR (d6-DMSO): 10.0 (s).
IR: 3061; 1622 (N—H); 1349; 1138; 1091; 1055.
Specific Rotation or [α]D=−37.5, c=0.056 g/mL in DMSO
Melting point: 176-179° C. (dec)
The preparation of (R)-(+)-2-(1,3,2-dioxaborolan-2-yloxy)-1,2,2-triphenylethanamine is shown in
An analysis of the product gave the following results:
1H NMR (d6-DMSO): 7.81 (d, 2H, J=7.4 Hz, H-arom); 7.50-7.45 (m, 2H, H-arom); 7.35-7.29 (m, 2H, H-arom); 7.27-7.18 (m, 3H, H-arom); 7.15-7.08 (m, 3H, H-arom); 7.01-6.88 (m, 3H, H-arom); 6.26 (br.s, 2H, NH2); 5.18 (tr, 1H, J=5.0 Hz, C1—H); 3.85-3.60 (m, 4H, OCH2.
13C NMR(d6-DMSO): 147.4; 145.0; 129.5; 127.4; 127.5; 127.2; 127.0; 126.8; 126.7; 126.3; 125.4; 84.8 (C2); 63.8 (C1); 63.3 (CH2)
11B NMR (d6-DMSO): 10.5 (s)
IR (KBr): 3272; 2908; 1584 (N—H); 1354; 1225; 1120; 1025
[α]D: +43, c=0.023 g/mL in DMSO
Melting point: 194° C. (dec).
The preparation of 2-[(1,3,2-dioxaborolan-2-yloxy)diphenylmethyl]pyrrolidine (catalyst 10) is as follows. To a 50 mL round flask equipped with a septa and Nitrogen flow, dry ethylene glycol (0.31 g, 5.0 mmol) was added. Then, dry toluene (15 mL) was added following by triisopropyl borate (1.17 mL, 5.1 mmol). The reaction mixture was gently heated to reflux until a homogeneous colorless solution was formed. A solution of (S)-(−)-α,α-diphenyl-2-pyrrolidinemethanol (1.267 g, 5.0 mmol) in dry toluene (10 mL) was added to the reaction mixture while a white precipitate was observed during the addition. The resulting solution with the white solid was concentrated in the rotovaporator by heating at 80° C./20 mmHg for about 1 hour until all volatiles were evaporated. The white crystalline solid was dried overnight using high vacuum to remove toluene traces. A compound was obtained with quantitative yield (1.616 g).
An analysis of the product gave the following results:
1H-AMR (400 MHz, DMSO-d6): δ 1.305 (m, 1H, C4—H), 1.614 (m, 1H, C4—H), 1.664 (m, 1H, C3—H), 1.805 (m, 1H, C3—H), 2.915 (m, 1H, C5—H), 3.068 (m, 1H, C5—H), 3.592 (m, 2H, CH2), 3.743 (m, 2H, CH2), 4.548 (m, 1H, C2—H), 6.704 (t, 1H, NH), 7.075-7.273 (m, Aromatic), 7.526 (d, J=7.2 Hz, 2H, Ar), 7.726 (d, J=7.6 Hz, 2H, Ar).
13C-NMR (100 MHz, DMSO-d6): δ 24.30, 28.39, 45.69, 63.67 (CH2), 63.87 (CH2), 68.16, 81.16, 125.88, 126.76, 127.96, 127.97, 147.62 (Ar), 148.24 (Ar).
11B-NMR (128 MHz, DMSO-d6): δ +10.34 (s).
[α]20D=−96.0 (c 0.025, CHCl3).
Melting point: 261° C.-262° C.
Reductions of Ketones to Alcohols:
Spiroborate esters shown in
The first column is the entry or reaction number. The second column identifies the substrate or reactant. The third column identifies the catalyst (see
Table 5a lists the results from the enantioselective reduction of various representative aromatic and alkyl ketones with 10% spiroborates esters 6 and 10 as catalyst.
The first column lists the entry or reaction number. The second column identifies the ketone. The third column identifies the catalyst. The fourth column lists the yield. The last column lists the enatioselectivity. For entry 6, this was determined by GC on a chiral column (CP-Chiralsil-DexCB). For entries 1-4 and 8-10, this was determined by 31P-NMR of derivative with a phosphonate (CDA).
The correlation between amount of catalyst and stereoselectivity of the reduction of 3-acetylpyridine is shown in Table 5b, below, using varying concentrations of spiroborate 3 as the catalyst.
The first column is the entry or reaction number. The second column is the mol percent of catalyst. The third column lists the enantioselectivity as a percentage of the yield. This is determined by GC on a chiral column (CP-Chiralsil-DexCB).
The effect of varying the catalytic load in the reduction of 3-acetylpyridine using catalyst 10 (shown in
The first column lists the entry or reaction number. The second column lists the mol percentage of catalyst. The third column lists the enantioselectivity as a percentage of the yield. This is determined by GC on a chiral column (CP-Chiralsil-DexCB).
In addition, 4-acetylpyridine and other heteroaromatic compounds can be reduced using catalyst 6 and 10 (shown in
The first column lists the entry or reaction number. The second column lists the substrate or ketone that was reduced. The third column identifies the catalyst (see
To a 100 mL round flask equipped with a septa and nitrogen flow, 10% of catalyst 6 (0.325 g, 1.0 mmol) was added. Then dry THF (30 mL) was added to make a solution. Borane complex with dimethyl sulfoxide 10.0 M (2.0 mL, 20.00 mmol) was added to the catalyst solution. The mixture was stirred for about 15 minutes. A solution of 4-acetylpyridine (1.211 g, 10.0 mmol) with dry THF (10 mL) was added to the reaction mixture during 1 hour. The reaction was allowed to react overnight. The reaction mixture was cooled to 0° C. MeOH (20 mL) was added and the mixture was heated to reflux for 4 hours. A sample of the mixture was analyzed by 11B-NMR and the N—BH3 complex signal was observed at −13.28 ppm. More MeOH (10 mL) was added and heated for 4 hours again. After decomposition of N—BH3 complex confirmed by 11B-NMR the mixture was concentrated to colorless oil. The residue was purified by column chromatography through Alumina (acid) (50 g) with an EtOAc/Hexane 1:1 mixture. The white crystalline α-methyl-4-pyridinemethanol was obtained in an 85% yield (1.048 g.) (Mp°: 55°-58° C.) According with the G.C. analysis (Column: CP-Chirasil-Dex CB, Method: Iso135) the alcohol was observed at retention time 12.39 minutes and some aminoalcohol at retention time 11.64 minutes. The enantiomeric excess of 97.2% ee was determined by 11P-NMR of the phosphorus derivative.
An analysis of the product gave the following results:
1H-NMR (400 MHz, CDCl3): δ1.39 (d, J=6.4 Hz, 3H); 4.80 (q, J=6.4 Hz, 1H); 5.096 (s, 1H); 7.22 (d, J=6.0 Hz, 2H); 8.309 (d, J=5.6 Hz, 2H) (≈98% purity).
13C-NMR (100 MHz, CDCl3): δ 24.99 (CH3); 68.21 (C—H(OH); 120.60 (CHAr); 148.97 (CHAr); 155.97.
[α]23D=+49.0 (c=0.025, CHCl3).
The same reduction was performed using 1% of catalyst 10 (1,3,2-dioxaborolan-2-yloxy)diphenylmethyl)pyrrolidine. Borane-DMS complex (10M, 1.6 mL, 16.00 mmol) was added to a solution of catalyst 10 (32 mg, 0.10 mmol) in dry THF (5 mL) at room temperature and the mixture was stirred for 1 hour. A solution of 4-acetylpyridine (1.21 g, 10.00 mmol) in THF (5 mL) was added for 5 h using an infusion pump. The reaction mixture was stirred at room temperature for over 1 hour, then cooled to 0° C. and quenched with methanol (10 mL). After refluxing for 12 h, the solvents were removed under vacuum, the residue was distilled (directly without chromatography purification) in a Kugelrohr apparatus under vacuum to give the final product as a white crystalline material (1.135 g, 92% yield). Chiral GC of O-acetyl derivative indicated 98.8% ee.
The same reaction was again performed using 10% of catalyst 10 (1,3,2-dioxaborolan-2-yloxy)diphenylmethyl)pyrrolidine). Borane-DMS complex (10M, 1.7 mL, 17.00 mmol) was added to a solution of catalyst 10 (323 mg, 1.00 mmol) in dry THF (10 mL) at room temperature (during the addition hydrogen evolved) and mixture was stirred for 1 hour. A solution of 4-acetylpyridine (1.21 g, 10.00 mmol) in THF (5 mL) was added for 5 hours using an infusion pump. The reaction mixture was stirred at room temperature for over 1 hour, then cooled to 0° C. and quenched with methanol (10 mL). After refluxing for 12 hours, the solvents were removed under vacuum, the residue was distilled (directly without chromatography purification) in a Kugelrohr apparatus under vacuum to give the final product as white crystalline material (1.077 g, 88% yield). Chiral GC of O-acetyl derivative indicated 99.0% ee.
To a 100 mL round flask equipped with a septa and Nitrogen flow, 10% of catalyst 6 (0.325 g, 1.0 mmol) was added. Then dry THF (30 mL) was added to make a solution. Borane complex with dimethyl sulfoxide 10.0 M (2.0 mL, 20.00 mmol) was added to the catalyst solution. The mixture was stirred for about 15 minutes. A solution of 3-acetylpyridine (1.211 g, 10.0 mmol) with dry THF (10 mL) was added to the reaction mixture during 1 hour. The reaction was allowed to react overnight. The reaction mixture was cooled to 0° C. MeOH (30 mL) was added and the mixture was heated to reflux for 8 hours. Decomposition of N—BH3 complex was confirmed by 11B-NMR and the mixture was concentrated to colorless oil. The residue was distilled with high vacuum in the Kugelrohr oven to obtain 1.161 g (94% yield ) of (R)-(+)-α-methyl-3-pyridinemethanol. The boiling point was measured at 140° C. with 0.7 mmHg. Enantiomeric excess of 96.4% ee was determined by 31P-NMR.
An analysis of the product gave the following results:
1H-NMR (400 MHz, CDCl3): δ 1.46 (d, J=6.4 Hz, 3H, CH3); 4.87 (q, J=6.4 Hz, 1H, *C—H); 5.92 (s, 1H, OH), 7.21 (m, 1H, C2—H); 7.72 (dt, J=8.0 Hz, 1H, C3—H); 8.28 (dd, J=5.2 Hz, 1H, C1—H); 8.40 (d, J=2.0 Hz, 1H C5—H).
13C-NMR (100 MHz, CDCl3): δ 24.97; 66.91; 123.29; 133.42; 141.88; 146.59; 147.40.
[α]23D=+40.9 (c=0.031, CHCl3).
The same reaction was performed using 1% of catalyst 10 (1,3,2-dioxaborolan-2-yloxy)diphenylmethyl)pyrrolidine). Borane-DMS complex (10M, 1.6 mL, 16.00 mmol) was added to a solution of (S)-2-((1,3,2-dioxaborolan-2-yloxy)diphenylmethyl) pyrrolidine 10 (32 mg, 0.10 mmol) in dry THF (5 mL) at room temperature (during the addition hydrogen evolved) and mixture was stirred for 1 hour. A solution of 3-acetylpyridine (1.21 g, 10.00 mmol) in THF (5 mL) was added for 5 hours using an infusion pump. The reaction mixture was stirred at room temperature for over 1 h, then cooled to 0° C. and quenched with methanol (10 mL). After refluxing for 12 hours, the solvents were removed under vacuum, the residue was distilled (directly without chromatography purification) in a Kugelrohr apparatus under vacuum to give the final product as colorless oil (1.18 g, 96%). Chiral GC of O-acetyl derivative indicated 98.2% ee.
To a 100 mL round flask equipped with a septa and nitrogen flow, 10% of diphenylprolinol-borate or catalyst 10 (0.323 g, 1.0 mmol) was added. Then dry THF (30 mL) was added to make a solution. Borane complex with dimethyl sulfoxide 10.0 M (1.0 mL, 10 mmol ) was added to the catalyst solution. The mixture was stirred for about 15 minutes. A solution of 3-benzoylpyridine (1.832 g, 10.0 mmol) with dry THF (10 mL) was added to the reaction mixture during 1 hour. The reaction mixture was cooled to 0° C., MeOH (20 mL) was added and the mixture was heated to reflux for 8 hours. Decomposition of N—BH3 complex was confirmed by 11B-NMR and the mixture was concentrated to colorless oil. The residue was distilled with high vacuum in the Kugelrohr oven to obtain 1.533 g (83% yield) of phenyl (pyridin-3-yl)methanol with a boiling point of 140° C. at 0.7 mmHg. Enantiomeric excess of 83.0% ee was determined by 31P-NMR.
An analysis of the product gave the following results:
1H-NMR (400 MHz, CDCl3): δ 4.203 (s, 1H, OH); 5.843 (s, 1H, C—H); 7.23 (m, 1H, C—H), 7.27-7.38 (m, 5H); 7.71 (dt, J=7.6 Hz, 1H); 8.36 (dd, J=4.4 Hz, 1H); 8.50 (d, J=2.4 Hz, 1H).
13C-NMR (100 MHz, CDCl3): δ 73.90, 123.47, 126.56, 127.90, 128.70, 134.38, 139.69, 143.25, 148.04, 148.34.
[α]23D=+12.0 (C=0.016, CHCl3).
To a 100 mL round flask equipped with a septa and Nitrogen flow, 10% of catalyst 10 (0.323 g, 1.0 mmol) was added. Then dry THF (30 mL) was added to make a solution. Borane dimethyl sulfide complex (BDS) 10.0 M (1.0 mL, 10 mmol ) was added to the catalyst solution. The mixture was stirred for about 15 minutes. A solution of acetophenone (1.201 g, 10.0 mmol) with dry THF (10 mL) was added to the reaction mixture during 1 hour. After 15 minutes the reaction was monitored by GC, indicating that acetophenone was consumed. The solution was stirred at room temperature for over 1 hour, then cooled to 0° C. and quenched with methanol (10 mL). After stirring for 1 hour at room temperature the solvents were removed under vacuum, the residue was dissolved dichloromethane (DCM) (40 mL), washed with saturated solution of ammonium chloride (25 mL), water (25 mL) and dried with sodium sulfate. The solvents were removed under vacuum and the residue was distilled in a Kugelrohr apparatus under vacuum (59° C./0.25 mmHg) to give the final product, 1-phenylethanol, as a colorless oil (1.20 g, 98% yield). Chiral GC indicated a ratio of enantiomers as 99.53: 0.47 or 99% ee.
An analysis of the product gave the following results:
1H-NMR (400 MHz, CDCl3): δ 1.42 (d, J=6.4 Hz, 3H, CH3); 2.62 (d, 1H, OH); 4.79 (m, 1H, CH); 7.20-7.31 (m, 5H, Ar).
13C-NMR (100 MHz, CDCl3): δ 25.00 (CH3); 70.12 (C*—H); 125.30 (Ar); 127.25 (Ar); 128.32 (Ar); 145.75 (Ar).
[α]20D=+43.8 (c 0.039, MeOH).
To a 100 mL round flask equipped with a septa and Nitrogen flow, 10% of catalyst 6 (0.325 g, 1.0 mmol) was added. Then dry THF (30 mL) was added to make a solution. BDS complex 10.0 M (1.0 mL, 10.00 mmol) was added to the catalyst solution. The mixture was stirred for about 15 minutes. A solution of 4-methyl propiophenone (1.482 g, 10.0 mmol) with dry THF (10 mL) was added to the reaction mixture during 1 hour. The reaction was allowed to react overnight. A sample of 0.5 mL was treated with MeOH (2 mL) and water (1 mL) followed by Et2O extractions (3 mL). The crude was analyzed by G.C. and the product was observed with a retention time of 14.643 min with an approximately enantiomeric excess of 82% ee. The reaction mixture was cooled to 0° C., MeOH (15 mL) was added and the mixture is heated in the rotovaporator while concentrated. The concentrate was treated with NH4Cl saturated solution followed by extractions with DCM (4×25 mL), dried with sodium sulfate and concentrated. After vacuum distillation with the Kugelrohr oven (150° C./0.15 mmHg) the 1-4-tolylpropan-1-ol was obtained in an 82% yield (1.230 g).
An analysis of the product gave the following results:
1H-NMR (400 MHz, CDCl3): δ 0.856 (t, J=7.4 Hz, 3H, CH3); 1.684 (m, 2H, CH2); 2.315 (s, 3H, CH3); 2.542 (s, 1H, OH); 4.447 (t, J=6.6 Hz, 1H, CH); 7.098, 7.118, 7.156, 7.176 (Ar, 4H).
13C-NMR (100 MHz, CDCl3): δ 10.04 (CH3); 20.94 (CH3); 31.62 (CH2); 75.59 (CH); 125.85, 128.85, 136.79, 141.58 (Ar); (Mass, 70 eV, EI): 150.1 (M+, 4.43%); 133.1 (100%), 121.1 (48.36%); 93.1 (63.43%); 91.1 (41.95%); 77.1 (13.61%).
[α]20D=+40.7 (C=0.063, CHCl3).
To a 100 mL round flask equipped with a septa and Nitrogen flow, 10% of catalyst 6 (0.325 g, 1.0 mmol) was added. Then dry THF (30 mL) was added to make a solution. 10.0 molar borane-DMS complex (1.0 mL, 10.00 mmol) was added to the catalyst solution. The mixture was stirred for about 15 minutes. A solution of 1-indanone (1.322 g, 10.0 mmol) with dry THF (10 mL) was added to the reaction mixture during 1 hour. At the end of the addition a sample of 0.5 mL was treated with MeOH (2 mL) and water (2 mL) followed by Et2O extractions (3 mL). The crude was analyzed by G.C. and product was observed with a retention time of 15.473 minutes with an approximately enantiomeric excess of 78%. The reaction was allowed to react overnight. The reaction mixture was cooled to 0° C. MeOH (20 mL) was added and the mixture is heated in the rotovaporator while concentrated. The concentrate was treated with NH4Cl saturated solution (25 mL) followed by extractions with DCM (4×20 mL), dried with sodium sulfate and concentrated. After vacuum distillation with the Kugelrohr oven (136° C./0.6 mmHg) the white solid of 1-indanol was obtained in a 94% yield (1.264 g). A 97.4% ee was determined by 31P-NMR.
An analysis of the product gave the following results:
1H-NMR (400 MHz, CDCl3): δ 1.87 (m, 1H, C8—H); 22.05 (s, 1H, OH). 41 (m, 1H, C8—H); 2.75 (m, 1H, C9—H); 2.99 (m, 1H, C9—H); 5.16 (t, J=6.2 Hz, 1 H, C1—H); 7.15-7.19 (m, Ar, 3H); 7.35 (d, J=5.6 Hz, 1H, Ar).
13C-NMR (100 MHz, CDCl3): δ 29.72; 35.82; 76.31; 124.15; 124.82; 126.62; 128.22; 143.24; 144.94; (Mass, 70 eV, EI): 134.1 (M+, 46.83%); 133.1 (100%), 117.2 (75.55%); 105.1 (10.08%).
[α]20D: −29.4 (c 0.033, CHCl3);
Melting point: 68°-69° C.
Using catalyst 10 (1.0 mmol, 10%) and following a similar procedure as above in Example 6a, the R-(−)-1-indanol (2,3-dihydro-1H-inden-1-ol) was obtained as a solid (1.29 g, 96% yield).
An analysis of the product showed:
31P-NMR (CDCl3) δ 144.97 ppm (98%), 138.27 ppm (2%)—96% ee.
To a 100 mL round flask equipped with a septa and Nitrogen flow, 10% of catalyst 10 (0.323 g, 1.0 mmol) was added. Then dry THF (30 mL) was added to make a solution. Borane dimethyl sulfide complex (BDS) 10.0 M (1.0 mL, 10 mmol ) was added to the catalyst solution. The mixture was stirred for about 15 minutes. A solution of 1-(4-chlorophenyl)-ethanone (1.30 mL, 10 mmol) in dry THF (15 mL) was added drop wise by a syringe using infusion pump for 1 hour. After addition was completed the reaction mixture was stirred for 2.5 hours at room temperature. The reaction mixture was cooled to 0° C. and quenched with methanol (40 mL). The addition was done using an infusion pump for 1 hour. The mixture was left stirred overnight. The solvents were removed under high vacuum and the residual was dissolved in DCM (40 mL), washed with saturated solution of ammonium chloride NH4Cl (40 mL) twice, then water (3×15 mL), dried with Na2SO4, filtered and concentrated in the rotavapor. The reaction yielded 1.53 g (98% yield). GC-Chiral Column (CP-Chiralsil-Dex CB) Method: ISO140.M: 9.84 min (0.56%), 10.12 min (99.44%) 98.9% ee. Purification by flash silica column chromatography with hexane:ethyl acetate 1:1, gave 1.326 g (85%) of desired product that was analyzed by GC-Chiral Column (CP-Chiralsil-Dex CB) (Method: ISO140.M): 9.77 min (0.39%), 10.03 min (99.61%) 99.2% ee.
Following similar procedure as before, BH3.SMe2 (10 M, 0.7 mL, 7 mmol) was added to a solution of complex derived from ethylene glycol and diphenyl prolinol (EG-DDP), catalyst 10, (323 mg, 0.1 mmol) in dry THF (35 mL) at room temperature. The reaction mixture was stirred for approximately one hour. A solution of dry 3-chloropropiophenone (1.69 g, 10 mmol) in dry THF (5 mL) was added by a syringe using infusion pump for 1 hour. (Rate: 6 mL/h). The 3-chloropropiophenone solution was light yellow but after adding to the complex, the total solution was clear. Following similar procedure as above for the work-up, the crude product was obtained: 1.66 g (97% yield). The product was analyzed by 31P-NMR: 145.0 ppm (5.7%), 134.5 ppm (94.3%)→88.6% ee. The product was purified by column chromatography with 30 g of silica and a mobile phase of hexane/ethyl acetate (2:1).(Yield: 1.47 g, 86%). The product was analyzed by 1H, 13C, and 31P-NMR (derivative with a phosphonate (CDA). 31P-NMR: 145.1 ppm (3%), 134.6 ppm (97%): 94% ee; [α]20=+21.0 c=0.030 (CHCl3).
Although the invention has been described with reference to specific catalyst and reactions, those skilled in the art will appreciate that many modifications can be made without departing from the scope of the invention. For one example, although the catalysts shown included a ring derived from glycol, other amino borate ester complexes could be used. Two are shown in
The claimed invention was made with Government support under grant numbers MBRS GM 08216 and NIH-IMBRE NC P20 RR-016470 awarded by the National Institutes of Health (NIH). The Government has certain rights in this invention.
Number | Date | Country | |
---|---|---|---|
60712669 | Aug 2005 | US |