HIGHLY ENGRAFTABLE HEMATOPOIETIC STEM CELLS

Information

  • Patent Application
  • 20190060366
  • Publication Number
    20190060366
  • Date Filed
    February 27, 2017
    7 years ago
  • Date Published
    February 28, 2019
    5 years ago
Abstract
The present inventions relates to highly engraftable hematopoietic stem cell (heHSC) and related methods of production and use for the treatment of stem cell and progenitor cell disorders.
Description
BACKGROUND OF THE INVENTION

Hematopoietic stem cell (HSC) transplantation is currently the only curative treatment modality for a number of stem cell disorders, including both malignant and non-malignant hematologic conditions. Yet, despite the fact that hematopoietic transplant is the only curative option for patients having such stem cell disorders, transplant-related morbidity and mortality remains high, and only a fraction of the patients that could benefit from an HSC transplant actually receive one.


Sources of HSCs for transplantation include the bone marrow itself, umbilical cord blood, and mobilized peripheral blood. Under steady state conditions, HSCs and hematopoietic progenitor cells (HPCs) normally reside within the bone marrow niches, while the mature cells produced by these populations of HSCs and HPCs ultimately exit the bone marrow and enter the peripheral blood. Considerable evidence over the last several decades, however, clearly demonstrates that HSCs and HPCs (collectively referred to as “HSPCs”) also exit the bone marrow niche and traffic to the peripheral blood and we now know that this natural egress into the periphery can be enhanced, allowing for “mobilization” of these cells from the bone marrow to the peripheral blood. Mobilized adult HSCs and HPCs are widely used for autologous and allogeneic transplantation and have improved patient outcomes when compared to bone marrow grafts.


The hematopoietic growth factor, granulocyte-colony stimulating factor (G-CSF) is widely used clinically to mobilize HSC and HPC for transplantation. G-CSF-mobilized peripheral blood stem cells (PBSCs) are associated with more rapid engraftment, shorter hospital stays, and in some circumstances, superior overall survival compared to bone marrow grafts, though the use of G-CSF-mobilized grafts over bone marrow in some allogeneic settings is under scrutiny.


While successful, G-CSF mobilization regimens involve repeated subcutaneous injections and are often associated with morbidity from bone pain (an often severe and debilitating complication), nausea, headache, and fatigue. These can be lifestyle disruptive in normal volunteers and particularly distressing for patients who are enduring the rigors of cancer chemotherapy. In a small population of normal donors, G-CSF has also been associated with serious toxicity, including enlargement of the spleen and splenic rupture, and the pro-coagulant effects of G-CSF can increase the risk of myocardial infarction and cerebral ischemia in high-risk individuals. Despite its success for most patients and donors, poor mobilization in response to G-CSF occurs in 15% of normal, healthy donors, and often those who do achieve sufficient numbers of CD34+ cells require more than one apheresis procedure. Repeated, prolonged sessions of apheresis are particularly common among autologous donors, which is particularly troubling for them given their ongoing ordeals associated with their underlying cancer and its treatment. Up to 60% of patients that fail to mobilize an optimal CD34+ cell dose for autologous transplantation often requiring tandem cycles of high dose chemotherapy. This is particularly an issue for patients with lymphoma and multiple myeloma, who often require extended aphereses and comprise the largest group of transplant recipients.


The availability of alternative methods for mobilizing HSPC could have high impact on the foregoing obstacles associated with HSC transplantation. Needed are novel therapeutics and methods that are capable of enhancing graft acquisition and hematopoietic recovery and engraftment. Also needed are highly engraftable cells that may be used to treat stem cell and/or progenitor cell disorders, such as malignant and non-malignant hematologic diseases.


SUMMARY OF THE INVENTION

There remains a need for novel compositions, methods and therapies that are capable of reducing hematopoietic stem cell (HSC) transplant-related morbidity and mortality and enhancing engraftment of transplanted HSCs in subjects in need of a stem cell transplant. The present inventions are directed toward further solutions to address these unmet needs, in addition to having other desirable characteristics. Accordingly, disclosed herein is an isolated, highly engraftable hematopoietic stem cell (heHSC), as well as related methods of preparing such heHSCs and related methods of using such heHSCs for the treatment of stem cell and/or progenitor cell disorders and other diseases for which a stem cell transplant may be indicated.


In certain aspects, the present inventions are directed to an isolated, heHSC, wherein the heHSC is Sca-1+ and c-kit+ and is negative for Lineage markers (e.g., B221−, CD3−, Gr-1−, Mac-1−, TER119−) (e.g., a Sca-1+, c-kit+ and Lin− (SKL) cell). In certain aspects, the isolated heHSC is CD48−. In certain aspects the heHSC is not naturally occurring, i.e., differs from a naturally occurring HSC in one or more ways including but not limited to functionality (e.g., engraftability) and gene expression. In certain aspects, the isolated heHSC is CD150+. In certain aspects, the isolated heHSC is a Signaling lymphocytic activation molecule (SLAM) SKL cell, which is CD150+, CD48−, Sca-1+, c-kit+ and lineage negative. In certain aspects, the isolated heHSC does not express an immunophenotypic means of identifying human hematopoietic stem cells (e.g., the isolated heHSC does not express antigens, markers or other characteristics that may be useful for distinguishing such heHSC from other cell types). In some embodiments, the isolated heHSC comprises a unique transcriptome relative to hematopoietic stem cells contacted with granulocyte colony-stimulating factor (G-CSF), a chemotherapeutic agent, or any combination thereof. For example, in some aspects, the isolated heHSCs disclosed herein are characterized based on their differential expression of one or more of the genes selected from the group consisting of Fos, CD93, Fosb, Dusp1, Jun, Dusp6, Cdk1, Fignl1, Plk2, Rsad2, Sgk1, Sdc1, Serpine2, Spp1, Cdca8, Nrp1, Mcam, Pbk, Akr1cl and Cyp11a1 (e.g., relative to the expression of one or more genes by hematopoietic stem cells mobilized using G-CSF). In some embodiments, the isolated heHSC expresses osteopontin (e.g., the heHSC is OPN+). In some embodiments, the isolated heHSC expresses CD93 (e.g., the heHSC is CD93+) than an HSC obtained from a subject subjected to a conventional mobilization regimen. In some embodiments, the isolated heHSC does not express CD34 or is CD34−. In some embodiments, the isolated heHSC is CD93+ and CD34−. In some embodiments, the heHSC is a non-native or non-naturally occurring cell, i.e., possesses one or more genotypic or phenotypic characteristics not present in native or naturally occurring HSC. In some embodiments, the isolated heHSC is from in a population of cells not present in a non-treated host and/or a host treated with a conventional mobilization regimen (e.g., a cell population with a different gene expression profile or a different phenotype profile). In some embodiments, the heHSC is from in a population of heHSC with a higher proportion of CD93+ cells than a HSC population obtained from a host treated with a conventional mobilization regimen.


Conventional procedures using G-CSF are known in the art. See Schmitt, M et al. “Mobilization of PBSC for Allogeneic Transplantation by the Use of the G-CSF Biosimilar XM02 in Healthy Donors.” Bone Marrow Transplantation 48.7 (2013): 922-925. PMC. Web. 24 Feb. 2017, incorporated herein by reference.


As used herein, “differentially expresses”, when used in reference to a cell population means an expression that is at least 10% higher than or lower than a reference value (e.g., an heHSC population differentially expresses CD93 from an HSC population obtained by a conventional immobilization technique if the heHSC population expresses at least 10% more or less CD93). As used herein, “differentially expresses,” when used in reference to a cell, means that the cell has a different expression pattern of one or more phenotypes than a reference cell.


In certain aspects of the present inventions, the isolated heHSCs disclosed herein may be transformed to express a polynucleotide (e.g., an exogenous polynucleotide). For example, in certain embodiments, an isolated heHSC is transformed with an expression vector to express a polynucleotide (e.g., an exogenous polynucleotide). In some embodiments, the expression vector comprises a viral vector selected from the group consisting of a retrovirus, a herpes simplex, an adenovirus, a lentivirus, and an adeno-associated virus. In some embodiments, the isolated heHSC is transfected with an expression vector that comprises the polynucleotide. In some embodiments, the polynucleotide comprises an exogenous polynucleotide.


Also disclosed herein is the use of isolated heHSCs to deliver an exogenous polynucleotide to a subject in need thereof. For example, the isolated heHSCs disclosed herein may be transformed to express an exogenous polynucleotide and, upon engraftment in the subject's tissues (e.g., bone marrow tissues), the engrafted heHSC expresses the exogenous polynucleotide, thereby delivering the expression product (e.g., a protein, enzyme or amino acid) to the subject.


Also disclosed herein are methods of transforming an isolated heHSC, wherein such methods comprise a step of contacting the heHSC with an expression vector under conditions sufficient for the vector to integrate into the heHSC genome. In yet other embodiments, the isolated heHSC of the present inventions are genetically modified to shut off expression of an endogenous polynucleotide.


In certain embodiments, the isolated heHSC is substantially pure (e.g., at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 98%, 99% or more pure). In certain aspects, the isolated heHSC is non-quiescent.


Also disclosed herein are methods of preparing an isolated, heHSC. For example, in some embodiments, the isolated heHSC disclosed herein is prepared by contacting a hematopoietic stem cell and/or a progenitor cell with at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof. In some embodiments, the isolated heHSC disclosed herein is prepared by contacting a hematopoietic stem cell and/or a progenitor cell with at least one CXCR2 agonist and at least one CXCR4 antagonist. In some embodiments, such contacting is performed in vivo, for example by administering GROβ or an analog or derivative thereof and plerixafor or an analog or derivative thereof to a human subject. In some embodiments, such contacting is performed in vitro. In some in vivo embodiments, such contacting mobilizes an amount of circulating peripheral blood stem cells in the subject sufficient to harvest a cell dose of between about 1×106/kg body weight and 10×106/kg body weight in a single apheresis session. In some in vivo embodiments, such contacting mobilizes an amount of circulating peripheral blood stem cells in the subject sufficient to harvest a cell dose of between about 2×106/kg body weight and 8×106/kg body weight in a single apheresis session. In some in vivo embodiments, such contacting mobilizes an amount of circulating peripheral blood stem cells in the subject sufficient to harvest a cell dose of between about 3×106/kg body weight and 6×106/kg body weight in a single apheresis session. In some in vitro embodiments, isolated HSC are contacted with sufficient amount of at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof to obtain between 1×106 and 1.2×109 heHSC cells.


In some embodiments, the at least one CXCR2 agonist comprises GROβ or an analog or derivative thereof. In some embodiments the at least one CXCR2 agonist comprises GROβ-Δ4 or an analog or derivative thereof. In some embodiments, the at least one CXCR4 antagonist comprises plerixafor (AMD-3100) or an analog or derivative thereof. In some embodiments, the at least one CXCR4 antagonist comprises ALT1188, ALT1187, ALT1128, ALT1228, or TG-0054 or an analog or derivative thereof. In some embodiments, the CXCR4 antagonist comprises at least one inhibitor described in Debnath B, et al., “Small Molecule Inhibitors of CXCR4,” Theranostics 2013; 3(1):47-75, incorporated herein by reference. In some embodiments, the α9β1 integrin/VLA-4 antagonist is N-(benzenesulfonyl)-L-prolyl-L-O-(1-pyrrolidinylcarbonyl)tyrosine (BOP) or an analog or derivative thereof (e.g., R-BC154). In some embodiments, the VLA-4 antagonist is BIO 5192, Natalizumab, firategrast, or an analog or derivative thereof. In still other embodiments, the at least one CXCR2 agonist is GROβ or an analog or derivative thereof and the at least one CXCR4 antagonist is plerixafor or an analog or derivative thereof. In some embodiments, a Gro-beta analog or derivative is the desamino Gro-beta protein (also known as MIP-2alpha), which comprises the amino acid sequence of mature gro-S protein truncated at its N terminus between amino acid positions 2 and 8, as described in PCT International Application Publication WO/1994/029341, incorporated herein by reference in its entirety. In other embodiments, the Gro-beta analog or derivative is the dimeric modified Gro-beta protein described in U.S. Pat. No. 6,413,510, incorporated herein by reference in its entirety. In some embodiments, the Gro-beta analog or derivative is SB-251353, a Gro-beta analog involved in directing movement of stem cells and other leukocytes, as described by Bensinger et al. (Bone Marrow Transplantation (2009), 43, 181-195, incorporated by reference herein).


The isolated heHSCs disclosed herein are characterized by their enhanced ability to engraft in a target tissue of a subject (e.g., the bone marrow tissue of a subject). Accordingly, in some embodiments upon administration or transplant of the heHSC in a subject such heHSC demonstrates increased engrafting ability, for example, relative to engraftment of the same quantity of hematopoietic stem cells that are contacted or mobilized with granulocyte colony-stimulating factor (G-CSF), chemotherapeutic agents (e.g., mobilizing chemotherapeutic agents), or any combinations thereof. In certain embodiments, such engrafting ability is increased by at least about two-fold, three-fold, four-fold, five-fold, six-fold, or more.


In some embodiments, the heHSC is a non-native cell, i.e., possesses one or more genotypic or phenotypic characteristics not present in native HSC. In some embodiments, the isolated heHSC is from in a population of cells not present in a non-treated host and/or a host treated with a conventional mobilization regimen (e.g., a cell population with a different gene expression profile or a different phenotype profile). In some embodiments, the heHSC is from in a population of heHSC with a higher proportion of CD93+ cells than a HSC population obtained from a host treated with a conventional mobilization regimen.


The isolated heHSCs disclosed herein are also characterized by their ability to produce or cause improved or increased donor chimerism following their engraftment. In some embodiments, upon engraftment of the heHSCs in a subject the heHSCs demonstrate increased donor chimerism, for example, relative to the donor chimerism observed following engraftment of the same quantity of hematopoietic stem cells contacted or mobilized with G-CSF, chemotherapeutic agents (e.g., mobilizing chemotherapeutic agents), or any combinations thereof. In certain embodiments, such donor chimerism is increased by at least about two fold, three-fold, four-fold, five-fold, six-fold, or more. In some embodiments, such donor chimerism is at least about 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 99%, or more.


In certain aspects, the present inventions are directed to methods of treating a stem cell or progenitor cell disorder. Such methods comprise a step of administering an isolated heHSC (e.g., a SLAM SKL heHSC) to a subject in need thereof, wherein the administered heHSC engrafts in the subject's tissues (e.g., the subject's bone marrow compartment), thereby treating the stem cell or progenitor cell disorder. In some embodiments, the methods described herein comprise administering a population of cells comprising at least about 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% heHSC cells.


In certain aspects, upon engraftment in a subject, the engrafted heHSCs demonstrate enhanced hematopoietic function relative to engraftment of the same quantity of hematopoietic stem cells contacted or mobilized with G-CSF, chemotherapeutic agents (e.g., mobilizing chemotherapeutic agents), or any combinations thereof. In some embodiments, upon engraftment in a subject the engrafted heHSCs demonstrate an enhanced CD34+ number relative to engraftment of the same quantity of hematopoietic stem cells contacted or mobilized with G-CSF, chemotherapeutic agents, or any combinations thereof. In certain embodiments, upon engraftment in a subject the engrafted heHSCs demonstrate enhanced hematopoietic function relative to engraftment of the same quantity of hematopoietic stem cells contacted or mobilized with granulocyte colony-stimulating factor (G-CSF), chemotherapeutic agents, or any combinations thereof.


In some embodiments, the subject (e.g., a human subject) is conditioned for engraftment prior to administering the isolated heHSCs disclosed herein. In some embodiments, the subject (e.g., a human subject) exhibits poor mobilization in response to a conventional mobilization regimen, such as G-CSF.


Also disclosed herein are methods of treating a stem cell and/or progenitor cell disorder in a subject, the method comprising: (a) depleting an endogenous hematopoietic stem cell or progenitor cell population in a bone marrow compartment of the subject; and (b) administering an isolated, non-native heHSC to the subject, wherein the heHSC is Sca-1+, c-kit+ and Lin− (SKL), and where the administered heHSC engrafts in the bone marrow compartment of the subject. In certain embodiments, the heHSC is a SLAM SKL heHSC.


The heHSCs disclosed herein may be used for the treatment of stem cell and/or progenitor cell disorders or any diseases for which a stem cell transplant may be indicted. In some embodiments, such a stem cell or progenitor cell disorder is a malignant hematologic disease. For example, in some embodiments, the malignant hematologic disease may be selected from the group consisting of acute lymphoid leukemia, acute myeloid leukemia, chronic lymphoid leukemia, chronic myeloid leukemia, diffuse large B-cell non-Hodgkin's lymphoma, mantle cell lymphoma, lymphoblastic lymphoma, Burkitt's lymphoma, follicular B-cell non-Hodgkin's lymphoma, lymphocyte predominant nodular Hodgkin's lymphoma, multiple myeloma, and juvenile myelomonocytic leukemia. In some embodiments, the stem cell or progenitor cell disorder is a non-malignant disease. For example, in some embodiments the non-malignant disease may be selected from the group consisting of myelofibrosis, myelodysplastic syndrome, amyloidosis, severe aplastic anemia, paroxysmal nocturnal hemoglobinuria, immune cytopenias, systemic sclerosis, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, Crohn's disorder, chronic inflammatory demyelinating polyradiculoneuropathy, human immunodeficiency virus (HIV), Fanconi anemia, sickle cell disorder, beta thalassemia major, Hurler's syndrome (MPS-IH), adrenoleukodystrophy, metachromatic leukodystrophy, familial erythrophagocytic lymphohistiocytosis and other histiocytic disorders, severe combined immunodeficiency (SCID), and Wiskott-Aldrich syndrome.


Also disclosed herein is an isolated, non-native heHSC, wherein the heHSC is Sca-1+, c-kit+ and Lin− (SKL); wherein the heHSC is prepared by mobilizing hematopoietic stem cells and/or progenitor cells from a bone marrow compartment of a subject to a peripheral compartment of the subject by administering at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof to the subject, and isolating the mobilized hematopoietic stem cells and/or progenitor cells from the peripheral compartment of the subject. In some embodiments, the isolated heHSC does not express CD48 or is CD48−. In some embodiments, the isolated heHSC expresses CD150 or is CD150+. In some embodiments, the isolated heHSC expresses CD93 or is CD93+. In certain aspects, the isolated heHSC does not express an immunophenotypic means of identifying human hematopoietic stem cells. In some embodiments the heHSC is a SLAM SKL heHSC. In some embodiments, the at least one CXCR2 agonist comprises GROβ or an analog or derivative thereof. In some embodiments the at least one CXCR2 agonist comprises GROβ-Δ4 or an analog or derivative thereof. In some embodiments, the at least one CXCR4 antagonist comprises plerixafor (AMD-3100) or an analog or derivative thereof. In still other embodiments, the at least one CXCR2 agonist is GROβ or an analog or derivative thereof and the at least one CXCR4 antagonist is plerixafor or an analog or derivative thereof. In some embodiments, the at least one CXCR4 antagonist comprises ALT1188, ALT1187, ALT1128, ALT1228, or TG-0054. In some embodiments, the α9β1 integrin/VLA-4 antagonist is N-(benzenesulfonyl)-L-prolyl-L-O-(1-pyrrolidinylcarbonyl)tyrosine (BOP) or an analog or derivative thereof (e.g., R-BC154). In some embodiments, the VLA-4 antagonist is BIO 5192 or Natalizumab, or an analog or derivative thereof.


In some embodiments, the isolated heHSC comprises a unique transcriptome relative to hematopoietic stem cells contacted with granulocyte colony-stimulating factor (G-CSF), a chemotherapeutic agent, or any combination thereof. For example, in some aspects, the isolated heHSCs disclosed herein are characterized based on their differential expression of one or more of the genes selected from the group consisting of Fos, CD93, Fosb, Dusp1, Jun, Dusp6, Cdk1, Fignl1, Plk2, Rsad2, Sgk1, Sdc1, Serpine2, Spp1, Cdca8, Nrp1, Mcam, Pbk, Akr1cl and Cyp11a1, relative to, for example the expression of one or more genes in HSCs mobilized using G-CSF. In certain aspects, the isolated heHSC is non-quiescent. In some embodiments, the isolated heHSC is OPN+(e.g., the isolated heHSC express osteopontin). In some embodiments, the isolated heHSC differentially expresses CD93 (e.g., the heHSC is CD93+). In some embodiments, the isolated heHSC does not express CD34 or is CD34−. In some embodiments, the isolated heHSC is CD93+ and CD34−.


In certain aspects of the present inventions, the isolated heHSCs disclosed herein are transformed to express a polynucleotide (e.g., an isolated heHSC may be transformed with an expression vector to express an exogenous polynucleotide). In some embodiments, the expression vector comprises a viral vector selected from the group consisting of a retrovirus, a herpes simplex, a lentivirus, an adenovirus, and an adeno-associated virus. In some embodiments, the isolated heHSC is transfected with an expression vector that comprises the polynucleotide. In some embodiments, the polynucleotide comprises an exogenous polynucleotide.


Also disclosed herein is the use of the isolated heHSC to effect or otherwise facilitate the delivery of an exogenous polynucleotide to a subject in need thereof. For example, the isolated heHSC disclosed herein may be transformed to express an exogenous polynucleotide and, upon engraftment in the subject's tissues (e.g., bone marrow tissues), the engrafted heHSC expresses the exogenous polynucleotide, thereby delivering the expression product of the exogenous polynucleotide (e.g., a protein or amino acid) to the subject.


In some embodiments, also disclosed herein are methods of transforming an isolated heHSC, wherein such methods comprise a step of contacting the heHSC with an expression vector under conditions sufficient for the vector to integrate into the heHSC genome. In yet other embodiments, the isolated heHSC of the present inventions are genetically modified to shut off expression of an endogenous polynucleotide.


In certain embodiments, the isolated heHSC is substantially pure.


The above discussed, and many other features and attendant advantages of the present inventions will become better understood by reference to the following detailed description of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.



FIG. 1 illustrates that relative to G-CSF, the combination of the CXCR2 agonist GROβ and the CXCR4 antagonist plerixafor (AMD-3100) mobilized a highly engraftable hematopoietic stem cell (heHSC). As shown in FIG. 1, relative to G-CSF mobilized cells, an increase in donor chimerism was observed following engraftment with the heHSCs that were mobilized with GROβ and AMD-3100. In this demonstration, 195 CD150+, CD48−, SKL cells were transplanted per mouse.



FIG. 2 illustrates that relative to G-CSF, the combination of the CXCR2 agonist GROβ and the CXCR4 antagonist plerixafor (AMD-3100) mobilized a highly engraftable hematopoietic stem cell (heHSC), in a separate, independent demonstration from that shown in FIG. 1. As shown in FIG. 2, relative to G-CSF mobilized cells, an increase in donor chimerism was observed following engraftment of the heHSCs that were mobilized with GROβ and AMD-3100. In this demonstration, 50 CD150+CD48-SKL cells were transplanted per mouse.



FIG. 3 illustrates that certain genes showed higher expression in the heHSCs that were mobilized using the combination of the CXCR2 agonist GROβ and the CXCR4 antagonist plerixafor (AMD-3100), relative to the cells mobilized using G-CSF.



FIG. 4 illustrates a heat map showing the top twenty discriminating genes between hematopoietic stem cells (HSCs) that were mobilized using G-CSF mobilized (the two Tube B replicates), relative to the heHSCs (Tube C) mobilized using the combination of the CXCR2 agonist GROβ and the CXCR4 antagonist plerixafor (AMD-3100). Spp1 corresponds to osteopontin marker I.





DETAILED DESCRIPTION OF THE INVENTION

The present disclosure relates to a non-native, highly engraftable hematopoietic stem cell (heHSC) that is useful in connection with stem cell transplantation and the treatment of stem cell and/or progenitor cell disorders. Disclosed herein are isolated, non-native heHSCs, methods of their use and manufacture, and kits that comprise such heHSCs for use in connection with stem cell transplantation or the treatment of stem cell and/or progenitor cell disorders. The heHSCs disclosed herein are useful, for example, for transplantation and/or engraftment in a subject in connection with the treatment of any disease requiring stem cell transplantation.


The work described herein relates to the surprising discovery that heHSCs that are prepared by contacting or mobilizing with a combination of a CXCR2 agonist (e.g., GROβ) and a CXCR4 antagonist (e.g., plerixafor) exhibit superior engrafting ability, for example, superior engrafting ability relative to HSCs or peripheral blood stem cells (PBSCs) that are mobilized using traditional mobilizing regimens (e.g., granulocyte-colony stimulating factor (G-CSF) or chemotherapeutic agents). Accordingly, certain aspects of the present inventions relate to non-native, isolated heHSCs that are prepared by contacting or mobilizing hematopoietic stem cells and/or progenitor cells using a combination of one or more CXCR2 agonists (e.g., GROβ) and one or more CXCR4 antagonists (e.g., plerixafor). An exemplary method of mobilizing hematopoietic stem cells and/or progenitor cells in a subject comprises administering to the subject a combination of at least one CXCR2 agonist and at least one CXCR4 antagonist in amounts sufficient to mobilize such hematopoietic stem cells and/or progenitor cells into the subject's peripheral blood. The isolated heHSCs disclosed herein and the related methods of their preparation by mobilizing hematopoietic stem cells and/or progenitor cells have a variety of useful applications, for example for the treatment of stem cell and/or progenitor cell disorders.


In some embodiments, aspects of the present inventions relate to non-native, isolated heHSCs that are prepared by contacting or mobilizing hematopoietic stem cells and/or progenitor cells using a combination of at least one CXCR2 agonist (e.g., GROβ) and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof.


As used herein, the term “mobilizing” refers to the act of inducing the migration of hematopoietic stem cells and/or progenitor cells (e.g., heHSCs) from a first location (e.g., the stem cell niche or bone marrow tissues of a subject) to a second location (e.g., the peripheral blood or an organ, such as the spleen, of a subject). For example, in certain embodiments, the non-native, isolated heHSCs disclosed herein may be prepared by mobilizing hematopoietic stem cells and/or progenitor cells from the stem cell niche of a human subject into the subject's peripheral tissue by administering to the subject a combination of one or more CXCR2 agonists (e.g., GROβ) and one or more CXCR4 antagonists (e.g., plerixafor), following which the mobilized heHSCs may be harvested or isolated (e.g., by apheresis), as further described herein. With regard to the heHSCs disclosed herein, the term “isolated” means that the heHSC is substantially free of other cell types or cellular materials with which may be present when the heHSC is isolated from a treated subject. In some embodiments, an isolated heHSC or an isolated population of heHSCs is a substantially pure population of heHSCs, for example, as compared to the heterogeneous population from which the cells were isolated or enriched from (e.g., substantially pure as compared to the population of mobilized cells). In some embodiments, the heHSCs are enriched from a biological sample that is obtained from a subject following treatment with a combination of a CXCR2 agonist (e.g., GROβ) and a CXCR4 antagonist (e.g., plerixafor). In one embodiment, the mobilized and harvested heHSCs disclosed herein may be used in connection with an allogeneic or an autologous transplant. The terms “enriching” or “enriched” are used interchangeably herein and mean that the yield (fraction) of heHSCs is increased by at least about 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99% or more over the fraction of mobilized cells.


As used herein with respect to a population of heHSCs, term “substantially pure”, refers to a population of heHSCs that is at least about 75%, preferably at least about 85%, more preferably at least about 90%, and most preferably at least about 95% pure, and still more preferably at least about 99% pure with respect to the cells making up a total population of mobilized cells. Recast, the terms “substantially pure” or “essentially purified”, with regard to a population of heHSCs, refers to a population of cells that contain fewer than about 20%, more preferably fewer than about 15%, 12%, 10%, 8%, 7%, most preferably fewer than about 5%, 4%, 3%, 2%, 1%, or less than 1%, of cells that are not heHSCs as defined by the terms herein. In some embodiments, the present invention encompasses methods to expand a population of heHSCs, wherein the expanded population of heHSCs is a substantially pure population.


While certain embodiments disclosed herein contemplate the in vivo preparation of the heHSCs by mobilizing hematopoietic stem cells and/or progenitor cells, it should be understood that the present inventions are not limited to such in vivo methods. Rather, also contemplated are in vitro methods of preparing heHSCs, for example by contacting hematopoietic stem cells and/or progenitor cells with a combination of a CXCR2 agonist (e.g., GROβ) and a CXCR4 antagonist (e.g., plerixafor), VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof. As used herein, the term “contacting” means bringing two or more moieties together, or within close proximity of one another such that the moieties may interact with each other. For example, in one embodiment of the present invention, a hematopoietic stem cell and/or a progenitor cell is contacted with a CXCR2 agonist and/or a CXCR4 antagonist to produce and/or mobilize a heHSC.


Contemplated CXCR2 agonists include any compounds or agents that are capable of activating the CXCR2 receptor (e.g., the human CXCR2 receptor). Exemplary CXCR2 agonists include chemokines, cytokines, biologic agents, antibodies and small organic molecules. For example, contemplated chemokines acting via the CXCR2 receptor include without limitation GROβ, GROα, GROγ, GCP-2 (granulocyte chemo-attractant protein 2), IL-8, NAP-2 (neutrophil activating peptide 2), ENA-78 (epithelial-cell derived neutrophil activating protein 78), and modified forms of any of the foregoing. In some embodiments, the CXCR2 agonist is selected from the group of compounds or agents consisting of small organic or inorganic molecules; oligosaccharides; polysaccharides; biological macromolecules selected from the group consisting of peptides, proteins, peptide analogs and derivatives; peptidomimetics; nucleic acids selected from the group consisting of siRNAs, shRNAs, antisense RNAs, ribozymes, and aptamers; and any combination thereof.


In certain aspects, the CXCR2 agonist comprises GROβ.


In some embodiments, the at least one CXCR2 agonist is the chemokine GROβ or an analog or derivative thereof. An exemplary form of GROβ is the human GROβ polypeptide (GenBank Accession: AAP13104; SEQ ID NO: 1). In certain aspects, an exemplary form of GROβ is the human GROβ (UniProt ID No. P19875; SEQ ID NO: 2).


An exemplary GROβ analog or derivative is the desamino GROβ protein (also known as MIP-2alpha), which comprises the amino acid sequence of mature gro-S protein truncated at its N terminus between amino acid positions 2 and 8, as described in PCT International Application Publication WO/1994/029341, the contents of which are incorporated herein by reference in their entirety. Another GROβ analog or derivative is the dimeric modified GROβ protein described in U.S. Pat. No. 6,413,510, the contents of which are incorporated herein by reference in their entirety. Still another exemplary GROβ analog or derivative is SB-251353, a GROβ analog involved in directing movement of stem cells and other leukocytes, as described by Bensinger, et al., Bone Marrow Transplantation (2009), 43, 181-195, the entire contents of which are incorporated by reference herein.


In some embodiments of the present inventions, the at least one CXCR2 agonist is or comprises GROβ-Δ4 (e.g., SEQ ID NO: 3) or an analog or derivative thereof. In some embodiments, the at least one CXCR2 agonist is selected from the group consisting of GROβ or an analog or derivative thereof and GROβ-Δ4 or an analog or derivative thereof.


Contemplated CXCR4 antagonists include any compounds or agents that are capable of blocking the CXCR4 receptor or preventing its activation. For example, contemplated are compounds and agents that block or otherwise interfere with the binding or interaction of the CXCR4 receptor with such receptor's ligand. Also contemplated are compounds or agents that block the downstream effects of the activated CXCR4 receptor. In some embodiments, the CXCR4 antagonist is selected from the group of compounds or agents consisting of small organic or inorganic molecules; oligosaccharides; polysaccharides; biological macromolecules selected from the group consisting of peptides, proteins, peptide analogs and derivatives; peptidomimetics; nucleic acids selected from the group consisting of siRNAs, shRNAs, antisense RNAs, ribozymes, and aptamers; and any combination thereof.


In some embodiments of the present inventions, the at least one CXCR4 antagonist is plerixafor (formerly known as AMD-3100), the structure of which is depicted below (I), or an analog or derivative thereof.




embedded image


In some embodiments, the at least one CXCR4 antagonist is MOZOBIL® or an analog or derivative thereof. Exemplary analogs of plerixafor include, but are not limited to, AMD11070, AMD3465, KRH-3955, T-140, and 4F-benzoyl-TN14003, as depicted below (II-VI, respectively) and described by De Clercq, Pharmacol Ther. (2010) 128(3):509-18, the contents of which are incorporated by reference herein in their entirety.




embedded image


embedded image


embedded image


In some embodiments, the at least one CXCR4 antagonist comprises ALT1188, ALT1187, ALT1128, ALT1228, or TG-0054 or an analog or derivative thereof. In some embodiments, the CXCR4 antagonist comprises at least one inhibitor described in Debnath B, et al., “Small Molecule Inhibitors of CXCR4,” Theranostics 2013; 3(1):47-75, incorporated herein by reference.


In some embodiments, non-native, isolated heHSCs are prepared by contacting or mobilizing hematopoietic stem cells and/or progenitor cells using a combination of at least one CXCR2 agonist (e.g., GROβ) and at least one α9β1 integrin/VLA-4 antagonist. In some embodiments, the α9β1 integrin/VLA-4 antagonist is N-(benzenesulfonyl)-L-prolyl-L-O-(1-pyrrolidinylcarbonyl)tyrosine (BOP) or an analog or derivative thereof (e.g., R-BC154). In some embodiments, non-native, isolated heHSCs are prepared by contacting or mobilizing hematopoietic stem cells and/or progenitor cells using a combination of at least one CXCR2 agonist (e.g., GROβ) and at least one VLA-4 antagonist. In some embodiments, the VLA-4 antagonist is BIO 5192, Natalizumab, or an analog or derivative thereof.


In some embodiments, the at least one CXCR2 agonist is or comprises GROβ or an analog or derivative thereof, and the at least one CXCR4 antagonist is or comprises plerixafor (AMD-3100) or an analog or derivative thereof. In some embodiments, the at least one CXCR2 agonist is selected from the group consisting of GROβ-Δ4 or an analog or derivative thereof and the at least one CXCR4 antagonist is selected from the group consisting of plerixafor or an analog or derivative thereof.


The combination of at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof may be administered directly to a subject in combination or, in certain aspects, may be administered independently. For example, the at least one CXCR2 agonist and the at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof can be, but need not be, administered (e.g., administered intravenously) to a subject at the same time. In one embodiment, the at least one CXCR2 agonist is administered in one or more doses, followed by the administration of the at least one CXCR4 antagonist in one or more doses.


In addition to inducing a faster mobilization (e.g., about two-fold, three-fold, four-fold, five-fold, six-fold, seven-fold, eight-fold, nine-fold, ten-fold, twelve-fold, fifteen-fold, twenty-fold or more faster relative to traditional mobilization regimens that are performed using, for example, G-CSF or, alternatively, within one hour, within 45 minutes, within 30 minutes, within 15 minutes within 10 minutes, within 5 minutes or faster) and producing a greater quantity of mobilized stem cells (e.g., heHSCs), the combination of at least one CXCR2 agonist (e.g., GROB-Δ4 or an analog or derivative thereof) and at least one CXCR4 antagonist (e.g., plerixafor or an analog or derivative thereof), VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof mobilizes a non-native stem cell that is characterized by its enhanced engrafting ability and its unique genetic signatures, as illustrated in FIG. 3. As used herein to describe the stem cells that are mobilized using the combination of at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof the term “unique” refers to one or more distinguishing characteristics of such mobilized stem cells relative to those cells that are mobilized using traditional mobilization regiments using, for example, G-CSF alone. For example, stem cells that are mobilized using the combination of at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof may be characterized by their expression of one or more unique markers or antigens (e.g., CD93+) or by their unique transcriptome.


One such marker, CD93, is expressed in hematopoietic cells at the apex of hematopoiesis. These early hematopoietic CD93 expressing cells in humans may also be negative for CD34. heHSC populations generated upon treatment with combination of at least one CXCR2 agonist and at least one CXCR4 antagonist which also exhibit CD93 expression are indicative of early lineage stem cells and may serve to support improved transplantation and/or engraftment.


Similarly, in certain embodiments, stem cells that are mobilized using the combination of at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof may be characterized by improved function. In particular, the engrafting ability of the heHSCs mobilized using the combination of at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof is surprisingly increased or enhanced relative to the engrafting ability of stem cells or PBSCs that are mobilized following the contacting of hematopoietic stem cells and/or progenitor cells with traditional mobilizing agents, such as G-CSF.


In certain aspects, the heHSCs are characterized by their increased or enhanced engrafting ability relative to stem cells or PBSCs that are mobilized following the contacting of hematopoietic stem cells and/or progenitor cells with one or more chemotherapeutic agents (e.g., chemotherapeutic mobilization agents). Exemplary chemotherapeutic agents include paclitaxel, etoposide, vinblastine, doxorubicin, bleomycin, methotrexate, 5-fluorouracil, 6-thioguanine, cytarabine, cyclophosphamide, cisplatinum and combinations thereof. In certain aspects, such chemotherapeutic agents mobilize hematopoietic stem cells and/or progenitor cells. For example, such a chemotherapeutic mobilization agent may comprise EPO. In some embodiments, such a chemotherapeutic mobilization agent is or comprises stem cell factor. In some embodiments, such a chemotherapeutic mobilization agent is or comprises TPO. In still other embodiments, such a chemotherapeutic mobilization agent is or comprises parathyroid hormone.


As used herein, the term “hematopoietic stem cells” or “HSC” refers to stem cells that can differentiate into the hematopoietic lineage and give rise to all blood cell types such as white blood cells and red blood cells, including myeloid (e.g., monocytes and macrophages, neutrophils, basophils, eosinophils, erythrocytes, megakaryocytes/platelets, dendritic cells), and lymphoid lineages (e.g., T-cells, B-cells, NK-cells). Stem cells are defined by their ability to form multiple cell types (multipotency) and their ability to self-renew. Hematopoietic stem cells can be identified, for example by cell surface markers such as CD34−, CD133+, CD48−, CD150+, CD244−, cKit+, Sca1+, and lack of lineage markers (negative for B220, CD3, CD4, CD8, Mac1, Gr1, and Ter119, among others).


As used herein, the term “hematopoietic progenitor cells” encompasses pluripotent cells which are committed to the hematopoietic cell lineage, generally do not self-renew, and are capable of differentiating into several cell types of the hematopoietic system, such as granulocytes, monocytes, erythrocytes, megakaryocytes, B-cells and T-cells, including, but not limited to, short term hematopoietic stem cells (ST-HSCs), multi-potent progenitor cells (MPPs), common myeloid progenitor cells (CMPs), granulocyte-monocyte progenitor cells (GMPs), megakaryocyte-erythrocyte progenitor cells (MEPs), and committed lymphoid progenitor cells (CLPs). The presence of hematopoietic progenitor cells can be determined functionally as colony forming unit cells (CFU-Cs) in complete methylcellulose assays, or phenotypically through the detection of cell surface markers (e.g., CD45−, CD34+, Ter119−, CD16/32, CD127, cKit, Sca1) using assays known to those of skill in the art.


In some embodiments, the mobilized hematopoietic stem cells and/or progenitor cells comprise SKL cells. In certain aspects, the mobilized hematopoietic stem cells and/or progenitor cells comprise SKL SLAM cells. In certain aspects, the mobilized hematopoietic stem cells and/or progenitor cells exhibit a SLAM (Signaling lymphocyte activation molecule) expression pattern which is CD150+, CD48−. A SLAM expression pattern (SLAM code) is an expression pattern of specific markers (SLAM markers) that are used to identify subpopulations of hematopoietic stem cells and multipotent progenitors. See Oguro, et al. (2013) “SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors,” Cell Stem Cell, 13(1), 102-116, and references cited therein.


In some embodiments, the mobilized hematopoietic stem cells and/or progenitor cells comprise CD34−, CD133+ cells. In some embodiments, the mobilized hematopoietic stem cells and/or progenitor cells comprise common myeloid progenitor cells. In some embodiments, the mobilized hematopoietic stem cells and/or progenitor cells comprise granulocyte/monocyte progenitor cells. In some embodiments, the mobilized hematopoietic stem cells and/or progenitor cells comprise megakaryocyte/erythroid progenitor cells. In some embodiments, the mobilized hematopoietic stem cells and/or progenitor cells comprise committed lymphoid progenitor cells. In some embodiments, the mobilized hematopoietic stem cells and/or progenitor cells comprise a combination of common myeloid progenitor cells, granulocyte/monocyte progenitor cells, megakaryocyte/erythroid progenitor cells. In some embodiments, the mobilized hematopoietic stem cells and/or progenitor cells comprise CD150-, CD48−, CD244+ cells. In some embodiments, the mobilized hematopoietic stem cells and/or progenitor cells comprise CD150-, CD48+, CD244+ cells. In some embodiments, the mobilized hematopoietic stem cells and/or progenitor cells comprise Sca-1−, c-kit+, Lin−, CD34+, CD16/32mid cells. In some embodiments, the mobilized hematopoietic stem cells and/or progenitor cells comprise Sca-1−, c-kit+, Lin−, CD34−, CD16/32low cells. In some embodiments, the isolated heHSC does not express an immunophenotypic means of identifying human hematopoietic stem cells.


In some embodiments, the isolated heHSCs disclosed herein comprise a unique transcriptome relative to hematopoietic stem cells contacted with G-CSF, a chemotherapeutic agent, or a combination thereof. For example, in certain aspects, the isolated heHSCs disclosed herein are characterized based on their differential expression of one or more of the genes identified in FIG. 4, relative to, for example the expression of one or more genes in hematopoietic stem cells (HSCs) that were mobilized using G-CSF. In some aspects, the isolated heHSCs disclosed herein are characterized based on their differential expression of one or more of the genes selected from the group consisting of Fos (e.g., SEQ ID NO: 4), CD93 (e.g., SEQ ID NO: 5), Fosb (e.g., SEQ ID NO: 6), Dusp1 (e.g., SEQ ID NO: 7), Jun (e.g., SEQ ID NO: 8), Dusp6 (e.g., SEQ ID NO: 9), Cdk1 (e.g., SEQ ID NO: 10), Fignl1 (e.g., SEQ ID NO: 11), Plk2 (e.g., SEQ ID NO: 12), Rsad2 (e.g., SEQ ID NO: 13), Sgk1 (e.g., SEQ ID NO: 14), Sdc1 (e.g., SEQ ID NO: 15), Serpine2 (e.g., SEQ ID NO: 16), Spp1 (e.g., SEQ ID NO: 17), Cdca8 (e.g., SEQ ID NO: 18), Nrp1 (e.g., SEQ ID NO: 19), Mcam (e.g., SEQ ID NO: 20), Pbk (e.g., SEQ ID NO: 21), Akr1cl (e.g., SEQ ID NO: 22) and Cyp11a1 (e.g., SEQ ID NO: 23), relative to, for example the expression of one or more genes by hematopoietic stem cells (HSCs) that were mobilized using G-CSF. In some embodiments, the isolated heHSC is OPN+(e.g., the isolated heHSC express osteopontin). In some embodiments, the isolated heHSC differentially expresses CD93 (e.g., the heHSC is CD93+). In certain aspects, the isolated heHSC disclosed herein is non-quiescent. In some embodiments, the heHSC is CD34−.


The heHSCs disclosed herein are prepared by mobilizing or contacting hematopoietic stem cells and/or progenitor cells with a combination of a CXCR2 agonist and a CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof. As used herein, the terms “highly engraftable hematopoietic stem cell” and “heHSC” refer to the isolated population or fraction of stem cells or PBSCs that are, for example, mobilized from the stem cell niche or bone marrow of a subject into the peripheral blood or organs of the subject following the administration of one or more CXCR2 agonists (e.g., GROβ or an analog or derivative thereof) and one or more CXCR4 antagonists (e.g., plerixafor or an analog or derivative thereof), VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof. In certain aspects, such heHSCs are substantially pure.


In some embodiments, the isolated heHSCs disclosed herein are immunophenotypically unique relative to cells or stem cells mobilized using traditional mobilization regimens (e.g., stem cells mobilized using G-CSF). For example, as illustrated in FIG. 3, certain genes showed higher expression in the heHSCs that were mobilized using the combination of the CXCR2 agonist GROβ and the CXCR4 antagonist plerixafor (AMD-3100), relative to the cells mobilized using G-CSF. In certain aspects, the heHSCs disclosed herein express osteopontin or are osteopontin positive (OPN+). In some embodiments, the isolated heHSC differentially expresses CD93 (e.g., the heHSC is CD93+). In some embodiments, the isolated heHSC does not express CD34 or is CD34−. In some embodiments, the isolated heHSC is CD93+ and CD34−. In some embodiments, the isolated heHSC differentially expresses one or more genes shown in FIG. 3 or FIG. 4 as compared to an isolated HSC mobilized using traditional mobilization regimens (e.g., stem cells mobilized using G-CSF).


In some embodiments, a population of cells (i.e., a cell population comprising or consisting of heHSC) isolated by the methods disclosed herein (e.g., by contacting cells with a combination of at least one CXCR2 agonist (e.g., GROβ) and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof) has an increased or decreased proportion of cells exhibiting one or more cell surface markers or one or more expression profiles disclosed herein as compared to cells isolated by conventional methods. The one or more cell surface markers or cell expression profiles may be increased or decreased by about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more. In some embodiments, the one or more cell surface marker is CD93. In some embodiments, after performing the methods disclosed herein, an obtained cell population may be assayed to determine whether the prevalence of one or more cell surface markers or cell expression profiles has increased or decreased to determine whether the obtained cell population is suitable as heHSC for transplantation. In some embodiments, the obtained cell population is assayed to determine if at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more of the cells are CD93+. Any suitable assay (e.g., FACS analysis) may be used for the determination.


In some embodiments, the obtained cell population may be further enriched for a desired cell surface marker or gene expression pattern to obtain a desired heHSC population for transplantation. In some embodiments, the obtained cell population may be enriched for CD93+ cells or CD93+ and CD34− cells. In some embodiments, the cell population may be enriched by about 1.5-fold, 2-fold, 2.5-fold, 3-fold, 4-fold, 5-fold or more. In some embodiments, the cell population may be enriched to contain at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more of cells containing a desired cell surface marker or cell expression pattern (e.g., enriched for CD93+ cells or CD93+/CD34− cells). Any suitable procedure (e.g., FACS sorting) may be used for the enrichment. In some embodiments, the isolated heHSCs disclosed herein are not immunophenotypically unique relative to cells or stem cells mobilized using traditional mobilization regimens (e.g., stem cells mobilized using G-CSF). Such isolated heHSC may be functionally unique relative to cells or stem cells mobilized using traditional mobilization regimens.


Upon mobilization, which in certain instances may occur within 15-30 minutes of having administered a CXCR2 agonist and a CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof, the mobilized heHSCs can be harvested or isolated (e.g., via apheresis) as disclosed herein and are useful for subsequent transplantation in a subject in need thereof. For example, such mobilized heHSCs may be harvested or isolated for autologous transplantation into a subject or for allogeneic transplantation into a recipient subject. In some instances, the harvesting or isolation of the mobilized hematopoietic stem cells and/or progenitor cells can be initiated within as little as 15 minutes following the administration of the at least one CXCR2 agonist and the at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof. In some embodiments, the harvesting or isolating procedure can begin in as little as 10 minutes, 12 minutes, 15 minutes, 18 minutes, 20 minutes, 22 minutes, 25 minutes, 30 minutes, 35 minutes, 40 minutes, 47 minutes, 52 minutes, 58 minutes, or an hour after administration of the at least one CXCR2 agonist and the at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof.


The disclosure contemplates the use of any suitable method of harvesting and/or collecting mobilized hematopoietic stem cells and/or progenitor cells to prepare the isolated heHSCs disclosed herein. In some embodiments harvesting the mobilized hematopoietic stem cells and/or progenitor cells comprises apheresis. In some embodiments, the combination of at least one CXCR2 agonist (e.g., GROβ or GROβ-Δ4) and at least one CXCR4 antagonist (e.g., plerixafor), VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof rapidly and efficiently mobilizes mobilized hematopoietic stem cells and/or progenitor cells, and exhibits increased efficiencies compared to traditional mobilizing regimens. As a result, in some embodiments an apheresis procedure may be performed on the same day that the at least one CXCR2 agonist and the at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof are administered to the subject. In other words, harvesting mobilized heHSCs from a subject (e.g., a donor) via apheresis can be performed on the same day that the mobilization agents are administered to the subject (e.g., during a single visit to a healthcare facility). In some embodiments, an apheresis procedure may be performed on the same day that at least one CXCR2 agonist (e.g., GROβ or GROβ-Δ4) and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof is administered to the subject.


In some embodiments, administration of the at least one CXCR2 agonist (e.g., GROβ or GROβ-Δ4) and the at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof mobilizes an amount of hematopoietic stem cells and/or progenitor cells in the subject to harvest a heHSC cell dose of between about 1×106/kg body weight and 10×106/kg body weight in a single apheresis session. In some embodiments, a single session of apheresis collects enough heHSCs for a cell dose of between about 1×106/kg and 10×106/kg of the recipient's body weight. In some embodiments, administration of the at least one CXCR2 agonist (e.g., GROβ or GROβ-Δ4) and the at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof mobilizes an amount of hematopoietic stem cells and/or progenitor cells in the subject to harvest enough heHSCs for a cell dose of between about 2×106/kg body weight and 8×106/kg body weight in a single apheresis session. In some embodiments, a single session of apheresis collects enough heHSCs for a cell dose of between about 2×106/kg and 8×106/kg of the recipient's body weight. In some embodiments, administration of the at least one CXCR2 agonist (e.g., GROβ or GROβ-Δ4) and the at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof mobilizes an amount of hematopoietic stem cells and/or progenitor cells in the subject to harvest a heHSC cell dose of between about 3×106/kg body weight and 6×106/kg body weight in a single apheresis session. In some embodiments, a single session of apheresis collects enough heHSCs for a cell dose of between about 1×106/kg and 10×106/kg of the recipient's body weight.


Following harvesting, the isolated heHSCs disclosed herein may be administered to or transplanted in the donor subject (e.g., an autologous transplant), or alternatively may be donated to a different subject in need thereof (e.g., allogeneic transplant). In certain aspects, the administration or transplant of the isolated heHsCs occurs following or in combination with radiation or chemotherapy.


The mobilized heHSC disclosed herein are characterized by their increased engrafting ability (e.g., a two-fold increased engrafting ability), which makes such heHSCs suitable for use in connection with gene therapy. For example, where genetic manipulation of cells is associated with a corresponding reduction in their engrafting ability and, due to the improved or enhanced engrafting ability of the heHSCs disclosed herein, such heHSCs are rendered more tolerant to genetic manipulation, following which only limited reductions in their engrafting ability may be observed.


Gene therapy can be used to transform a heHSC, modify a heHSC to replace a gene product, to treat disease, or to improve engraftment of the heHSC following implantation into a subject. For example, in certain embodiments, the heHSCs disclosed herein may be transformed with an expression vector (e.g., a viral vector selected from the group consisting of a retrovirus, a herpes simplex, a lentivirus, an adenovirus, and an adeno-associated virus). In some embodiments, the isolated heHSC is transformed or transfected with an expression vector that comprises a polynucleotide. In some embodiments, the polynucleotide comprises an exogenous polynucleotide. In some embodiments, the expression product of a polynucleotide is a protein that is not endogenously expressed or is under expressed by the subject's cells.


As used herein, the term “transform” means to introduce into a heHSC an exogenous polynucleotide (e.g., a nucleic acid or nucleic acid analog) which replicates within that heHSC, that encodes a gene product (e.g., an amino acid, polypeptide sequence, protein or enzyme) which is expressed in that heHSC, and/or that is integrated into the genome of that heHSC so as to affect the expression of a genetic locus within the genome. The term “transform” is used to embrace all of the various methods of introducing such polynucleotides (e.g., nucleic acids or nucleic acid analogs), including, but not limited to the methods referred to in the art as transformation, transfection, transduction, or gene transfer, and including techniques such as microinjection, DEAE-dextran-mediated endocytosis, calcium phosphate coprecipitation, electroporation, liposome-mediated transfection, ballistic injection, viral-mediated transfection, and the like.


In some embodiments, also disclosed herein are methods of transforming an isolated heHSC, wherein such methods comprise a step of contacting the heHSC with an expression vector under conditions sufficient for the vector to integrate into the heHSC genome. In yet other embodiments, the isolated heHSC of the present inventions are genetically modified to shut off expression of an endogenous polynucleotide.


As used herein, the term “vector” means any genetic construct, such as for example, a plasmid, phage, transposon, cosmid, chromosome, virus and/or virion, which is capable transferring nucleic acids between cells. Vectors may be capable of one or more of replication, expression, and insertion or integration, but need not possess each of these capabilities. Thus, the term includes cloning, expression, homologous recombination, and knock-out vectors.


In certain aspects, prior to engraftment, a mobilized hematopoietic stem cell and/or progenitor cell can be manipulated to express one or more desired polynucleotides or gene products (e.g., one or more of a polypeptide, amino acid sequence protein and/or enzyme). Gene therapy can be used to either modify a mobilized hematopoietic stem cell and/or progenitor cell to replace a polynucleotide or gene product or to add or knockdown a gene product. In some embodiments the genetic engineering is done, for example, to treat disease, following which the genetically engineered heHSC would be transplanted and engraft into a subject. For example, a mobilized heHSC may be manipulated to express one or more polynucleotides or genes that would enhance the engrafting ability of the transplanted heHSC.


Techniques for transfecting cells are known in the art. In an exemplary embodiment, gene therapy can be used to insert a polynucleotide (e.g., DNA) into a mobilized hematopoietic stem cell from a patient or subject with a genetic defect to correct such genetic defect, following which the corrected or genetically engineered mobilized hematopoietic stem cell may be transplanted into a subject.


In some other embodiments, the heHSCs disclosed herein can be used as carriers for gene therapy.


In some embodiments, the isolated heHSCs and the related methods of mobilizing such heHSCs are useful for treating subjects that have demonstrated poor mobilization in response to a conventional hematopoietic stem cell and/or progenitor cell mobilization regimen (e.g., subjects that have failed to mobilize a sufficient numbers of stem cells following a mobilization regimen comprising or consisting of G-CSF). For example, such heHSCs and the related methods disclosed herein may be used to enhance hematopoietic stem cell and/or progenitor cell mobilization in individuals exhibiting stem cell and/or progenitor cell mobilopathy. Accordingly, in certain embodiments, any of the methods and compositions disclosed herein may be suitable for use in mobilizing hematopoietic stem cell and/or progenitor stem cells in a subject having an underlying disease that impairs egress of such hematopoietic stem cells and/or progenitor stem cells from bone marrow and into the peripheral circulation, including, for example, subjects that have or are at risk of developing diabetic stem cell mobilopathy. In certain aspects, subjects that have failed to mobilize a sufficient number of hematopoietic stem cells and/or progenitor cells in response to a mobilization regimen comprising G-CSF (e.g., subjects that have failed to mobilize a sufficient number of stem cells about five days after receiving a G-CSF mobilization regimen) are candidates for mobilization using the methods and compositions disclosed herein. In certain embodiments, the isolated heHSCs may be administered to a subject exhibiting mobilopathy for the treatment of a stem cell or progenitor cell disorder.


As used herein to describe a mobilization regimen, the term “conventional” generally refers to those mobilization regimens that have traditionally been used to mobilize stem cells. For example, conventional mobilization regimens include those comprising or consisting of G-CSF and that have historically been used to mobilize stem cells from the bone marrow compartment. Such convention mobilization regimens are frequently associated with poor mobilization results, which may often occur over an extended period of time (e.g., over about 5 days), and subjecting the patient to repeated and prolonged apheresis procedures.


In addition to being phenotypically unique relative to stem cells mobilized using traditional mobilization regimens, the heHSCs disclosed herein are characterized by their improved functional properties. For example, in certain embodiments, the heHSCs disclosed herein are characterized by their improved engrafting ability. Accordingly, certain aspects of the methods disclosed herein comprise administering or otherwise transplanting the isolated, non-native heHSCs to a subject in need, such that the administered heHSCs engraft in the tissues (e.g., the bone marrow tissue) of the recipient subject. As used herein, the terms “engrafting” and “engraftment” refer to placing or administration of the heHSCs into an animal (e.g., by injection), wherein following such placement or administration, the heHSCs persist in vivo. Engraftment may be readily measured by the ability of the transplanted heHSCs to, for example, contribute to the ongoing blood cell formation or by assessing donor chimerism following the transplant of such heHSCs.


Successful stem cell transplantation depends on the ability to engraft sufficient quantities of transplanted stem cells in the tissues of the subject (e.g., the bone marrow tissues of the subject). The heHSCs disclosed herein are characterized by their improved engrafting ability and accordingly, certain aspects of the present invention relate to methods of treating stem cell and/or progenitor cell disorders or other diseases requiring transplantation of hematopoietic stem cells and/or progenitor cells by administering to a subject the non-native, isolated heHSCs disclosed herein.


The heHSCs disclosed herein are also characterized by their ability to achieve enhanced or improved donor chimerism following their engraftment in the tissues of a subject. For example, as illustrated in FIG. 1, relative to G-CSF-mobilized stem cells, in certain embodiments, an increase in donor chimerism is observed following engraftment of heHSCs that were mobilized with the combination of one or more CXCR2 agonists (e.g., GROβ and analogs or derivatives thereof) and one or more CXCR4 antagonist (e.g., AMD-3100 and analogs or derivatives thereof). As used herein, the term “donor chimerism” refers to the fraction or percentage of bone marrow cells that originate from the donor heHSCs following engraftment of such heHSCs in a subject. In certain embodiments, donor chimerism following engraftment of the heHSCs is increased relative to, for example, donor chimerism observed following engraftment of the same or a similar quantity of stem cells that are mobilized using conventional mobilization regimens (e.g., conventional mobilization regimens comprising or consisting of G-CSF or other chemotherapeutic agents). In certain embodiments, donor chimerism following engraftment of the heHSCs is increased by at least about two fold, three-fold, four-fold, five-fold, six-fold, or more. In some embodiments, such donor chimerism is at least about 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 99%, or more.


In certain aspects, the heHSCs disclosed herein are also characterized by their ability to achieve an enhanced or improved CD34+ number upon engraftment in a subject. For example, such engrafted heHSCs demonstrate an enhanced or improved CD34+ number relative to an engraftment of the same quantity of hematopoietic stem cells contacted with G-CSF or one or more chemotherapeutic agents described herein. In some embodiments, such CD34+ number is increased by at least about 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 99%, 100%, 150%, 200%, 300%, or more relative to, for example, the CD34+ number observed following engraftment of a G-CSF-mobilized stem cell. In some embodiments, such CD34+ number is increased by at least about 1.2-fold, 1.3-fold, 1.4-fold, 1.5-fold, 1.6-fold, 1.7-fold, 1.8-fold, 1.9-fold, 2-fold, 2.5-fold, 3-fold, 3.5-fold, 4-fold, or more relative to, for example, the CD34+ number observed following engraftment of a G-CSF-mobilized stem cell.


In some embodiments, also disclosed herein are methods of treating a stem cell or progenitor cell disorder or a disease requiring transplantation of stem cells, the methods comprising administering the isolated, non-native heHSCs to a subject, wherein the administered heHSCs engrafts in the subject's tissues (e.g., the subject's bone marrow compartment), thereby treating the stem cell or progenitor cell disorder.


As used herein, the terms “treat,” “treatment,” “treating,” or “amelioration” when used in reference to a stem cell disorder, progenitor cell disorder or any disease requiring stem cell transplantation, generally refer to therapeutic treatments for a condition, wherein the object is to reverse, alleviate, ameliorate, inhibit, slow down or stop the progression or severity of a symptom or condition. The term “treating” also includes reducing or alleviating at least one adverse effect or symptom of a condition, disease or disorder. Treatment is generally effective if one or more symptoms or clinical markers of the condition or disease are reduced. Alternatively, treatment is effective if the progression of a condition is reduced or halted. That is, treatment includes not just the improvement of symptoms or markers, but also a cessation or at least slowing of progress or worsening of symptoms that would be expected in the absence of treatment. Beneficial or desired clinical results include, but are not limited to, alleviation of one or more symptom(s), diminishment of extent of the deficit, stabilized state of, for example, a condition, disease, or disorder described herein, or delaying or slowing onset of a condition, disease, or disorder described herein, and an increased lifespan as compared to that expected in the absence of treatment.


As used herein, the term “administering,” generally refers to the placement of the heHSCs described herein into a subject (e.g., the parenteral placement of heHSCs into a subject) by a method or route which results in delivery of such heHSCs to an intended target tissue or site of action (e.g., the bone marrow tissue of a subject). In certain aspects, the term “administering” refers to the placement of at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof to a subject to mobilize hematopoietic stem cells and/or progenitor cells from, for example, the subject's bone marrow tissues and into the subject's peripheral tissues (e.g., mobilizing such hematopoietic stem cells and/or progenitor cells out of the bone marrow compartment and into one or more of the peripheral compartments, such as the peripheral blood compartment).


The isolated, non-native heHSCs disclosed herein are useful for the treatment of any disease, disorder, condition, or complication associated with a disease, disorder, or condition, in which transplantation of hematopoietic stem cells and/or progenitor cells is desirable. In some embodiments, the present inventions relate to methods of treating diseases that require peripheral blood stem cell transplantation. In some embodiments, the disclosure provides method of treating stem cell disorders and progenitor cell disorders in a subject in need of such treatment. Examples of such stem cell and progenitor disorders include hematological malignancies and non-malignant hematological diseases.


In some embodiments, the disease, stem cell disorder or progenitor cell disorder is a hematological malignancy. Exemplary hematological malignancies which can be treated with the heHSCs and methods described herein include, but are not limited to, acute lymphoid leukemia, acute myeloid leukemia, chronic lymphoid leukemia, chronic myeloid leukemia, diffuse large B-cell non-Hodgkin's lymphoma, mantle cell lymphoma, lymphoblastic lymphoma, Burkitt's lymphoma, follicular B-cell non-Hodgkin's lymphoma, T-cell non-Hodgkin's lymphoma, lymphocyte predominant nodular Hodgkin's lymphoma, multiple myeloma, and juvenile myelomonocytic leukemia.


In some embodiments, the disease, stem cell disorder or progenitor cell disorder is a non-malignant disorder. Exemplary non-malignant diseases which can be treated with the methods and heHSCs described herein include, but are not limited to, myelofibrosis, myelodysplastic syndrome, amyloidosis, severe aplastic anemia, paroxysmal nocturnal hemoglobinuria, immune cytopenias, systemic sclerosis, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, Crohn's disease, chronic inflammatory demyelinating polyradiculoneuropathy, human immunodeficiency virus (HIV), Fanconi anemia, sickle cell disease, beta thalassemia major, Hurler's syndrome (MPS-IH), adrenoleukodystrophy, metachromatic leukodystrophy, familial erythrophagocytic lymphohistiocytosis and other histiocytic disorders, severe combined immunodeficiency (SCID), and Wiskott-Aldrich syndrome.


As used herein, the term “subject” means any human or animal. In certain aspects, the animal is a vertebrate such as a primate, rodent, domestic animal or game animal. Primates include chimpanzees, cynomologous monkeys, spider monkeys, and macaques, e.g., Rhesus. Rodents include mice, rats, woodchucks, ferrets, rabbits and hamsters. Domestic and game animals include cows, horses, pigs, deer, bison, buffalo, feline species, e.g., domestic cat, canine species, e.g., dog, fox, wolf, avian species, e.g., chicken, emu, ostrich, and fish, e.g., trout, catfish and salmon. Patient or subject includes any subset of the foregoing (e.g., all of the above), but excluding one or more groups or species such as humans, primates or rodents. In certain embodiments, the subject is a mammal (e.g., a primate or human). In some embodiments, the subject is a mammal. In some embodiments, the mammal is a human, a non-human primate, a mouse, a rat, a dog, a cat, a horse, or a cow, and is not limited to these examples. Mammals other than humans can be advantageously used, for example, as subjects that represent animal models of, for example, a hematological malignancy. In addition, the methods described herein can be used to treat domesticated animals and/or pets. A subject can be male or female.


In certain embodiments, a subject can be one who has been previously diagnosed with or otherwise identified as suffering from or having a condition, disease, stem cell disorder or progenitor cell disorder described herein in need of treatment (e.g., of a hematological malignancy or non-malignant disease described herein) or one or more complications related to such a condition, and optionally, but need not have already undergone treatment for a condition or the one or more complications related to the condition. Alternatively, a subject can also be one who has not been previously diagnosed as having a condition in need of treatment or one or more complications related to such a condition. Rather, a subject can include one who exhibits one or more risk factors for a condition or one or more complications related to a condition.


A “subject in need” of treatment for a particular condition (e.g., a stem cell or progenitor cell disorder) can be a subject having that condition, diagnosed as having that condition, or at increased risk of developing that condition relative to a given reference population. In some embodiments, the methods of treatment described herein comprise selecting a subject diagnosed with, suspected of having, or at risk of developing a hematological malignancy, for example a hematological malignancy described herein. In some embodiments, the methods described herein comprise selecting a subject diagnosed with, suspected of having, or at risk of developing a non-malignant disease, for example a non-malignant disease described herein.


In other aspects of the invention, heHSC described herein may be produced by obtaining a HSC cell population by any conventional method disclosed in the art and enriching the HSC cell population for one or more cell surface markers or gene expression profiles for heHSC disclosed herein. In some embodiments, the obtained HSC cell population is enriched for CD93+ cells. In some embodiments, the HSC cell population is enriched for CD93+/CD34− cells. In some embodiments, the HSC cell population is enriched by about 1.5-fold, 2-fold, 2.5-fold, 3-fold, 4-fold, 5-fold or more. In some embodiments, the cell population may be enriched to contain at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more of cells containing a desired cell surface marker or cell expression pattern (e.g., enriched for CD93+ cells or CD93+/CD34− cells). Any suitable procedure (e.g., FACS sorting) may be used for the enrichment.


Some aspects of the invention are directed towards a method of making an HSC product comprising: i) contacting hematopoietic stem cells and/or progenitor cells with at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof to produce a candidate product; ii) providing a target expression profile for an heHSC product; iii) determining whether the candidate product meets the target expression profile of an heHSC product; and iv) releasing the candidate product as an heHSC product if the candidate product meets the target expression profile of an heHSC product.


In some embodiments, the target expression profile comprises Sca-1+, c-kit+ and Lin− (SKL) cells. In some embodiments, the target expression profile comprises CD48− cells. In some embodiments, the target expression profile comprises CD150+ cells. In some embodiments, the target expression profile comprises CD93+ cells. In some embodiments, the target expression profile comprises CD34− cells. In some embodiments, the target expression profile comprises OPN+ cells.


“The target expression profile” refers to a transcriptome and/or cell surface marker profile indicating the presence of heHSC cells or a certain percentage of heHSC cells in a cell population. In some embodiments, the target expression profile comprises at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more of cells in the candidate product or enriched candidate product having one or more cell surface markers. In some embodiments, the target expression profile can be a transcriptome profile of the candidate product or enriched candidate product indicating an heHSC product. In some embodiments, the transcriptome profile can be similar or substantially similar to the profiles shown in FIG. 3 or FIG. 4.


In some embodiments, the contacting of the hematopoietic stem cells and/or progenitor cells with at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof is performed in vivo. In some embodiments, the contacting is performed in vitro.


In some embodiments, the at least one CXCR2 agonist comprises GROβ or an analog or derivative thereof. In some embodiments, the at least one CXCR2 agonist comprises GROβ-Δ4 or an analog or derivative thereof. In some embodiments, the at least one CXCR4 antagonist comprises plerixafor or an analog or derivative thereof. In some embodiments, the at least one CXCR2 agonist is GROβ or an analog or derivative thereof, and wherein the at least one CXCR4 antagonist is plerixafor or an analog or derivative thereof.


In some embodiments of the invention, the heHSC product, upon transplant into a subject, demonstrates increased engrafting ability relative to engraftment of the same quantity of hematopoietic stem cells contacted with granulocyte colony-stimulating factor (G-CSF), a chemotherapeutic agent, or a combination thereof. In some embodiments, the engrafting ability is increased by at least about two-fold. In certain embodiments, such engrafting ability is increased by at least about two-fold, three-fold, four-fold, five-fold, six-fold, or more.


In some embodiments of the invention, upon engraftment in a subject the heHSC product demonstrates increased donor chimerism relative to engraftment of the same quantity of hematopoietic stem cells contacted with G-CSF, a chemotherapeutic agent, or a combination thereof. In some embodiments, the donor chimerism is increased by at least about two fold. In certain embodiments, such donor chimerism is increased by at least about two-fold, three-fold, four-fold, five-fold, six-fold, or more. In some embodiments, donor chimerism is increased by at least about 50%.


In some embodiments, the heHSC product is non-quiescent.


In some embodiments, the method of making an HSC product additionally comprises a step of enriching the candidate product for one or more cell surface markers and/or one or more gene expression profiles. Any suitable method of enrichment may be employed. In some embodiments, the method is FACS.


In some embodiments, the heHSC product comprises a unique transcriptome relative to hematopoietic stem cells contacted with granulocyte colony-stimulating factor (G-CSF), a chemotherapeutic agent, or a combination thereof. In some embodiments, the heHSC product differentially express one or more of genes selected from the group consisting of Fos, CD93, Fosb, Dusp1, Jun, Dusp6, Cdk1, Fignl1, Plk2, Rsad2, Sgk1, Sdc1, Serpine2, Spp1, Cdca8, Nrp1, Mcam, Pbk, Akr1cl and Cyp11a1, relative to one or more genes expressed by hematopoietic stem cells mobilized using G-CSF. In some embodiments, the heHSC product comprises at least a unique transcriptome or a unique phenotype as compared to a naturally occurring HSC.


In some aspects of the invention, the heHSC product is transformed to express a polynucleotide. In some embodiments, the heHSC product is transformed with an expression vector to express a polynucleotide. In some embodiments, the expression vector comprises a viral vector selected from the group consisting of a retrovirus, a herpes simplex, a lentivirus, an adenovirus, and an adeno-associated virus. In some embodiments, the heHSC product is transfected with an expression vector that comprises the polynucleotide. In some embodiments, polynucleotide comprises an exogenous polynucleotide.


In some embodiments, the heHSC product comprises at least 40% CD93+ cells. In some embodiments, the heHSC product comprises at least about 2×106 cells. In some embodiments, the hematopoietic stem cells and/or progenitor cells are human or mouse cells.


Another aspect of the invention is directed to a method of treating a stem cell or progenitor cell disorder comprising: i) contacting hematopoietic stem cells and/or progenitor cells with at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof to produce a candidate product; ii) providing a target expression profile for an heHSC product; iii) determining whether the candidate product meets the target expression profile of an heHSC product; and iv) administering the candidate product to a subject in need thereof if the candidate product meets the target expression profile of an heHSC product.


In some embodiments, the target expression profile comprises Sca-1+, c-kit+ and Lin− (SKL) cells. In some embodiments, the target expression profile comprises CD48− cells. In some embodiments, the target expression profile comprises CD150+ cells. In some embodiments, the target expression profile comprises CD93+ cells. In some embodiments, the target expression profile comprises CD34− cells. In some embodiments, the target expression profile comprises OPN+ cells.


“The target expression profile” refers to a transcriptome and/or cell surface marker profile indicating the presence of heHSC cells or a certain percentage of heHSC cells in a cell population. In some embodiments, the target expression profile comprises at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or more of cells in the candidate product or enriched candidate product having one or more cell surface markers. In some embodiments, the target expression profile can be a transcriptome profile of the candidate product or enriched candidate product indicating an heHSC product. In some embodiments, the transcriptome profile can be similar or substantially similar to the profiles shown in FIG. 3 or FIG. 4.


In some embodiments, the contacting of the hematopoietic stem cells and/or progenitor cells with at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof is performed in vivo. In some embodiments, the contacting is performed in vitro.


In some embodiments, the at least one CXCR2 agonist comprises GROβ or an analog or derivative thereof. In some embodiments, the at least one CXCR2 agonist comprises GROβ-Δ4 or an analog or derivative thereof. In some embodiments, the at least one CXCR4 antagonist comprises plerixafor or an analog or derivative thereof. In some embodiments, the at least one CXCR2 agonist is GROβ or an analog or derivative thereof, and wherein the at least one CXCR4 antagonist is plerixafor or an analog or derivative thereof.


In some embodiments of the invention, the heHSC product, upon transplant into a subject, demonstrates increased engrafting ability relative to engraftment of the same quantity of hematopoietic stem cells contacted with granulocyte colony-stimulating factor (G-CSF), a chemotherapeutic agent, or a combination thereof. In some embodiments, the engrafting ability is increased by at least about two-fold. In certain embodiments, such engrafting ability is increased by at least about two-fold, three-fold, four-fold, five-fold, six-fold, or more.


In some embodiments of the invention, upon engraftment in a subject the heHSC product demonstrates increased donor chimerism relative to engraftment of the same quantity of hematopoietic stem cells contacted with G-CSF, a chemotherapeutic agent, or a combination thereof. In some embodiments, the donor chimerism is increased by at least about two fold. In certain embodiments, such donor chimerism is increased by at least about two-fold, three-fold, four-fold, five-fold, six-fold, or more. In some embodiments, donor chimerism is increased by at least about 50%.


In some embodiments, the heHSC product is non-quiescent.


In some embodiments, the method of making an HSC product additionally comprises a step of enriching the candidate product for one or more cell surface markers and/or one or more gene expression profiles. Any suitable method of enrichment may be employed. In some embodiments, the method is FACS.


In some embodiments, the heHSC product comprises a unique transcriptome relative to hematopoietic stem cells contacted with granulocyte colony-stimulating factor (G-CSF), a chemotherapeutic agent, or a combination thereof. In some embodiments, the heHSC product differentially express one or more of genes selected from the group consisting of Fos, CD93, Fosb, Dusp1, Jun, Dusp6, Cdk1, Fignl1, Plk2, Rsad2, Sgk1, Sdc1, Serpine2, Spp1, Cdca8, Nrp1, Mcam, Pbk, Akr1cl and Cyp11a1, relative to one or more genes expressed by hematopoietic stem cells mobilized using G-CSF. In some embodiments, the heHSC product comprises at least a unique transcriptome or a unique phenotype as compared to a naturally occurring HSC.


In some aspects of the invention, the heHSC product is transformed to express a polynucleotide. In some embodiments, the heHSC product is transformed with an expression vector to express a polynucleotide. In some embodiments, the expression vector comprises a viral vector selected from the group consisting of a retrovirus, a herpes simplex, a lentivirus, an adenovirus, and an adeno-associated virus. In some embodiments, the heHSC product is transfected with an expression vector that comprises the polynucleotide. In some embodiments, polynucleotide comprises an exogenous polynucleotide.


In some embodiments, the heHSC product comprises at least 40% CD93+ cells. In some embodiments, the heHSC product comprises at least about 2×106 cells. In some embodiments, the hematopoietic stem cells and/or progenitor cells are human or mouse cells.


In some embodiments, the stem cell or progenitor cell disorder is a malignant hematologic disease. In some embodiments, the malignant hematologic disease is selected from the group consisting of acute lymphoid leukemia, acute myeloid leukemia, chronic lymphoid leukemia, chronic myeloid leukemia, diffuse large B-cell non-Hodgkin's lymphoma, mantle cell lymphoma, lymphoblastic lymphoma, Burkitt's lymphoma, follicular B-cell non-Hodgkin's lymphoma, lymphocyte predominant nodular Hodgkin's lymphoma, multiple myeloma, and juvenile myelomonocytic leukemia. In some embodiments, the stem cell or progenitor cell disorder is a non-malignant disease. In some embodiments, the non-malignant disease is selected from the group consisting of myelofibrosis, myelodysplastic syndrome, amyloidosis, severe aplastic anemia, paroxysmal nocturnal hemoglobinuria, immune cytopenias, systemic sclerosis, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, Crohn's disorder, chronic inflammatory demyelinating polyradiculoneuropathy, human immunodeficiency virus (HIV), Fanconi anemia, sickle cell disorder, beta thalassemia major, Hurler's syndrome (MPS-IH), adrenoleukodystrophy, metachromatic leukodystrophy, familial erythrophagocytic lymphohistiocytosis and other histiocytic disorders, severe combined immunodeficiency (SCID), and Wiskott-Aldrich syndrome.


In certain aspects, the heHSCs described herein can be provided in the form of a kit. For example, the kit may comprise one or more isolated, non-native heHSCs and informational or instructional materials relating to the use or administration of such heHSCs to a subject in need. In some embodiments, such kits may comprise at least one CXCR2 agonist, at least one CXCR4 antagonist and instructions for their administration to a subject to mobilize and/or harvest the hematopoietic stem cells and/or progenitor cells, thereby preparing the isolated heHSCs disclosed herein.


It is to be understood that the invention is not limited in its application to the details set forth in the description or as exemplified. The invention encompasses other embodiments and is capable of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.


While certain agents, compounds, compositions and methods of the present invention have been described with specificity in accordance with certain embodiments, the following examples serve only to illustrate the methods and compositions of the invention and are not intended to limit the same.


The articles “a” and “an” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to include the plural referents. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The invention also includes embodiments in which more than one, or the entire group members are present in, employed in, or otherwise relevant to a given product or process. Furthermore, it is to be understood that the invention encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, descriptive terms, etc., from one or more of the listed claims is introduced into another claim dependent on the same base claim (or, as relevant, any other claim) unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise. Where elements are presented as lists, (e.g., in Markush group or similar format) it is to be understood that each subgroup of the elements is also disclosed, and any element(s) can be removed from the group. It should be understood that, in general, where the invention, or aspects of the invention, is/are referred to as comprising particular elements, features, etc., certain embodiments of the invention or aspects of the invention consist, or consist essentially of, such elements, features, etc. For purposes of simplicity those embodiments have not in every case been specifically set forth in so many words herein. It should also be understood that any embodiment or aspect of the invention can be explicitly excluded from the claims, regardless of whether the specific exclusion is recited in the specification. The publications and other reference materials referenced herein to describe the background of the invention and to provide additional detail regarding its practice are hereby incorporated by reference.


EXAMPLES
Example 1 Rapid Regimen

To address the still remaining deficiencies in hematopoietic mobilization, the present inventors believe an effective alternative method is the use of rapid mobilizing agents that do not require multiple injections, that are more predictable in their peak mobilization kinetics, and that result in an enhanced CD34+ number and hematopoietic function upon transplant. One agent with potential is the CXCR2 agonist, GROβ. GROβ and GROβ-Δ4 (collectively referred to herein as “GROβ”) rapidly mobilize hematopoietic stem cells (HSC), including all classes of short-term progenitor cells as well as long-term repopulating cells. In mice, peak GROβ-induced mobilization occurs within 15-30 minutes of administration. Moreover, not only was the observed mobilization faster following GROβ administration, the present inventors believe that the stem cell quality was also greater, at least in view of the improved engrafting ability of the mobilized stem cells (e.g., the two-fold greater engrafting ability of the stem cells mobilized from the bone marrow compartment, relative to stem cells mobilized using, for example, a mobilization regimen comprising C-GSF) and the donor chimerism observed following engraftment of such mobilized stem cells.


To assess this, the present inventors mobilized large cohorts of mice (15-20 per group) with either G-CSF (125 ug/kg/day, five days) or with a combination of GROβ (2.5 mg/kg) and plerixafor (AMD-3100) (5 mg/kg), and then sorted the peripheral blood for highly purified SLAM SKL cells (CD150+, CD48−, Sca-1+, c-kit+, lineage negative)


In two separate experiments, the present inventors then competitively transplanted either (a) 190 SLAM SKL cells against 300,000 whole bone marrow competitors, or (b) 50 SLAM SKL cells against 300,000 whole bone marrow competitors. This experimental design allowed for a direct assessment of the engrafting ability of the mobilized SLAM SKL cells, independent of accessory cell populations (e.g., non-CD150+, CD48−, Sca-1+, c-kit+, lineage negative cells) that may have been mobilized, as well as normalized the HSC content so that the same number of HSCs from either the G-CSF-mobilized donors, or the GROβ plus plerixafor-mobilized donors, went into the irradiated recipients. As illustrated in FIGS. 1 and 2 in both sets of experiments, the SLAM SKL cells that were mobilized by the combination of GROβ plus plerixafor demonstrated superior engrafting ability (2 fold greater) relative to the cells that were mobilized by G-CSF. This was evident even when the exact same numbers of phenotypically defined (SLAM SKL) HSCs were transplanted.


Example 2 Transcriptome Signatures

Over the last decade, there has been increasing evidence that the hematopoietic stem cell (HSC) pool is heterogeneous in function, with identification of HSCs with differing lineage outputs, kinetics of repopulation, length of life-span, and perhaps differences amongst HSCs contributing to homeostatic blood production from those that are the engraftable units in transplantation. To date, however, there are no reliable methods for prospectively isolating differing HSC populations to study heterogeneity. Rather, much of the available data has been acquired based on clonal tracking, single cell transplantation, etc.


Much like panning for gold, the present inventors can now use the differential mobilization properties of the mobilization regimen using GROβ and plerixafor and the regimen using G-CSF as a “biologic sieve” to isolate the heterogeneous HSC populations from the blood. These differential mobilization properties enabled the present inventors, and without destroying the cell, to prospectively isolate what is referred to herein as a highly engraftable HSC (heHSC) population for further functional analysis, and to prospectively isolate a differing HSC population with known, predictable function (the heHSCs) for further molecular characterization.


As a preliminary proof of concept and to demonstrate the feasibility of the approach described herein, SLAM SKL cells were sorted from large cohorts of mice that were treated or mobilized with either G-CSF, or with the combination of GROβ and plerixafor (AMD-3100), as described in Example 1.


In the present study, 200 cells were directly sorted into 5 uL TCL lysis buffer (Qiagen, #1031576). Library preparation was performed by the Smart-Seq2 protocol (Picelli et al., 2013) with subsequent RNA sequencing by Illumina NextSeq500. In addition to SLAM SKL cells from the G-CSF mobilized blood and the GROβ plus plerixafor mobilized blood, additional control samples were sequenced, including steady state bone marrow, bone marrow from the G-CSF-treated mice group, bone marrow from the GROβ plus plerixafor-treated mice, and a “drug spike” control, which consisted of G-CSF mobilized blood spiked with GROβ (350 ng/ml) plus AMD-3100 (10 ug/ml), concentrations based on prior PK data, for 15 minutes, with subsequent downstream processing for FACS sorting. This enabled the present inventors to directly compare the heHSCs from those that were isolated from G-CSF mobilized HSCs, HSCs from the bone marrow of treated and untreated mice, and a drug control to account for any direct effects the GROβ plus plerixafor may have had on the gene signatures that are not due to specific, differential mobilization effects. The RNASeq data was subsequently analyzed, as illustrated in FIG. 3.


Surprisingly, as illustrated in FIG. 4, the highly purified SLAM SKL cells from the GROβ plus plerixafor-mobilized peripheral blood demonstrated a unique transcriptomic signature, including, for example, the expression of CD93 a marker of early lineage stem cells, relative to those HSCs mobilized by G-CSF, as well as from the treated or untreated bone marrow and from the drug spike control. The present inventors believe that the foregoing studies represent the first demonstration of predictable, differential HSC mobilization and provide a novel method to isolate the heHSC cells which have superior clinical utility.


Example 3 Generation of Unique Stem Cell Populations

Hematopoietic stem cells (HSCs) are at the apex of lifelong blood cell production. Recent clonal analysis studies suggest that HSCs are heterogeneous in function and those that contribute to homeostatic production may be distinct from those that engraft during transplant. The present inventors developed a rapid mobilization regimen utilizing a unique CXCR2 agonist (an N-terminal truncated MIP-2a) and the CXCR4 antagonist AMD-3100. A single subcutaneous injection of both agents together resulted in rapid mobilization in mice with a peak progenitor cell content in blood reached within 15 minutes.


The observed mobilization was equivalent to a 5-day regimen of G-CSF and is the result of synergistic signaling, and was blocked in CXCR4 or CXCR2 knockout mice, confirming receptor and mechanism specificity and is caused by synergistic release of MMP-9 from neutrophils that was blocked in MMP-9 knockout mice, mice treated with an anti-MMP-9 antibody, TIMP-1 transgenic mice, or mice where neutrophils were depleted in vivo using anti-GR-1 antibody. In vivo confocal imaging of mice demonstrated that the mobilization regimen caused a rapid and transient increase in bone marrow vascular permeability, “opening the doorway” for hematopoietic egress to the peripheral blood.


Transplantation of 2×106 peripheral blood mononuclear cells (PBMCs) from the rapid regimen resulted in a 4 or 6 day quicker recovery of neutrophils and platelets, respectively, compared to a G-CSF mobilized graft (n=12 mice per group, P<0.01). In limiting dilution competitive transplants, the rapid regimen demonstrated a greater than 2-fold enhancement in competitiveness (n=30 mice/treatment group, 2 individual experiments, P<0.001). Additionally, in secondarily transplanted mice, competitiveness of the rapidly mobilized graft increased as measured by contribution to chimerism, while G-CSF mobilized grafts remained static (n=16 mice/group, P<0.01). Surprisingly, despite robust enhancement in both short and long-term engraftment by the rapidly mobilized graft, phenotypic analysis of the blood of mobilized mice for CD150+CD48− Sca-1+c-kit+ Lineage neg (SLAM SKL) cells, a highly purified HSC population, showed lower numbers of phenotypically defined HSCs than in the G-CSF group.


The foregoing data suggest that a unique subset of “highly engraftable” HSCs (heHSCs) are mobilized by the rapid regimen comprising an N-terminal truncated MIP-2a and AMD-3100, compared to G-CSF. However, as our earlier studies were performed using grafts that contained the total PBMC fraction (similar to the clinical apheresis product) the present inventors could not rule out the potential contribution of accessory cells to the enhanced engrafting ability of the heHSCs.


Example 4 Long Term Effects

Following the conclusions set out in Example 3, in 3 independent experiments, the present inventors mobilized large cohorts of mice with the rapid regimen comprising an N-terminal truncated MIP-2a (2.5 mg/kg) and AMD-3100 (5 mg/kg), or G-CSF (125 ug/kg/day, fice days) and sorted SLAM SKL cells from the PBMC fraction and competitively transplanted equal numbers of SLAM SKL cells (190, or 50) from either the rapid regimen or G-CSF and tracked contribution to chimerism over 36 weeks. Remarkably, the heHSCs from the rapid regimen demonstrated a 2-fold enhancement in competitiveness compared to SLAM SKL cells from the G-CSF group (n=11 mice/group, P<0.0004). See FIG. 1.


Example 5 Molecular Cell Sorting and Signature Determination

While appreciation for HSC heterogeneity has grown, methods are lacking for prospectively isolating differing HSC populations with known biologic function, to study molecular heterogeneity. The present inventors sought to use the differential mobilization properties of our rapid regimen and G-CSF to isolate the heterogeneous HSC populations from the blood. The present inventors again flow sorted SLAM SKL cells from mice mobilized with the rapid regimen or G-CSF and performed RNASeq analysis of the purified populations. The heHSCs mobilized by the rapid regimen had a unique transcriptomic signature compared to G-CSF mobilized or random HSCs acquired from bone marrow (P<0.000001). Strikingly, gene set enrichment analysis (GSEA) demonstrated that the heHSCs had a gene signature highly significantly clustered to that of fetal liver HSCs, further demonstrating the selective harvesting of a subset of highly engraftable stem cells. Our results mechanistically define a new mobilization strategy, that in a single day can mobilize a graft with superior engraftment properties compared to G-CSF, and selectively mobilize a novel population of heHSCs with an immature molecular phenotype capable of robust long-term engraftment.












SEQUENCE LISTING















<120> HIGHLY ENGRAFTABLE HEMATOPOIETIC STEM CELLS





<130> HRVY-078-WO1





<150> 62/300,694


<151> 2016 Feb. 26





<150> 62/413,821


<151> 2016 Oct. 27





<160>  23





<210>   1


<211>  73


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> Human Gro-beta





<400> 1


Ala Pro Leu Ala Thr Glu Leu Arg Cys Gln Cys Leu Gln Thr Leu Gln


1         5           10          15





Gly Ile His Leu Lys Asn Ile Gln Ser Val Lys Val Lys Ser Pro Gly


        20          25            30





Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys Asn Gly Gln


    35           40           45





Lys Ala Cys Leu Asn Pro Ala Ser Pro Met Val Lys Lys Ile Ile Glu


  50           55          60





Lys Met Leu Lys Asn Gly Lys Ser Asn


65          70





<210>   2


<211> 107


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> UniProt ID No. P19875- human GRO-beta





<400>   2


Met Ala Arg Ala Thr Leu Ser Ala Ala Pro Ser Asn Pro Arg Leu Leu


1         5          10            15





Arg Val Ala Leu Leu Leu Leu Leu Leu Val Ala Ala Ser Arg Arg Ala


       20          25          30





Ala Gly Ala Pro Leu Ala Thr Glu Leu Arg Cys Gln Cys Leu Gln Thr


     35          40           45





Leu Gln Gly Ile His Leu Lys Asn Ile Gln Ser Val Lys Val Lys Ser


  50           55           60





Pro Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys Asn


65           70           75          80





Gly Gln Lys Ala Cys Leu Asn Pro Ala Ser Pro Met Val Lys Lys Ile


         85          90           95





Ile Glu Lys Met Leu Lys Asn Gly Lys Ser Asn


        100         105





<210>   3


<211>  69


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> GRO-beta-delta-4





<400>   3


Thr Glu Leu Arg Cys Gln Cys Leu Gln Thr Leu Gln Gly Ile His Leu


1         5          10           15





Lys Asn Ile Gln Ser Val Lys Val Lys Ser Pro Gly Pro His Cys Ala


       20           25           30





Gln Thr Glu Val Ile Ala Thr Leu Lys Asn Gly Gln Lys Ala Cys Leu


    35            40           45





Asn Pro Ala Ser Pro Met Val Lys Lys Ile Ile Glu Lys Met Leu Lys


  50           55           60





Asn Gly Lys Ser Asn


65





<210>   4


<211> 380


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> FOS





<400>   4


Met Met Phe Ser Gly Phe Asn Ala Asp Tyr Glu Ala Ser Ser Ser Arg


1        5            10          15





Cys Ser Ser Ala Ser Pro Ala Gly Asp Ser Leu Ser Tyr Tyr His Ser


       20           25           30





Pro Ala Asp Ser Phe Ser Ser Met Gly Ser Pro Val Asn Ala Gln Asp


     35          40            45





Phe Cys Thr Asp Leu Ala Val Ser Ser Ala Asn Phe Ile Pro Thr Val


  50          55           60





Thr Ala Ile Ser Thr Ser Pro Asp Leu Gln Trp Leu Val Gln Pro Ala


65            70           75          80





Leu Val Ser Ser Val Ala Pro Ser Gln Thr Arg Ala Pro His Pro Phe


         85           90           95





Gly Val Pro Ala Pro Ser Ala Gly Ala Tyr Ser Arg Ala Gly Val Val


       100           105          110





Lys Thr Met Thr Gly Gly Arg Ala Gln Ser Ile Gly Arg Arg Gly Lys


    115           120         125





Val Glu Gln Leu Ser Pro Glu Glu Glu Glu Lys Arg Arg Ile Arg Arg


  130           135          140





Glu Arg Asn Lys Met Ala Ala Ala Lys Cys Arg Asn Arg Arg Arg Glu


145          150          155          160





Leu Thr Asp Thr Leu Gln Ala Glu Thr Asp Gln Leu Glu Asp Glu Lys


         165          170          175





Ser Ala Leu Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu Lys Glu Lys


       180          185            190





Leu Glu Phe Ile Leu Ala Ala His Arg Pro Ala Cys Lys Ile Pro Asp


    195           200           205





Asp Leu Gly Phe Pro Glu Glu Met Ser Val Ala Ser Leu Asp Leu Thr


  210          215          220





Gly Gly Leu Pro Glu Val Ala Thr Pro Glu Ser Glu Glu Ala Phe Thr


225         230           235           240





Leu Pro Leu Leu Asn Asp Pro Glu Pro Lys Pro Ser Val Glu Pro Val


         245          250          255





Lys Ser Ile Ser Ser Met Glu Leu Lys Thr Glu Pro Phe Asp Asp Phe


       260           265           270





Leu Phe Pro Ala Ser Ser Arg Pro Ser Gly Ser Glu Thr Ala Arg Ser


    275           280           285





Val Pro Asp Met Asp Leu Ser Gly Ser Phe Tyr Ala Ala Asp Trp Glu


  290          295          300





Pro Leu His Ser Gly Ser Leu Gly Met Gly Pro Met Ala Thr Glu Leu


305          310           315          320





Glu Pro Leu Cys Thr Pro Val Val Thr Cys Thr Pro Ser Cys Thr Ala


         325           330          335





Tyr Thr Ser Ser Phe Val Phe Thr Tyr Pro Glu Ala Asp Ser Phe Pro


       340           345           350





Ser Cys Ala Ala Ala His Arg Lys Gly Ser Ser Ser Asn Glu Pro Ser


     355          360          365





Ser Asp Ser Leu Ser Ser Pro Thr Leu Leu Ala Leu


  370           375          380





<210>   5


<211> 652


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> CD93





<400>   5


Met Ala Thr Ser Met Gly Leu Leu Leu Leu Leu Leu Leu Leu Leu Thr


1         5           10          15





Gln Pro Gly Ala Gly Thr Gly Ala Asp Thr Glu Ala Val Val Cys Val


       20           25          30





Gly Thr Ala Cys Tyr Thr Ala His Ser Gly Lys Leu Ser Ala Ala Glu


    35           40           45





Ala Gln Asn His Cys Asn Gln Asn Gly Gly Asn Leu Ala Thr Val Lys


  50          55           60





Ser Lys Glu Glu Ala Gln His Val Gln Arg Val Leu Ala Gln Leu Leu


65           70          75           80





Arg Arg Glu Ala Ala Leu Thr Ala Arg Met Ser Lys Phe Trp Ile Gly


         85          90           95





Leu Gln Arg Glu Lys Gly Lys Cys Leu Asp Pro Ser Leu Pro Leu Lys


       100          105         110





Gly Phe Ser Trp Val Gly Gly Gly Glu Asp Thr Pro Tyr Ser Asn Trp


    115           120          125





His Lys Glu Leu Arg Asn Ser Cys Ile Ser Lys Arg Cys Val Ser Leu


   130         135          140





Leu Leu Asp Leu Ser Gln Pro Leu Leu Pro Ser Arg Leu Pro Lys Trp


145         150           155          160





Ser Glu Gly Pro Cys Gly Ser Pro Gly Ser Pro Gly Ser Asn Ile Glu


          165          170          175





Gly Phe Val Cys Lys Phe Ser Phe Lys Gly Met Cys Arg Pro Leu Ala


       180          185          190





Leu Gly Gly Pro Gly Gln Val Thr Tyr Thr Thr Pro Phe Gln Thr Thr


    195          200           205





Ser Ser Ser Leu Glu Ala Val Pro Phe Ala Ser Ala Ala Asn Val Ala


  210           215           220





Cys Gly Glu Gly Asp Lys Asp Glu Thr Gln Ser His Tyr Phe Leu Cys


225          230         235           240





Lys Glu Lys Ala Pro Asp Val Phe Asp Trp Gly Ser Ser Gly Pro Leu


         245          250          255





Cys Val Ser Pro Lys Tyr Gly Cys Asn Phe Asn Asn Gly Gly Cys His


      260           265          270





Gln Asp Cys Phe Glu Gly Gly Asp Gly Ser Phe Leu Cys Gly Cys Arg


    275          280          285





Pro Gly Phe Arg Leu Leu Asp Asp Leu Val Thr Cys Ala Ser Arg Asn


  290          295          300





Pro Cys Ser Ser Ser Pro Cys Arg Gly Gly Ala Thr Cys Val Leu Gly


305           310          315          320





Pro His Gly Lys Asn Tyr Thr Cys Arg Cys Pro Gln Gly Tyr Gln Leu


          325          330         335





Asp Ser Ser Gln Leu Asp Cys Val Asp Val Asp Glu Cys Gln Asp Ser


       340          345          350





Pro Cys Ala Gln Glu Cys Val Asn Thr Pro Gly Gly Phe Arg Cys Glu


    355           360         365





Cys Trp Val Gly Tyr Glu Pro Gly Gly Pro Gly Glu Gly Ala Cys Gln


  370          375           380





Asp Val Asp Glu Cys Ala Leu Gly Arg Ser Pro Cys Ala Gln Gly Cys


385         390           395          400





Thr Asn Thr Asp Gly Ser Phe His Cys Ser Cys Glu Glu Gly Tyr Val


        405           410          415





Leu Ala Gly Glu Asp Gly Thr Gln Cys Gln Asp Val Asp Glu Cys Val


       420          425         430





Gly Pro Gly Gly Pro Leu Cys Asp Ser Leu Cys Phe Asn Thr Gln Gly


    435           440          445





Ser Phe His Cys Gly Cys Leu Pro Gly Trp Val Leu Ala Pro Asn Gly


  450           455         460





Val Ser Cys Thr Met Gly Pro Val Ser Leu Gly Pro Pro Ser Gly Pro


465          470          475           480





Pro Asp Glu Glu Asp Lys Gly Glu Lys Glu Gly Ser Thr Val Pro Arg


        485           490          495





Ala Ala Thr Ala Ser Pro Thr Arg Gly Pro Glu Gly Thr Pro Lys Ala


       500          505           510





Thr Pro Thr Thr Ser Arg Pro Ser Leu Ser Ser Asp Ala Pro Ile Thr


    515            520          525





Ser Ala Pro Leu Lys Met Leu Ala Pro Ser Gly Ser Pro Gly Val Trp


  530           535         540





Arg Glu Pro Ser Ile His His Ala Thr Ala Ala Ser Gly Pro Gln Glu


545          550            555          560





Pro Ala Gly Gly Asp Ser Ser Val Ala Thr Gln Asn Asn Asp Gly Thr


         565          570           575





Asp Gly Gln Lys Leu Leu Leu Phe Tyr Ile Leu Gly Thr Val Val Ala


      580           585         590





Ile Leu Leu Leu Leu Ala Leu Ala Leu Gly Leu Leu Val Tyr Arg Lys


      595         600          605





Arg Arg Ala Lys Arg Glu Glu Lys Lys Glu Lys Lys Pro Gln Asn Ala


  610          615          620





Ala Asp Ser Tyr Ser Trp Val Pro Glu Arg Ala Glu Ser Arg Ala Met


625          630           635          640





Glu Asn Gln Tyr Ser Pro Thr Pro Gly Thr Asp Cys


        645            650





<210>   6


<211> 338


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> FOSB





<400>   6


Met Phe Gln Ala Phe Pro Gly Asp Tyr Asp Ser Gly Ser Arg Cys Ser


1        5            10          15





Ser Ser Pro Ser Ala Glu Ser Gln Tyr Leu Ser Ser Val Asp Ser Phe


       20            25           30





Gly Ser Pro Pro Thr Ala Ala Ala Ser Gln Glu Cys Ala Gly Leu Gly


    35            40           45





Glu Met Pro Gly Ser Phe Val Pro Thr Val Thr Ala Ile Thr Thr Ser


  50           55           60





Gln Asp Leu Gln Trp Leu Val Gln Pro Thr Leu Ile Ser Ser Met Ala


65          70          75           80





Gln Ser Gln Gly Gln Pro Leu Ala Ser Gln Pro Pro Val Val Asp Pro


         85           90            95





Tyr Asp Met Pro Gly Thr Ser Tyr Ser Thr Pro Gly Met Ser Gly Tyr


      100           105          110





Ser Ser Gly Gly Ala Ser Gly Ser Gly Gly Pro Ser Thr Ser Gly Thr


    115           120           125





Thr Ser Gly Pro Gly Pro Ala Arg Pro Ala Arg Ala Arg Pro Arg Arg


  130           135          140





Pro Arg Glu Glu Thr Leu Thr Pro Glu Glu Glu Glu Lys Arg Arg Val


145          150          155            160





Arg Arg Glu Arg Asn Lys Leu Ala Ala Ala Lys Cys Arg Asn Arg Arg


         165         170           175





Arg Glu Leu Thr Asp Arg Leu Gln Ala Glu Thr Asp Gln Leu Glu Glu


       180          185         190





Glu Lys Ala Glu Leu Glu Ser Glu Ile Ala Glu Leu Gln Lys Glu Lys


    195          200           205





Glu Arg Leu Glu Phe Val Leu Val Ala His Lys Pro Gly Cys Lys Ile


  210          215          220





Pro Tyr Glu Glu Gly Pro Gly Pro Gly Pro Leu Ala Glu Val Arg Asp


225          230           235          240





Leu Pro Gly Ser Ala Pro Ala Lys Glu Asp Gly Phe Ser Trp Leu Leu


        245            250          255





Pro Pro Pro Pro Pro Pro Pro Leu Pro Phe Gln Thr Ser Gln Asp Ala


       260           265           270





Pro Pro Asn Leu Thr Ala Ser Leu Phe Thr His Ser Glu Val Gln Val


    275          280           285





Leu Gly Asp Pro Phe Pro Val Val Asn Pro Ser Tyr Thr Ser Ser Phe


  290          295          300





Val Leu Thr Cys Pro Glu Val Ser Ala Phe Ala Gly Ala Gln Arg Thr


305         310           315           320





Ser Gly Ser Asp Gln Pro Ser Asp Pro Leu Asn Ser Pro Ser Leu Leu


         325            330         335





Ala Leu





<210>   7


<211> 367


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> Dusp1





<400>   7


Met Val Met Glu Val Gly Thr Leu Asp Ala Gly Gly Leu Arg Ala Leu


1        5           10           15





Leu Gly Glu Arg Ala Ala Gln Cys Leu Leu Leu Asp Cys Arg Ser Phe


      20           25           30





Phe Ala Phe Asn Ala Gly His Ile Ala Gly Ser Val Asn Val Arg Phe


    35           40            45





Ser Thr Ile Val Arg Arg Arg Ala Lys Gly Ala Met Gly Leu Glu His


  50            55          60





Ile Val Pro Asn Ala Glu Leu Arg Gly Arg Leu Leu Ala Gly Ala Tyr


65            70          75          80





His Ala Val Val Leu Leu Asp Glu Arg Ser Ala Ala Leu Asp Gly Ala


         85           90          95





Lys Arg Asp Gly Thr Leu Ala Leu Ala Ala Gly Ala Leu Cys Arg Glu


      100           105         110





Ala Arg Ala Ala Gln Val Phe Phe Leu Lys Gly Gly Tyr Glu Ala Phe


    115           120          125





Ser Ala Ser Cys Pro Glu Leu Cys Ser Lys Gln Ser Thr Pro Met Gly


  130           135          140





Leu Ser Leu Pro Leu Ser Thr Ser Val Pro Asp Ser Ala Glu Ser Gly


145          150           155           160





Cys Ser Ser Cys Ser Thr Pro Leu Tyr Asp Gln Gly Gly Pro Val Glu


          165          170          175





Ile Leu Pro Phe Leu Tyr Leu Gly Ser Ala Tyr His Ala Ser Arg Lys


        180          185          190





Asp Met Leu Asp Ala Leu Gly Ile Thr Ala Leu Ile Asn Val Ser Ala


    195          200           205





Asn Cys Pro Asn His Phe Glu Gly His Tyr Gln Tyr Lys Ser Ile Pro


  210          215          220





Val Glu Asp Asn His Lys Ala Asp Ile Ser Ser Trp Phe Asn Glu Ala


225          230          235           240





Ile Asp Phe Ile Asp Ser Ile Lys Asn Ala Gly Gly Arg Val Phe Val


         245            250          255





His Cys Gln Ala Gly Ile Ser Arg Ser Ala Thr Ile Cys Leu Ala Tyr


       260          265            270





Leu Met Arg Thr Asn Arg Val Lys Leu Asp Glu Ala Phe Glu Phe Val


    275          280          285





Lys Gln Arg Arg Ser Ile Ile Ser Pro Asn Phe Ser Phe Met Gly Gln


  290          295             300





Leu Leu Gln Phe Glu Ser Gln Val Leu Ala Pro His Cys Ser Ala Glu


305         310           315          320





Ala Gly Ser Pro Ala Met Ala Val Leu Asp Arg Gly Thr Ser Thr Thr


         325           330          335





Thr Val Phe Asn Phe Pro Val Ser Ile Pro Val His Ser Thr Asn Ser


       340          345            350





Ala Leu Ser Tyr Leu Gln Ser Pro Ile Thr Thr Ser Pro Ser Cys


    355           360           365





<210>   8


<211> 331


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> Jun





<400>   8


Met Thr Ala Lys Met Glu Thr Thr Phe Tyr Asp Asp Ala Leu Asn Ala


1        5           10           15





Ser Phe Leu Pro Ser Glu Ser Gly Pro Tyr Gly Tyr Ser Asn Pro Lys


       20           25           30





Ile Leu Lys Gln Ser Met Thr Leu Asn Leu Ala Asp Pro Val Gly Ser


     35           40           45





Leu Lys Pro His Leu Arg Ala Lys Asn Ser Asp Leu Leu Thr Ser Pro


  50           55           60





Asp Val Gly Leu Leu Lys Leu Ala Ser Pro Glu Leu Glu Arg Leu Ile


65          70          75            80





Ile Gln Ser Ser Asn Gly His Ile Thr Thr Thr Pro Thr Pro Thr Gln


          85           90            95





Phe Leu Cys Pro Lys Asn Val Thr Asp Glu Gln Glu Gly Phe Ala Glu


       100          105          110





Gly Phe Val Arg Ala Leu Ala Glu Leu His Ser Gln Asn Thr Leu Pro


    115          120           125





Ser Val Thr Ser Ala Ala Gln Pro Val Asn Gly Ala Gly Met Val Ala


   130          135          140





Pro Ala Val Ala Ser Val Ala Gly Gly Ser Gly Ser Gly Gly Phe Ser


145          150           155           160





Ala Ser Leu His Ser Glu Pro Pro Val Tyr Ala Asn Leu Ser Asn Phe


         165           170           175





Asn Pro Gly Ala Leu Ser Ser Gly Gly Gly Ala Pro Ser Tyr Gly Ala


       180          185           190





Ala Gly Leu Ala Phe Pro Ala Gln Pro Gln Gln Gln Gln Gln Pro Pro


    195          200           205





His His Leu Pro Gln Gln Met Pro Val Gln His Pro Arg Leu Gln Ala


  210           215         220





Leu Lys Glu Glu Pro Gln Thr Val Pro Glu Met Pro Gly Glu Thr Pro


225         230           235           240





Pro Leu Ser Pro Ile Asp Met Glu Ser Gln Glu Arg Ile Lys Ala Glu


         245            250          255





Arg Lys Arg Met Arg Asn Arg Ile Ala Ala Ser Lys Cys Arg Lys Arg


       260         265           270





Lys Leu Glu Arg Ile Ala Arg Leu Glu Glu Lys Val Lys Thr Leu Lys


    275            280         285





Ala Gln Asn Ser Glu Leu Ala Ser Thr Ala Asn Met Leu Arg Glu Gln


  290           295          300





Val Ala Gln Leu Lys Gln Lys Val Met Asn His Val Asn Ser Gly Cys


305          310          315          320





Gln Leu Met Leu Thr Gln Gln Leu Gln Thr Phe


        325           330





<210>   9


<211> 381


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> DUSP6





<400>   9


Met Ile Asp Thr Leu Arg Pro Val Pro Phe Ala Ser Glu Met Ala Ile


1         5           10           15





Ser Lys Thr Val Ala Trp Leu Asn Glu Gln Leu Glu Leu Gly Asn Glu


       20           25          30





Arg Leu Leu Leu Met Asp Cys Arg Pro Gln Glu Leu Tyr Glu Ser Ser


    35          40          45





His Ile Glu Ser Ala Ile Asn Val Ala Ile Pro Gly Ile Met Leu Arg


  50            55           60





Arg Leu Gln Lys Gly Asn Leu Pro Val Arg Ala Leu Phe Thr Arg Gly


65          70          75           80





Glu Asp Arg Asp Arg Phe Thr Arg Arg Cys Gly Thr Asp Thr Val Val


        85          90           95





Leu Tyr Asp Glu Ser Ser Ser Asp Trp Asn Glu Asn Thr Gly Gly Glu


       100          105           110





Ser Val Leu Gly Leu Leu Leu Lys Lys Leu Lys Asp Glu Gly Cys Arg


    115           120          125





Ala Phe Tyr Leu Glu Gly Gly Phe Ser Lys Phe Gln Ala Glu Phe Ser


  130           135         140





Leu His Cys Glu Thr Asn Leu Asp Gly Ser Cys Ser Ser Ser Ser Pro


145         150           155          160





Pro Leu Pro Val Leu Gly Leu Gly Gly Leu Arg Ile Ser Ser Asp Ser


         165           170          175





Ser Ser Asp Ile Glu Ser Asp Leu Asp Arg Asp Pro Asn Ser Ala Thr


        180          185          190





Asp Ser Asp Gly Ser Pro Leu Ser Asn Ser Gln Pro Ser Phe Pro Val


    195          200           205





Glu Ile Leu Pro Phe Leu Tyr Leu Gly Cys Ala Lys Asp Ser Thr Asn


  210           215           220





Leu Asp Val Leu Glu Glu Phe Gly Ile Lys Tyr Ile Leu Asn Val Thr


225          230         235            240





Pro Asn Leu Pro Asn Leu Phe Glu Asn Ala Gly Glu Phe Lys Tyr Lys


        245          250          255





Gln Ile Pro Ile Ser Asp His Trp Ser Gln Asn Leu Ser Gln Phe Phe


        260           265           270





Pro Glu Ala Ile Ser Phe Ile Asp Glu Ala Arg Gly Lys Asn Cys Gly


    275             280          285





Val Leu Val His Cys Leu Ala Gly Ile Ser Arg Ser Val Thr Val Thr


  290           295         300





Val Ala Tyr Leu Met Gln Lys Leu Asn Leu Ser Met Asn Asp Ala Tyr


305          310          315         320





Asp Ile Val Lys Met Lys Lys Ser Asn Ile Ser Pro Asn Phe Asn Phe


          325          330          335





Met Gly Gln Leu Leu Asp Phe Glu Arg Thr Leu Gly Leu Ser Ser Pro


       340          345         350





Cys Asp Asn Arg Val Pro Ala Gln Gln Leu Tyr Phe Thr Thr Pro Ser


    355         360            365





Asn Gln Asn Val Tyr Gln Val Asp Ser Leu Gln Ser Thr


  370          375          380





<210>  10


<211> 297


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> CDK1





<400>  10


Met Glu Asp Tyr Thr Lys Ile Glu Lys Ile Gly Glu Gly Thr Tyr Gly


1        5           10            15





Val Val Tyr Lys Gly Arg His Lys Thr Thr Gly Gln Val Val Ala Met


       20           25          30





Lys Lys Ile Arg Leu Glu Ser Glu Glu Glu Gly Val Pro Ser Thr Ala


    35           40           45





Ile Arg Glu Ile Ser Leu Leu Lys Glu Leu Arg His Pro Asn Ile Val


   50            55          60





Ser Leu Gln Asp Val Leu Met Gln Asp Ser Arg Leu Tyr Leu Ile Phe


65          70          75           80





Glu Phe Leu Ser Met Asp Leu Lys Lys Tyr Leu Asp Ser Ile Pro Pro


         85          90           95





Gly Gln Tyr Met Asp Ser Ser Leu Val Lys Ser Tyr Leu Tyr Gln Ile


      100           105          110





Leu Gln Gly Ile Val Phe Cys His Ser Arg Arg Val Leu His Arg Asp


    115           120           125





Leu Lys Pro Gln Asn Leu Leu Ile Asp Asp Lys Gly Thr Ile Lys Leu


  130           135         140





Ala Asp Phe Gly Leu Ala Arg Ala Phe Gly Ile Pro Ile Arg Val Tyr


145          150          155          160





Thr His Glu Val Val Thr Leu Trp Tyr Arg Ser Pro Glu Val Leu Leu


         165           170          175





Gly Ser Ala Arg Tyr Ser Thr Pro Val Asp Ile Trp Ser Ile Gly Thr


       180          185           190





Ile Phe Ala Glu Leu Ala Thr Lys Lys Pro Leu Phe His Gly Asp Ser


     195          200           205





Glu Ile Asp Gln Leu Phe Arg Ile Phe Arg Ala Leu Gly Thr Pro Asn


  210           215          220





Asn Glu Val Trp Pro Glu Val Glu Ser Leu Gln Asp Tyr Lys Asn Thr


225         230           235           240





Phe Pro Lys Trp Lys Pro Gly Ser Leu Ala Ser His Val Lys Asn Leu


         245           250          255





Asp Glu Asn Gly Leu Asp Leu Leu Ser Lys Met Leu Ile Tyr Asp Pro


       260         265          270





Ala Lys Arg Ile Ser Gly Lys Met Ala Leu Asn His Pro Tyr Phe Asn


    275            280          285





Asp Leu Asp Asn Gln Ile Lys Lys Met


  290         295





<210>  11


<211> 674


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> Fignl1





<400>  11


Met Gln Thr Ser Ser Ser Arg Ser Val His Leu Ser Glu Trp Gln Lys


1        5             10          15





Asn Tyr Phe Ala Ile Thr Ser Gly Ile Cys Thr Gly Pro Lys Ala Asp


       20           25            30





Ala Tyr Arg Ala Gln Ile Leu Arg Ile Gln Tyr Ala Trp Ala Asn Ser


     35          40           45





Glu Ile Ser Gln Val Cys Ala Thr Lys Leu Phe Lys Lys Tyr Ala Glu


  50            55          60





Lys Tyr Ser Ala Ile Ile Asp Ser Asp Asn Val Glu Ser Gly Leu Asn


65           70            75          80





Asn Tyr Ala Glu Asn Ile Leu Thr Leu Ala Gly Ser Gln Gln Thr Asp


        85            90           95





Ser Asp Lys Trp Gln Ser Gly Leu Ser Ile Asn Asn Val Phe Lys Met


       100          105           110





Ser Ser Val Gln Lys Met Met Gln Ala Gly Lys Lys Phe Lys Asp Ser


     115          120          125





Leu Leu Glu Pro Ala Leu Ala Ser Val Val Ile His Lys Glu Ala Thr


  130          135          140





Val Phe Asp Leu Pro Lys Phe Ser Val Cys Gly Ser Ser Gln Glu Ser


145         150           155           160





Asp Ser Leu Pro Asn Ser Ala His Asp Arg Asp Arg Thr Gln Asp Phe


         165           170          175





Pro Glu Ser Asn Arg Leu Lys Leu Leu Gln Asn Ala Gln Pro Pro Met


       180          185          190





Val Thr Asn Thr Ala Arg Thr Cys Pro Thr Phe Ser Ala Pro Val Gly


    195          200          205





Glu Ser Ala Thr Ala Lys Phe His Val Thr Pro Leu Phe Gly Asn Val


  210           215          220





Lys Lys Glu Asn His Ser Ser Ala Lys Glu Asn Ile Gly Leu Asn Val


225          230           235          240





Phe Leu Ser Asn Gln Ser Cys Phe Pro Ala Ala Cys Glu Asn Pro Gln


        245           250           255





Arg Lys Ser Phe Tyr Gly Ser Gly Thr Ile Asp Ala Leu Ser Asn Pro


      260           265          270





Ile Leu Asn Lys Ala Cys Ser Lys Thr Glu Asp Asn Gly Pro Lys Glu


     275          280           285





Asp Ser Ser Leu Pro Thr Phe Lys Thr Ala Lys Glu Gln Leu Trp Val


  290           295          300





Asp Gln Gln Lys Lys Tyr His Gln Pro Gln Arg Ala Ser Gly Ser Ser


305          310          315          320





Tyr Gly Gly Val Lys Lys Ser Leu Gly Ala Ser Arg Ser Arg Gly Ile


         325          330           335





Leu Gly Lys Phe Val Pro Pro Ile Pro Lys Gln Asp Gly Gly Glu Gln


      340           345           350





Asn Gly Gly Met Gln Cys Lys Pro Tyr Gly Ala Gly Pro Thr Glu Pro


    355          360          365





Ala His Pro Val Asp Glu Arg Leu Lys Asn Leu Glu Pro Lys Met Ile


  370           375          380





Glu Leu Ile Met Asn Glu Ile Met Asp His Gly Pro Pro Val Asn Trp


385          390            395         400





Glu Asp Ile Ala Gly Val Glu Phe Ala Lys Ala Thr Ile Lys Glu Ile


         405           410          415





Val Val Trp Pro Met Leu Arg Pro Asp Ile Phe Thr Gly Leu Arg Gly


       420          425          430





Pro Pro Lys Gly Ile Leu Leu Phe Gly Pro Pro Gly Thr Gly Lys Thr


    435            440          445





Leu Ile Gly Lys Cys Ile Ala Ser Gln Ser Gly Ala Thr Phe Phe Ser


  450           455           460





Ile Ser Ala Ser Ser Leu Thr Ser Lys Trp Val Gly Glu Gly Glu Lys


465            470          475          480





Met Val Arg Ala Leu Phe Ala Val Ala Arg Cys Gln Gln Pro Ala Val


        485           490          495





Ile Phe Ile Asp Glu Ile Asp Ser Leu Leu Ser Gln Arg Gly Asp Gly


        500            505          510





Glu His Glu Ser Ser Arg Arg Ile Lys Thr Glu Phe Leu Val Gln Leu


    515            520          525





Asp Gly Ala Thr Thr Ser Ser Glu Asp Arg Ile Leu Val Val Gly Ala


  530          535           540





Thr Asn Arg Pro Gln Glu Ile Asp Glu Ala Ala Arg Arg Arg Leu Val


545         550            555          560





Lys Arg Leu Tyr Ile Pro Leu Pro Glu Ala Ser Ala Arg Lys Gln Ile


        565            570          575





Val Ile Asn Leu Met Ser Lys Glu Gln Cys Cys Leu Ser Glu Glu Glu


        580         585          590





Ile Glu Gln Ile Val Gln Gln Ser Asp Ala Phe Ser Gly Ala Asp Met


     595            600          605





Thr Gln Leu Cys Arg Glu Ala Ser Leu Gly Pro Ile Arg Ser Leu Gln


  610          615          620





Thr Ala Asp Ile Ala Thr Ile Thr Pro Asp Gln Val Arg Pro Ile Ala


625          630            635          640





Tyr Ile Asp Phe Glu Asn Ala Phe Arg Thr Val Arg Pro Ser Val Ser


          645          650          655





Pro Lys Asp Leu Glu Leu Tyr Glu Asn Trp Asn Lys Thr Phe Gly Cys


       660          665         670





Gly Lys





<210>  12


<211> 685


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> Plk2





<400>  12


Met Glu Leu Leu Arg Thr Ile Thr Tyr Gln Pro Ala Ala Ser Thr Lys


1        5           10            15





Met Cys Glu Gln Ala Leu Gly Lys Gly Cys Gly Ala Asp Ser Lys Lys


      20           25           30





Lys Arg Pro Pro Gln Pro Pro Glu Glu Ser Gln Pro Pro Gln Ser Gln


    35           40           45





Ala Gln Val Pro Pro Ala Ala Pro His His His His His His Ser His


  50           55           60





Ser Gly Pro Glu Ile Ser Arg Ile Ile Val Asp Pro Thr Thr Gly Lys


65           70           75             80





Arg Tyr Cys Arg Gly Lys Val Leu Gly Lys Gly Gly Phe Ala Lys Cys


        85           90           95





Tyr Glu Met Thr Asp Leu Thr Asn Asn Lys Val Tyr Ala Ala Lys Ile


       100          105         110





Ile Pro His Ser Arg Val Ala Lys Pro His Gln Arg Glu Lys Ile Asp


     115            120          125





Lys Glu Ile Glu Leu His Arg Ile Leu His His Lys His Val Val Gln


  130           135           140





Phe Tyr His Tyr Phe Glu Asp Lys Glu Asn Ile Tyr Ile Leu Leu Glu


145          150          155           160





Tyr Cys Ser Arg Arg Ser Met Ala His Ile Leu Lys Ala Arg Lys Val


         165          170           175





Leu Thr Glu Pro Glu Val Arg Tyr Tyr Leu Arg Gln Ile Val Ser Gly


       180          185          190





Leu Lys Tyr Leu His Glu Gln Glu Ile Leu His Arg Asp Leu Lys Leu


    195          200           205





Gly Asn Phe Phe Ile Asn Glu Ala Met Glu Leu Lys Val Gly Asp Phe


  210          215          220





Gly Leu Ala Ala Arg Leu Glu Pro Leu Glu His Arg Arg Arg Thr Ile


225          230          235          240





Cys Gly Thr Pro Asn Tyr Leu Ser Pro Glu Val Leu Asn Lys Gln Gly


        245           250           255





His Gly Cys Glu Ser Asp Ile Trp Ala Leu Gly Cys Val Met Tyr Thr


       260          265           270





Met Leu Leu Gly Arg Pro Pro Phe Glu Thr Thr Asn Leu Lys Glu Thr


    275         280           285





Tyr Arg Cys Ile Arg Glu Ala Arg Tyr Thr Met Pro Ser Ser Leu Leu


  290           295          300





Ala Pro Ala Lys His Leu Ile Ala Ser Met Leu Ser Lys Asn Pro Glu


305          310            315          320





Asp Arg Pro Ser Leu Asp Asp Ile Ile Arg His Asp Phe Phe Leu Gln


        325           330           335





Gly Phe Thr Pro Asp Arg Leu Ser Ser Ser Cys Cys His Thr Val Pro


       340          345          350





Asp Phe His Leu Ser Ser Pro Ala Lys Asn Phe Phe Lys Lys Ala Ala


    355          360            365





Ala Ala Leu Phe Gly Gly Lys Lys Asp Lys Ala Arg Tyr Ile Asp Thr


  370           375         380





His Asn Arg Val Ser Lys Glu Asp Glu Asp Ile Tyr Lys Leu Arg His


385         390           395          400





Asp Leu Lys Lys Thr Ser Ile Thr Gln Gln Pro Ser Lys His Arg Thr


         405          410           415





Asp Glu Glu Leu Gln Pro Pro Thr Thr Thr Val Ala Arg Ser Gly Thr


      420          425           430





Pro Ala Val Glu Asn Lys Gln Gln Ile Gly Asp Ala Ile Arg Met Ile


    435           440          445





Val Arg Gly Thr Leu Gly Ser Cys Ser Ser Ser Ser Glu Cys Leu Glu


  450           455         460





Asp Ser Thr Met Gly Ser Val Ala Asp Thr Val Ala Arg Val Leu Arg


465          470           475         480





Gly Cys Leu Glu Asn Met Pro Glu Ala Asp Cys Ile Pro Lys Glu Gln


        485          490           495





Leu Ser Thr Ser Phe Gln Trp Val Thr Lys Trp Val Asp Tyr Ser Asn


       500          505           510





Lys Tyr Gly Phe Gly Tyr Gln Leu Ser Asp His Thr Val Gly Val Leu


    515           520          525





Phe Asn Asn Gly Ala His Met Ser Leu Leu Pro Asp Lys Lys Thr Val


  530          535          540





His Tyr Tyr Ala Glu Leu Gly Gln Cys Ser Val Phe Pro Ala Thr Asp


545          550           555          560





Ala Pro Glu Gln Phe Ile Ser Gln Val Thr Val Leu Lys Tyr Phe Ser


        565             570          575





His Tyr Met Glu Glu Asn Leu Met Asp Gly Gly Asp Leu Pro Ser Val


        580         585         590





Thr Asp Ile Arg Arg Pro Arg Leu Tyr Leu Leu Gln Trp Leu Lys Ser


    595           600          605





Asp Lys Ala Leu Met Met Leu Phe Asn Asp Gly Thr Phe Gln Val Asn


  610          615         620





Phe Tyr His Asp His Thr Lys Ile Ile Ile Cys Ser Gln Asn Glu Glu


625         630            635             640





Tyr Leu Leu Thr Tyr Ile Asn Glu Asp Arg Ile Ser Thr Thr Phe Arg


        645            650          655





Leu Thr Thr Leu Leu Met Ser Gly Cys Ser Ser Glu Leu Lys Asn Arg


       660          665         670





Met Glu Tyr Ala Leu Asn Met Leu Leu Gln Arg Cys Asn


    675          680          685





<210>  13


<211> 361


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> RSAD2





<400>  13


Met Trp Val Leu Thr Pro Ala Ala Phe Ala Gly Lys Leu Leu Ser Val


1        5            10          15





Phe Arg Gln Pro Leu Ser Ser Leu Trp Arg Ser Leu Val Pro Leu Phe


      20           25           30





Cys Trp Leu Arg Ala Thr Phe Trp Leu Leu Ala Thr Lys Arg Arg Lys


    35           40          45





Gln Gln Leu Val Leu Arg Gly Pro Asp Glu Thr Lys Glu Glu Glu Glu


  50           55          60





Asp Pro Pro Leu Pro Thr Thr Pro Thr Ser Val Asn Tyr His Phe Thr


65           70          75            80





Arg Gln Cys Asn Tyr Lys Cys Gly Phe Cys Phe His Thr Ala Lys Thr


         85          90          95





Ser Phe Val Leu Pro Leu Glu Glu Ala Lys Arg Gly Leu Leu Leu Leu


       100          105          110





Lys Glu Ala Gly Met Glu Lys Ile Asn Phe Ser Gly Gly Glu Pro Phe


    115          120            125





Leu Gln Asp Arg Gly Glu Tyr Leu Gly Lys Leu Val Arg Phe Cys Lys


  130         135           140





Val Glu Leu Arg Leu Pro Ser Val Ser Ile Val Ser Asn Gly Ser Leu


145          150          155            160





Ile Arg Glu Arg Trp Phe Gln Asn Tyr Gly Glu Tyr Leu Asp Ile Leu


          165          170          175





Ala Ile Ser Cys Asp Ser Phe Asp Glu Glu Val Asn Val Leu Ile Gly


        180         185           190





Arg Gly Gln Gly Lys Lys Asn His Val Glu Asn Leu Gln Lys Leu Arg


    195          200          205





Arg Trp Cys Arg Asp Tyr Arg Val Ala Phe Lys Ile Asn Ser Val Ile


  210          215         220





Asn Arg Phe Asn Val Glu Glu Asp Met Thr Glu Gln Ile Lys Ala Leu


225         230          235          240





Asn Pro Val Arg Trp Lys Val Phe Gln Cys Leu Leu Ile Glu Gly Glu


        245           250          255





Asn Cys Gly Glu Asp Ala Leu Arg Glu Ala Glu Arg Phe Val Ile Gly


      260          265          270





Asp Glu Glu Phe Glu Arg Phe Leu Glu Arg His Lys Glu Val Ser Cys


    275          280         285





Leu Val Pro Glu Ser Asn Gln Lys Met Lys Asp Ser Tyr Leu Ile Leu


  290           295         300





Asp Glu Tyr Met Arg Phe Leu Asn Cys Arg Lys Gly Arg Lys Asp Pro


305         310          315         320





Ser Lys Ser Ile Leu Asp Val Gly Val Glu Glu Ala Ile Lys Phe Ser


         325           330          335





Gly Phe Asp Glu Lys Met Phe Leu Lys Arg Gly Gly Lys Tyr Ile Trp


       340          345         350





Ser Lys Ala Asp Leu Lys Leu Asp Trp


     355         360





<210>  14


<211> 431


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> SGK1





<400>  14


Met Thr Val Lys Thr Glu Ala Ala Lys Gly Thr Leu Thr Tyr Ser Arg


1        5           10           15





Met Arg Gly Met Val Ala Ile Leu Ile Ala Phe Met Lys Gln Arg Arg


      20           25           30





Met Gly Leu Asn Asp Phe Ile Gln Lys Ile Ala Asn Asn Ser Tyr Ala


    35          40            45





Cys Lys His Pro Glu Val Gln Ser Ile Leu Lys Ile Ser Gln Pro Gln


  50           55           60





Glu Pro Glu Leu Met Asn Ala Asn Pro Ser Pro Pro Pro Ser Pro Ser


65          70          75            80





Gln Gln Ile Asn Leu Gly Pro Ser Ser Asn Pro His Ala Lys Pro Ser


         85           90            95





Asp Phe His Phe Leu Lys Val Ile Gly Lys Gly Ser Phe Gly Lys Val


      100           105           110





Leu Leu Ala Arg His Lys Ala Glu Glu Val Phe Tyr Ala Val Lys Val


    115          120           125





Leu Gln Lys Lys Ala Ile Leu Lys Lys Lys Glu Glu Lys His Ile Met


  130           135          140





Ser Glu Arg Asn Val Leu Leu Lys Asn Val Lys His Pro Phe Leu Val


145          150          155          160





Gly Leu His Phe Ser Phe Gln Thr Ala Asp Lys Leu Tyr Phe Val Leu


         165          170           175





Asp Tyr Ile Asn Gly Gly Glu Leu Phe Tyr His Leu Gln Arg Glu Arg


       180          185          190





Cys Phe Leu Glu Pro Arg Ala Arg Phe Tyr Ala Ala Glu Ile Ala Ser


    195          200          205





Ala Leu Gly Tyr Leu His Ser Leu Asn Ile Val Tyr Arg Asp Leu Lys


  210          215           220





Pro Glu Asn Ile Leu Leu Asp Ser Gln Gly His Ile Val Leu Thr Asp


225           230         235           240





Phe Gly Leu Cys Lys Glu Asn Ile Glu His Asn Ser Thr Thr Ser Thr


        245          250            255





Phe Cys Gly Thr Pro Glu Tyr Leu Ala Pro Glu Val Leu His Lys Gln


       260          265          270





Pro Tyr Asp Arg Thr Val Asp Trp Trp Cys Leu Gly Ala Val Leu Tyr


    275          280           285





Glu Met Leu Tyr Gly Leu Pro Pro Phe Tyr Ser Arg Asn Thr Ala Glu


  290          295          300





Met Tyr Asp Asn Ile Leu Asn Lys Pro Leu Gln Leu Lys Pro Asn Ile


305         310           315          320





Thr Asn Ser Ala Arg His Leu Leu Glu Gly Leu Leu Gln Lys Asp Arg


         325           330          335





Thr Lys Arg Leu Gly Ala Lys Asp Asp Phe Met Glu Ile Lys Ser His


       340         345          350





Val Phe Phe Ser Leu Ile Asn Trp Asp Asp Leu Ile Asn Lys Lys Ile


    355          360            365





Thr Pro Pro Phe Asn Pro Asn Val Ser Gly Pro Asn Asp Leu Arg His


  370           375         380





Phe Asp Pro Glu Phe Thr Glu Glu Pro Val Pro Asn Ser Ile Gly Lys


385         390           395           400





Ser Pro Asp Ser Val Leu Val Thr Ala Ser Val Lys Glu Ala Ala Glu


         405           410          415





Ala Phe Leu Gly Phe Ser Tyr Ala Pro Pro Thr Asp Ser Phe Leu


      420           425           430





<210>  15


<211> 310


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> Sdc1





<400>  15


Met Arg Arg Ala Ala Leu Trp Leu Trp Leu Cys Ala Leu Ala Leu Ser


1        5           10           15





Leu Gln Pro Ala Leu Pro Gln Ile Val Ala Thr Asn Leu Pro Pro Glu


      20           25            30





Asp Gln Asp Gly Ser Gly Asp Asp Ser Asp Asn Phe Ser Gly Ser Gly


    35          40           45





Ala Gly Ala Leu Gln Asp Ile Thr Leu Ser Gln Gln Thr Pro Ser Thr


  50           55           60





Trp Lys Asp Thr Gln Leu Leu Thr Ala Ile Pro Thr Ser Pro Glu Pro


65          70          75            80





Thr Gly Leu Glu Ala Thr Ala Ala Ser Thr Ser Thr Leu Pro Ala Gly


         85          90           95





Glu Gly Pro Lys Glu Gly Glu Ala Val Val Leu Pro Glu Val Glu Pro


       100          105          110





Gly Leu Thr Ala Arg Glu Gln Glu Ala Thr Pro Arg Pro Arg Glu Thr


    115          120           125





Thr Gln Leu Pro Thr Thr His Leu Ala Ser Thr Thr Thr Ala Thr Thr


  130           135          140





Ala Gln Glu Pro Ala Thr Ser His Pro His Arg Asp Met Gln Pro Gly


145          150           155          160





His His Glu Thr Ser Thr Pro Ala Gly Pro Ser Gln Ala Asp Leu His


         165           170           175





Thr Pro His Thr Glu Asp Gly Gly Pro Ser Ala Thr Glu Arg Ala Ala


       180          185          190





Glu Asp Gly Ala Ser Ser Gln Leu Pro Ala Ala Glu Gly Ser Gly Glu


    195          200           205





Gln Asp Phe Thr Phe Glu Thr Ser Gly Glu Asn Thr Ala Val Val Ala


  210          215          220





Val Glu Pro Asp Arg Arg Asn Gln Ser Pro Val Asp Gln Gly Ala Thr


225         230          235           240





Gly Ala Ser Gln Gly Leu Leu Asp Arg Lys Glu Val Leu Gly Gly Val


         245          250         255





Ile Ala Gly Gly Leu Val Gly Leu Ile Phe Ala Val Cys Leu Val Gly


        260         265            270





Phe Met Leu Tyr Arg Met Lys Lys Lys Asp Glu Gly Ser Tyr Ser Leu


    275          280         285





Glu Glu Pro Lys Gln Ala Asn Gly Gly Ala Tyr Gln Lys Pro Thr Lys


  290           295         300





Gln Glu Glu Phe Tyr Ala


305          310





<210>  16


<211> 398


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> Serpine2





<400>  16


Met Asn Trp His Leu Pro Leu Phe Leu Leu Ala Ser Val Thr Leu Pro


1        5           10           15





Ser Ile Cys Ser His Phe Asn Pro Leu Ser Leu Glu Glu Leu Gly Ser


        20           25          30





Asn Thr Gly Ile Gln Val Phe Asn Gln Ile Val Lys Ser Arg Pro His


    35            40          45





Asp Asn Ile Val Ile Ser Pro His Gly Ile Ala Ser Val Leu Gly Met


  50           55            60





Leu Gln Leu Gly Ala Asp Gly Arg Thr Lys Lys Gln Leu Ala Met Val


65          70          75           80





Met Arg Tyr Gly Val Asn Gly Val Gly Lys Ile Leu Lys Lys Ile Asn


        85           90           95





Lys Ala Ile Val Ser Lys Lys Asn Lys Asp Ile Val Thr Val Ala Asn


       100            105          110





Ala Val Phe Val Lys Asn Ala Ser Glu Ile Glu Val Pro Phe Val Thr


    115           120           125





Arg Asn Lys Asp Val Phe Gln Cys Glu Val Arg Asn Val Asn Phe Glu


  130          135          140





Asp Pro Ala Ser Ala Cys Asp Ser Ile Asn Ala Trp Val Lys Asn Glu


145          150          155            160





Thr Arg Asp Met Ile Asp Asn Leu Leu Ser Pro Asp Leu Ile Asp Gly


         165          170          175





Val Leu Thr Arg Leu Val Leu Val Asn Ala Val Tyr Phe Lys Gly Leu


       180         185           190





Trp Lys Ser Arg Phe Gln Pro Glu Asn Thr Lys Lys Arg Thr Phe Val


    195          200           205





Ala Ala Asp Gly Lys Ser Tyr Gln Val Pro Met Leu Ala Gln Leu Ser


  210          215          220





Val Phe Arg Cys Gly Ser Thr Ser Ala Pro Asn Asp Leu Trp Tyr Asn


225         230           235           240





Phe Ile Glu Leu Pro Tyr His Gly Glu Ser Ile Ser Met Leu Ile Ala


          245          250           255





Leu Pro Thr Glu Ser Ser Thr Pro Leu Ser Ala Ile Ile Pro His Ile


      260           265           270





Ser Thr Lys Thr Ile Asp Ser Trp Met Ser Ile Met Val Pro Lys Arg


    275            280          285





Val Gln Val Ile Leu Pro Lys Phe Thr Ala Val Ala Gln Thr Asp Leu


  290           295          300





Lys Glu Pro Leu Lys Val Leu Gly Ile Thr Asp Met Phe Asp Ser Ser


305          310          315           320





Lys Ala Asn Phe Ala Lys Ile Thr Thr Gly Ser Glu Asn Leu His Val


         325          330           335





Ser His Ile Leu Gln Lys Ala Lys Ile Glu Val Ser Glu Asp Gly Thr


        340          345           350





Lys Ala Ser Ala Ala Thr Thr Ala Ile Leu Ile Ala Arg Ser Ser Pro


    355           360           365





Pro Trp Phe Ile Val Asp Arg Pro Phe Leu Phe Phe Ile Arg His Asn


  370           375          380





Pro Thr Gly Ala Val Leu Phe Met Gly Gln Ile Asn Lys Pro


385          390           395





<210>  17


<211> 314


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> Spp1





<400>  17


Met Arg Ile Ala Val Ile Cys Phe Cys Leu Leu Gly Ile Thr Cys Ala


1         5             10          15





Ile Pro Val Lys Gln Ala Asp Ser Gly Ser Ser Glu Glu Lys Gln Leu


        20          25           30





Tyr Asn Lys Tyr Pro Asp Ala Val Ala Thr Trp Leu Asn Pro Asp Pro


     35          40          45





Ser Gln Lys Gln Asn Leu Leu Ala Pro Gln Asn Ala Val Ser Ser Glu


  50           55          60





Glu Thr Asn Asp Phe Lys Gln Glu Thr Leu Pro Ser Lys Ser Asn Glu


65          70          75           80





Ser His Asp His Met Asp Asp Met Asp Asp Glu Asp Asp Asp Asp His


         85          90          95





Val Asp Ser Gln Asp Ser Ile Asp Ser Asn Asp Ser Asp Asp Val Asp


      100           105            110





Asp Thr Asp Asp Ser His Gln Ser Asp Glu Ser His His Ser Asp Glu


    115         120            125





Ser Asp Glu Leu Val Thr Asp Phe Pro Thr Asp Leu Pro Ala Thr Glu


  130          135          140





Val Phe Thr Pro Val Val Pro Thr Val Asp Thr Tyr Asp Gly Arg Gly


145          150           155          160





Asp Ser Val Val Tyr Gly Leu Arg Ser Lys Ser Lys Lys Phe Arg Arg


        165            170          175





Pro Asp Ile Gln Tyr Pro Asp Ala Thr Asp Glu Asp Ile Thr Ser His


       180           185           190





Met Glu Ser Glu Glu Leu Asn Gly Ala Tyr Lys Ala Ile Pro Val Ala


    195          200          205





Gln Asp Leu Asn Ala Pro Ser Asp Trp Asp Ser Arg Gly Lys Asp Ser


  210         215           220





Tyr Glu Thr Ser Gln Leu Asp Asp Gln Ser Ala Glu Thr His Ser His


225          230          235           240





Lys Gln Ser Arg Leu Tyr Lys Arg Lys Ala Asn Asp Glu Ser Asn Glu


         245           250         255





His Ser Asp Val Ile Asp Ser Gln Glu Leu Ser Lys Val Ser Arg Glu


        260          265          270





Phe His Ser His Glu Phe His Ser His Glu Asp Met Leu Val Val Asp


    275           280           285





Pro Lys Ser Lys Glu Glu Asp Lys His Leu Lys Phe Arg Ile Ser His


  290           295         300





Glu Leu Asp Ser Ala Ser Ser Glu Val Asn


305         310





<210>  18


<211> 280


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> Cdca8





<400>  18


Met Ala Pro Arg Lys Gly Ser Ser Arg Val Ala Lys Thr Asn Ser Leu


1        5           10           15





Arg Arg Arg Lys Leu Ala Ser Phe Leu Lys Asp Phe Asp Arg Glu Val


      20           25           30





Glu Ile Arg Ile Lys Gln Ile Glu Ser Asp Arg Gln Asn Leu Leu Lys


    35            40            45





Glu Val Asp Asn Leu Tyr Asn Ile Glu Ile Leu Arg Leu Pro Lys Ala


  50          55          60





Leu Arg Glu Met Asn Trp Leu Asp Tyr Phe Ala Leu Gly Gly Asn Lys


65          70          75          80





Gln Ala Leu Glu Glu Ala Ala Thr Ala Asp Leu Asp Ile Thr Glu Ile


         85          90           95





Asn Lys Leu Thr Ala Glu Ala Ile Gln Thr Pro Leu Lys Ser Ala Lys


       100          105           110





Thr Arg Lys Val Ile Gln Val Asp Glu Met Ile Val Glu Glu Glu Glu


    115           120           125





Glu Glu Glu Asn Glu Arg Lys Asn Leu Gln Thr Ala Arg Val Lys Arg


  130         135           140





Cys Pro Pro Ser Lys Lys Arg Thr Gln Ser Ile Gln Gly Lys Gly Lys


145          150          155           160





Gly Lys Arg Ser Ser Arg Ala Asn Thr Val Thr Pro Ala Val Gly Arg


        165           170           175





Leu Glu Val Ser Met Val Lys Pro Thr Pro Gly Leu Thr Pro Arg Phe


      180           185          190





Asp Ser Arg Val Phe Lys Thr Pro Gly Leu Arg Thr Pro Ala Ala Gly


    195          200           205





Glu Arg Ile Tyr Asn Ile Ser Gly Asn Gly Ser Pro Leu Ala Asp Ser


  210           215           220





Lys Glu Ile Phe Leu Thr Val Pro Val Gly Gly Gly Glu Ser Leu Arg


225           230          235          240





Leu Leu Ala Ser Asp Leu Gln Arg His Ser Ile Ala Gln Leu Asp Pro


        245           250          255





Glu Ala Leu Gly Asn Ile Lys Lys Leu Ser Asn Arg Leu Ala Gln Ile


       260          265          270





Cys Ser Ser Ile Arg Thr His Lys


    275            280





<210>  19


<211> 923


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> Nrp1





<400>  19


Met Glu Arg Gly Leu Pro Leu Leu Cys Ala Val Leu Ala Leu Val Leu


1        5           10          15





Ala Pro Ala Gly Ala Phe Arg Asn Asp Lys Cys Gly Asp Thr Ile Lys


       20           25          30





Ile Glu Ser Pro Gly Tyr Leu Thr Ser Pro Gly Tyr Pro His Ser Tyr


     35            40          45





His Pro Ser Glu Lys Cys Glu Trp Leu Ile Gln Ala Pro Asp Pro Tyr


  50           55           60





Gln Arg Ile Met Ile Asn Phe Asn Pro His Phe Asp Leu Glu Asp Arg


65           70           75           80





Asp Cys Lys Tyr Asp Tyr Val Glu Val Phe Asp Gly Glu Asn Glu Asn


        85           90          95





Gly His Phe Arg Gly Lys Phe Cys Gly Lys Ile Ala Pro Pro Pro Val


       100          105          110





Val Ser Ser Gly Pro Phe Leu Phe Ile Lys Phe Val Ser Asp Tyr Glu


    115            120          125





Thr His Gly Ala Gly Phe Ser Ile Arg Tyr Glu Ile Phe Lys Arg Gly


  130           135           140





Pro Glu Cys Ser Gln Asn Tyr Thr Thr Pro Ser Gly Val Ile Lys Ser


145          150          155           160





Pro Gly Phe Pro Glu Lys Tyr Pro Asn Ser Leu Glu Cys Thr Tyr Ile


         165            170          175





Val Phe Val Pro Lys Met Ser Glu Ile Ile Leu Glu Phe Glu Ser Phe


       180          185            190





Asp Leu Glu Pro Asp Ser Asn Pro Pro Gly Gly Met Phe Cys Arg Tyr


    195         200            205





Asp Arg Leu Glu Ile Trp Asp Gly Phe Pro Asp Val Gly Pro His Ile


  210         215           220





Gly Arg Tyr Cys Gly Gln Lys Thr Pro Gly Arg Ile Arg Ser Ser Ser


225         230           235          240





Gly Ile Leu Ser Met Val Phe Tyr Thr Asp Ser Ala Ile Ala Lys Glu


          245          250          255





Gly Phe Ser Ala Asn Tyr Ser Val Leu Gln Ser Ser Val Ser Glu Asp


       260          265          270





Phe Lys Cys Met Glu Ala Leu Gly Met Glu Ser Gly Glu Ile His Ser


    275          280          285





Asp Gln Ile Thr Ala Ser Ser Gln Tyr Ser Thr Asn Trp Ser Ala Glu


  290           295           300





Arg Ser Arg Leu Asn Tyr Pro Glu Asn Gly Trp Thr Pro Gly Glu Asp


305          310          315          320





Ser Tyr Arg Glu Trp Ile Gln Val Asp Leu Gly Leu Leu Arg Phe Val


         325            330         335





Thr Ala Val Gly Thr Gln Gly Ala Ile Ser Lys Glu Thr Lys Lys Lys


      340           345           350





Tyr Tyr Val Lys Thr Tyr Lys Ile Asp Val Ser Ser Asn Gly Glu Asp


    355           360           365





Trp Ile Thr Ile Lys Glu Gly Asn Lys Pro Val Leu Phe Gln Gly Asn


  370            375          380





Thr Asn Pro Thr Asp Val Val Val Ala Val Phe Pro Lys Pro Leu Ile


385          390          395           400





Thr Arg Phe Val Arg Ile Lys Pro Ala Thr Trp Glu Thr Gly Ile Ser


         405           410          415





Met Arg Phe Glu Val Tyr Gly Cys Lys Ile Thr Asp Tyr Pro Cys Ser


      420          425          430





Gly Met Leu Gly Met Val Ser Gly Leu Ile Ser Asp Ser Gln Ile Thr


    435         440           445





Ser Ser Asn Gln Gly Asp Arg Asn Trp Met Pro Glu Asn Ile Arg Leu


  450           455         460





Val Thr Ser Arg Ser Gly Trp Ala Leu Pro Pro Ala Pro His Ser Tyr


465          470           475          480





Ile Asn Glu Trp Leu Gln Ile Asp Leu Gly Glu Glu Lys Ile Val Arg


          485          490          495





Gly Ile Ile Ile Gln Gly Gly Lys His Arg Glu Asn Lys Val Phe Met


        500            505          510





Arg Lys Phe Lys Ile Gly Tyr Ser Asn Asn Gly Ser Asp Trp Lys Met


    515           520           525





Ile Met Asp Asp Ser Lys Arg Lys Ala Lys Ser Phe Glu Gly Asn Asn


   530          535          540





Asn Tyr Asp Thr Pro Glu Leu Arg Thr Phe Pro Ala Leu Ser Thr Arg


545         550           555          560





Phe Ile Arg Ile Tyr Pro Glu Arg Ala Thr His Gly Gly Leu Gly Leu


          565           570           575





Arg Met Glu Leu Leu Gly Cys Glu Val Glu Ala Pro Thr Ala Gly Pro


      580          585          590





Thr Thr Pro Asn Gly Asn Leu Val Asp Glu Cys Asp Asp Asp Gln Ala


    595           600         605





Asn Cys His Ser Gly Thr Gly Asp Asp Phe Gln Leu Thr Gly Gly Thr


  610          615          620





Thr Val Leu Ala Thr Glu Lys Pro Thr Val Ile Asp Ser Thr Ile Gln


625          630          635           640





Ser Glu Phe Pro Thr Tyr Gly Phe Asn Cys Glu Phe Gly Trp Gly Ser


         645           650          655





His Lys Thr Phe Cys His Trp Glu His Asp Asn His Val Gln Leu Lys


       660          665           670





Trp Ser Val Leu Thr Ser Lys Thr Gly Pro Ile Gln Asp His Thr Gly


    675           680           685





Asp Gly Asn Phe Ile Tyr Ser Gln Ala Asp Glu Asn Gln Lys Gly Lys


  690          695           700





Val Ala Arg Leu Val Ser Pro Val Val Tyr Ser Gln Asn Ser Ala His


705          710          715           720





Cys Met Thr Phe Trp Tyr His Met Ser Gly Ser His Val Gly Thr Leu


        725          730            735





Arg Val Lys Leu Arg Tyr Gln Lys Pro Glu Glu Tyr Asp Gln Leu Val


      740          745           750





Trp Met Ala Ile Gly His Gln Gly Asp His Trp Lys Glu Gly Arg Val


    755            760          765





Leu Leu His Lys Ser Leu Lys Leu Tyr Gln Val Ile Phe Glu Gly Glu


  770          775          780





Ile Gly Lys Gly Asn Leu Gly Gly Ile Ala Val Asp Asp Ile Ser Ile


785           790          795          800





Asn Asn His Ile Ser Gln Glu Asp Cys Ala Lys Pro Ala Asp Leu Asp


        805            810          815





Lys Lys Asn Pro Glu Ile Lys Ile Asp Glu Thr Gly Ser Thr Pro Gly


       820          825           830





Tyr Glu Gly Glu Gly Glu Gly Asp Lys Asn Ile Ser Arg Lys Pro Gly


    835           840         845





Asn Val Leu Lys Thr Leu Asp Pro Ile Leu Ile Thr Ile Ile Ala Met


  850          855          860





Ser Ala Leu Gly Val Leu Leu Gly Ala Val Cys Gly Val Val Leu Tyr


865          870          875           880





Cys Ala Cys Trp His Asn Gly Met Ser Glu Arg Asn Leu Ser Ala Leu


        885           890          895





Glu Asn Tyr Asn Phe Glu Leu Val Asp Gly Val Lys Leu Lys Lys Asp


       900          905         910





Lys Leu Asn Thr Gln Ser Thr Tyr Ser Glu Ala


    915          920





<210>  20


<211> 646


<212> PRT


<213>Homo sapiens





<220>


<221> MISC_FEATURE


<223> Mcam





<400>  20


Met Gly Leu Pro Arg Leu Val Cys Ala Phe Leu Leu Ala Ala Cys Cys


1        5           10           15





Cys Cys Pro Arg Val Ala Gly Val Pro Gly Glu Ala Glu Gln Pro Ala


      20           25           30





Pro Glu Leu Val Glu Val Glu Val Gly Ser Thr Ala Leu Leu Lys Cys


    35           40           45





Gly Leu Ser Gln Ser Gln Gly Asn Leu Ser His Val Asp Trp Phe Ser


  50          55            60





Val His Lys Glu Lys Arg Thr Leu Ile Phe Arg Val Arg Gln Gly Gln


65          70          75             80





Gly Gln Ser Glu Pro Gly Glu Tyr Glu Gln Arg Leu Ser Leu Gln Asp


         85          90           95





Arg Gly Ala Thr Leu Ala Leu Thr Gln Val Thr Pro Gln Asp Glu Arg


       100          105         110





Ile Phe Leu Cys Gln Gly Lys Arg Pro Arg Ser Gln Glu Tyr Arg Ile


     115          120          125





Gln Leu Arg Val Tyr Lys Ala Pro Glu Glu Pro Asn Ile Gln Val Asn


  130          135          140





Pro Leu Gly Ile Pro Val Asn Ser Lys Glu Pro Glu Glu Val Ala Thr


145          150           155           160





Cys Val Gly Arg Asn Gly Tyr Pro Ile Pro Gln Val Ile Trp Tyr Lys


         165          170           175





Asn Gly Arg Pro Leu Lys Glu Glu Lys Asn Arg Val His Ile Gln Ser


       180          185         190





Ser Gln Thr Val Glu Ser Ser Gly Leu Tyr Thr Leu Gln Ser Ile Leu


    195           200           205





Lys Ala Gln Leu Val Lys Glu Asp Lys Asp Ala Gln Phe Tyr Cys Glu


  210          215          220





Leu Asn Tyr Arg Leu Pro Ser Gly Asn His Met Lys Glu Ser Arg Glu


225         230           235          240





Val Thr Val Pro Val Phe Tyr Pro Thr Glu Lys Val Trp Leu Glu Val


         245           250          255





Glu Pro Val Gly Met Leu Lys Glu Gly Asp Arg Val Glu Ile Arg Cys


      260           265          270





Leu Ala Asp Gly Asn Pro Pro Pro His Phe Ser Ile Ser Lys Gln Asn


    275          280           285





Pro Ser Thr Arg Glu Ala Glu Glu Glu Thr Thr Asn Asp Asn Gly Val


  290          295           300





Leu Val Leu Glu Pro Ala Arg Lys Glu His Ser Gly Arg Tyr Glu Cys


305          310          315          320





Gln Gly Leu Asp Leu Asp Thr Met Ile Ser Leu Leu Ser Glu Pro Gln


         325         330           335





Glu Leu Leu Val Asn Tyr Val Ser Asp Val Arg Val Ser Pro Ala Ala


      340          345           350





Pro Glu Arg Gln Glu Gly Ser Ser Leu Thr Leu Thr Cys Glu Ala Glu


    355          360            365





Ser Ser Gln Asp Leu Glu Phe Gln Trp Leu Arg Glu Glu Thr Gly Gln


  370           375         380





Val Leu Glu Arg Gly Pro Val Leu Gln Leu His Asp Leu Lys Arg Glu


385          390          395          400





Ala Gly Gly Gly Tyr Arg Cys Val Ala Ser Val Pro Ser Ile Pro Gly


         405          410           415





Leu Asn Arg Thr Gln Leu Val Asn Val Ala Ile Phe Gly Pro Pro Trp


      420          425          430





Met Ala Phe Lys Glu Arg Lys Val Trp Val Lys Glu Asn Met Val Leu


    435          440          445





Asn Leu Ser Cys Glu Ala Ser Gly His Pro Arg Pro Thr Ile Ser Trp


  450          455          460





Asn Val Asn Gly Thr Ala Ser Glu Gln Asp Gln Asp Pro Gln Arg Val


465         470          475           480





Leu Ser Thr Leu Asn Val Leu Val Thr Pro Glu Leu Leu Glu Thr Gly


        485           490           495





Val Glu Cys Thr Ala Ser Asn Asp Leu Gly Lys Asn Thr Ser Ile Leu


       500          505          510





Phe Leu Glu Leu Val Asn Leu Thr Thr Leu Thr Pro Asp Ser Asn Thr


    515          520          525





Thr Thr Gly Leu Ser Thr Ser Thr Ala Ser Pro His Thr Arg Ala Asn


  530          535           540





Ser Thr Ser Thr Glu Arg Lys Leu Pro Glu Pro Glu Ser Arg Gly Val


545          550           555          560





Val Ile Val Ala Val Ile Val Cys Ile Leu Val Leu Ala Val Leu Gly


          565           570            575





Ala Val Leu Tyr Phe Leu Tyr Lys Lys Gly Lys Leu Pro Cys Arg Arg


       580          585         590





Ser Gly Lys Gln Glu Ile Thr Leu Pro Pro Ser Arg Lys Ser Glu Leu


     595          600           605





Val Val Glu Val Lys Ser Asp Lys Leu Pro Glu Glu Met Gly Leu Leu


  610           615          620





Gln Gly Ser Ser Gly Asp Lys Arg Ala Pro Gly Asp Gln Gly Glu Lys


625           630         635           640





Tyr Ile Asp Leu Arg His


          645





<210>  21


<211> 322


<212> PRT


<213>Homo sapiens





<220>


<221> MISC_FEATURE


<223> Pbk





<400>  21


Met Glu Gly Ile Ser Asn Phe Lys Thr Pro Ser Lys Leu Ser Glu Lys


1        5            10           15





Lys Lys Ser Val Leu Cys Ser Thr Pro Thr Ile Asn Ile Pro Ala Ser


      20            25          30





Pro Phe Met Gln Lys Leu Gly Phe Gly Thr Gly Val Asn Val Tyr Leu


    35           40          45





Met Lys Arg Ser Pro Arg Gly Leu Ser His Ser Pro Trp Ala Val Lys


  50          55           60





Lys Ile Asn Pro Ile Cys Asn Asp His Tyr Arg Ser Val Tyr Gln Lys


65           70           75           80





Arg Leu Met Asp Glu Ala Lys Ile Leu Lys Ser Leu His His Pro Asn


        85          90            95





Ile Val Gly Tyr Arg Ala Phe Thr Glu Ala Asn Asp Gly Ser Leu Cys


        100          105          110





Leu Ala Met Glu Tyr Gly Gly Glu Lys Ser Leu Asn Asp Leu Ile Glu


    115          120          125





Glu Arg Tyr Lys Ala Ser Gln Asp Pro Phe Pro Ala Ala Ile Ile Leu


  130           135          140





Lys Val Ala Leu Asn Met Ala Arg Gly Leu Lys Tyr Leu His Gln Glu


145          150         155           160





Lys Lys Leu Leu His Gly Asp Ile Lys Ser Ser Asn Val Val Ile Lys


         165          170           175





Gly Asp Phe Glu Thr Ile Lys Ile Cys Asp Val Gly Val Ser Leu Pro


      180           185           190





Leu Asp Glu Asn Met Thr Val Thr Asp Pro Glu Ala Cys Tyr Ile Gly


    195         200          205





Thr Glu Pro Trp Lys Pro Lys Glu Ala Val Glu Glu Asn Gly Val Ile


  210           215          220





Thr Asp Lys Ala Asp Ile Phe Ala Phe Gly Leu Thr Leu Trp Glu Met


225         230           235           240





Met Thr Leu Ser Ile Pro His Ile Asn Leu Ser Asn Asp Asp Asp Asp


        245            250           255





Glu Asp Lys Thr Phe Asp Glu Ser Asp Phe Asp Asp Glu Ala Tyr Tyr


      260           265         270





Ala Ala Leu Gly Thr Arg Pro Pro Ile Asn Met Glu Glu Leu Asp Glu


    275          280           285





Ser Tyr Gln Lys Val Ile Glu Leu Phe Ser Val Cys Thr Asn Glu Asp


  290           295           300





Pro Lys Asp Arg Pro Ser Ala Ala His Ile Val Glu Ala Leu Glu Thr


305          310          315            320





Asp Val





<210>  22


<211> 262


<212> PRT


<213> Mus musculus





<220>


<221> MISC_FEATURE


<223> Akr1c1





<400>  22


Gly Leu Ala Ile Arg Ser Lys Val Ala Asp Gly Thr Val Arg Arg Glu


1        5             10           15





Asp Ile Phe Tyr Thr Ser Lys Leu Pro Cys Thr Cys His Arg Pro Glu


        20          25           30





Leu Val Gln Pro Cys Leu Glu Gln Ser Leu Arg Lys Leu Gln Leu Asp


    35           40          45





Tyr Val Asp Leu Tyr Leu Ile His Cys Pro Val Ser Met Lys Pro Gly


  50          55            60





Asn Asp Leu Ile Pro Thr Asp Glu Asn Gly Lys Leu Leu Phe Asp Thr


65          70           75           80





Val Asp Leu Cys Asp Thr Trp Glu Ala Met Glu Lys Cys Lys Asp Ser


         85          90          95





Gly Leu Ala Lys Ser Ile Gly Val Ser Asn Phe Asn Arg Arg Gln Leu


       100          105            110





Glu Met Ile Leu Asn Lys Pro Gly Leu Arg Tyr Lys Pro Val Cys Asn


    115           120           125





Gln Val Glu Cys His Pro Tyr Leu Asn Gln Ser Lys Leu Leu Asp Tyr


  130          135           140





Cys Lys Ser Lys Asp Ile Val Leu Val Ala Tyr Gly Ala Leu Gly Ser


145          150           155          160





Gln Arg Cys Lys Asn Trp Ile Glu Glu Asn Ala Pro Tyr Leu Leu Glu


        165           170           175





Asp Pro Thr Leu Cys Ala Met Ala Glu Lys His Lys Gln Thr Pro Ala


       180          185         190





Leu Ile Ser Leu Arg Tyr Leu Leu Gln Arg Gly Ile Val Ile Val Thr


    195           200           205





Lys Ser Phe Asn Glu Lys Arg Ile Lys Glu Asn Leu Lys Val Phe Glu


  210          215          220





Phe His Leu Pro Ala Glu Asp Met Ala Val Ile Asp Arg Leu Asn Arg


225         230           235           240





Asn Tyr Arg Tyr Ala Thr Ala Arg Ile Ile Ser Ala His Pro Asn Tyr


        245           250           255





Pro Phe Leu Asp Glu Tyr


       260





<210>  23


<211> 521


<212> PRT


<213> Homo sapiens





<220>


<221> MISC_FEATURE


<223> Cypl1a1





<400>  23


Met Leu Ala Lys Gly Leu Pro Pro Arg Ser Val Leu Val Lys Gly Cys


1        5           10           15





Gln Thr Phe Leu Ser Ala Pro Arg Glu Gly Leu Gly Arg Leu Arg Val


      20            25          30





Pro Thr Gly Glu Gly Ala Gly Ile Ser Thr Arg Ser Pro Arg Pro Phe


    35           40            45





Asn Glu Ile Pro Ser Pro Gly Asp Asn Gly Trp Leu Asn Leu Tyr His


  50            55          60





Phe Trp Arg Glu Thr Gly Thr His Lys Val His Leu His His Val Gln


65          70          75           80





Asn Phe Gln Lys Tyr Gly Pro Ile Tyr Arg Glu Lys Leu Gly Asn Val


         85          90            95





Glu Ser Val Tyr Val Ile Asp Pro Glu Asp Val Ala Leu Leu Phe Lys


       100            105         110





Ser Glu Gly Pro Asn Pro Glu Arg Phe Leu Ile Pro Pro Trp Val Ala


     115          120          125





Tyr His Gln Tyr Tyr Gln Arg Pro Ile Gly Val Leu Leu Lys Lys Ser


  130           135          140





Ala Ala Trp Lys Lys Asp Arg Val Ala Leu Asn Gln Glu Val Met Ala


145          150          155          160





Pro Glu Ala Thr Lys Asn Phe Leu Pro Leu Leu Asp Ala Val Ser Arg


         165          170           175





Asp Phe Val Ser Val Leu His Arg Arg Ile Lys Lys Ala Gly Ser Gly


      180           185          190





Asn Tyr Ser Gly Asp Ile Ser Asp Asp Leu Phe Arg Phe Ala Phe Glu


    195          200            205





Ser Ile Thr Asn Val Ile Phe Gly Glu Arg Gln Gly Met Leu Glu Glu


  210           215            220





Val Val Asn Pro Glu Ala Gln Arg Phe Ile Asp Ala Ile Tyr Gln Met


225          230           235          240





Phe His Thr Ser Val Pro Met Leu Asn Leu Pro Pro Asp Leu Phe Arg


         245           250          255





Leu Phe Arg Thr Lys Thr Trp Lys Asp His Val Ala Ala Trp Asp Val


       260          265         270





Ile Phe Ser Lys Ala Asp Ile Tyr Thr Gln Asn Phe Tyr Trp Glu Leu


     275           280           285





Arg Gln Lys Gly Ser Val His His Asp Tyr Arg Gly Ile Leu Tyr Arg


  290          295           300





Leu Leu Gly Asp Ser Lys Met Ser Phe Glu Asp Ile Lys Ala Asn Val


305          310         315           320





Thr Glu Met Leu Ala Gly Gly Val Asp Thr Thr Ser Met Thr Leu Gln


         325          330          335





Trp His Leu Tyr Glu Met Ala Arg Asn Leu Lys Val Gln Asp Met Leu


       340          345          350





Arg Ala Glu Val Leu Ala Ala Arg His Gln Ala Gln Gly Asp Met Ala


    355           360         365





Thr Met Leu Gln Leu Val Pro Leu Leu Lys Ala Ser Ile Lys Glu Thr


  370          375          380





Leu Arg Leu His Pro Ile Ser Val Thr Leu Gln Arg Tyr Leu Val Asn


385         390             395         400





Asp Leu Val Leu Arg Asp Tyr Met Ile Pro Ala Lys Thr Leu Val Gln


        405          410           415





Val Ala Ile Tyr Ala Leu Gly Arg Glu Pro Thr Phe Phe Phe Asp Pro


       420           425          430





Glu Asn Phe Asp Pro Thr Arg Trp Leu Ser Lys Asp Lys Asn Ile Thr


    435          440          445





Tyr Phe Arg Asn Leu Gly Phe Gly Trp Gly Val Arg Gln Cys Leu Gly


  450         455           460





Arg Arg Ile Ala Glu Leu Glu Met Thr Ile Phe Leu Ile Asn Met Leu


465          470          475           480





Glu Asn Phe Arg Val Glu Ile Gln His Leu Ser Asp Val Gly Thr Thr


        485           490           495





Phe Asn Leu Ile Leu Met Pro Glu Lys Pro Ile Ser Phe Thr Phe Trp


      500           505          510





Pro Phe Asn Gln Glu Ala Thr Gln Gln


    515          520





The following “DNA” are from mRNA


FOS Human DNA


AACCGCATCTGCAGCGAGCAACTGAGAAGCCAAGACTGAGCCGGCGGCCGCGGCGCAGCG


AACGAGCAGTGACCGTGCTCCTACCCAGCTCTGCTTCACAGCGCCCACCTGTCTCCGCCC


CTCGGCCCCTCGCCCGGCTTTGCCTAACCGCCACGATGATGTTCTCGGGCTTCAACGCAG


ACTACGAGGCGTCATCCTCCCGCTGCAGCAGCGCGTCCCCGGCCGGGGATAGCCTCTCTT


ACTACCACTCACCCTTTCGGAGTCCCCGCCCCCTCCGCTGGGGCTTACTCCAGGGCTGGC


GTTGTGAAGACCATGACAGGAGGCCGAGCGCAGAGCATTGGCAGGAGGGGCAAGGTGGAA


CAGTTATCTCCTGAAGAAGAAGAGAAAAGGAGAATCCGAAGGGAAAGGAATAAGATGGCT


GCAGCCAAATGCCGCAACCGGAGGAGGGAGCTGACTGATACACTCCAAGCGGAGACAGAC


CAACTAGAAGATGAGAAGTCTGCTTTGCAGACCGAGATTGCCAACCTGCTGAAGGAGAAG


GAAAAACTAGAGTTCATCCTGGCAGCTCACCGACCTGCCTGCAAGATCCCTGATGACCTG


GGCTTCCCAGAAGAGATGTCTGTGGCTTCCCTTGATCTGACTGGGGGCCTGCCAGAGGTT


GCCACCCCGGAGTCTGAGGAGGCCTTCACCCTGCCTCTCCTCAATGACCCTGAGCCCAAG


CCCTCAGTGGAACCTGTCAAGAGCATCAGCAGCATGGAGCTGAAGACCGAGCCCTTTGAT


GACTTCCTGTTCCCAGCATCATCCAGGCCCAGTGGCTCTGAGACAGCCCGCTCCGTGCCA


GACATGGACCTATCTGGGTCCTTCTATGCAGCAGACTGGGAGCCTCTGCACAGTGGCTCC


CTGGGGATGGGGCCCATGGCCACAGAGCTGGAGCCCCTGTGCACTCCGGTGGTCACCTGT


ACTCCCAGCTGCACTGCTTACACGTCTTCCTTCGTCTTCACCTACCCCGAGGCTGACTCC


TTCCCCAGCTGTGCAGCTGCCCACCGCAAGGGCAGCAGCAGCAATGAGCCTTCCTCTGAC


TCGCTCAGCTCACCCACGCTGCTGGCCCTGTGAGGGGGCAGGGAAGGGGAGGCAGCCGGC


ACCCACAAGTGCCACTGCCCGAGCTGGTGCATTACAGAGAGGAGAAACACATCTTCCCTA


GAGGGTTCCTGTAGACCTAGGGAGGACCTTATCTGTGCGTGAAACACACCAGGCTGTGGG


CCTCAAGGACTTGAAAGCATCCATGTGTGGACTCAAGTCCTTACCTCTTCCGGAGATGTA


GCAAAACGCATGGAGTGTGTATTGTTCCCAGTGACACTTCAGAGAGCTGGTAGTTAGTAG


CATGTTGAGCCAGGCCTGGGTCTGTGTCTCTTTTCTCTTTCTCCTTAGTCTTCTCATAGC


ATTAACTAATCTATTGGGTTCATTATTGGAATTAACCTGGTGCTGGATATTTTCAAATTG


TATCTAGTGCAGCTGATTTTAACAATAACTACTGTGTTCCTGGCAATAGTGTGTTCTGAT


TAGAAATGACCAATATTATACTAAGAAAAGATACGACTTTATTTTCTGGTAGATAGAAAT


AAATAGCTATATCCATGTACTGTAGTTTTTCTTCAACATCAATGTTCATTGTAATGTTAC


TGATCATGCATTGTTGAGGTGGTCTGAATGTTCTGACATTAACAGTTTTCCATGAAAACG


TTTTATTGTGTTTTTAATTTATTTATTAAGATGGATTCTCAGATATTTATATTTTTATTT


TATTTTTTTCTACCTTGAGGTCTTTTGACATGTGGAAAGTGAATTTGAATGAAAAATTTA


AGCATTGTTTGCTTATTGTTCCAAGACATTGTCAATAAAAGCATTTAAGTT


GAATGCG





FOS Mouse Protein


MMFSGFNADYEASSSRCSSASPAGDSLSYYHSPADSFSSMGSPVNTQDFCADLSVSSANF


IPTVTAISTSPDLQWLVQPTLVSSVAPSQTRAPHPYGLPTQSAGAYARAGMVKTVSGGRA


QSIGRRGKVEQLSPEEEEKRRIRRERNKMAAAKCRNRRRELTDTLQAETDQLEDEKSALQ


TEIANLLKEKEKLEFILAAHRPACKIPDDLGFPEEMSVASLDLTGGLPEASTPESEEAFT


LPLLNDPEPKPSLEPVKSISNVELKAEPFDDFLFPASSRPSGSETSRSVPDVDLSGSFYA


ADWEPLHSNSLGMGPMVTELEPLCTPVVTCTPGCTTYTSSFVFTYPEADSFPSCAAAHRK


GSSSNEPSSDSLSSPTLLAL





FOS Mouse DNA


CAGCGAGCAACTGAGAAGACTGGATAGAGCCGGCGGTTCCGCGAACGAGCAGTGACCGCG


CTCCCACCCAGCTCTGCTCTGCAGCTCCCACCAGTGTCTACCCCTGGACCCCTTGCCGGG


CTTTCCCCAAACTTCGACCATGATGTTCTCGGGTTTCAACGCCGACTACGAGGCGTCATC


CTCCCGCTGCAGTAGCGCCTCCCCGGCCGGGGACAGCCTTTCCTACTACCATTCCCCAGC


CGACTCCTTCTCCAGCATGGGCTCTCCTGTCAACACACAGGACTTTTGCGCAGATCTGTC


CGTCTCTAGTGCCAACTTTATCCCCACGGTGACAGCCATCTCCACCAGCCCAGACCTGCA


GTGGCTGGTGCAGCCCACTCTGGTCTCCTCCGTGGCCCCATCGCAGACCAGAGCGCCCCA


TCCTTACGGACTCCCCACCCAGTCTGCTGGGGCTTACGCCAGAGCGGGAATGGTGAAGAC


CGTGTCAGGAGGCAGAGCGCAGAGCATCGGCAGAAGGGGCAAAGTAGAGCAGCTATCTCC


TGAAGAGGAAGAGAAACGGAGAATCCGAAGGGAACGGAATAAGATGGCTGCAGCCAAGTG


CCGGAATCGGAGGAGGGAGCTGACAGATACACTCCAAGCGGAGACAGATCAACTTGAAGA


TGAGAAGTCTGCGTTGCAGACTGAGATTGCCAATCTGCTGAAAGAGAAGGAAAAACTGGA


GTTTATTTTGGCAGCCCACCGACCTGCCTGCAAGATCCCCGATGACCTTGGCTTCCCAGA


GGAGATGTCTGTGGCCTCCCTGGATTTGACTGGAGGTCTGCCTGAGGCTTCCACCCCAGA


GTCTGAGGAGGCCTTCACCCTGCCCCTTCTCAACGACCCTGAGCCCAAGCCATCCTTGGA


GCCAGTCAAGAGCATCAGCAACGTGGAGCTGAAGGCAGAACCCTTTGATGACTTCTTGTT


TCCGGCATCATCTAGGCCCAGTGGCTCAGAGACCTCCCGCTCTGTGCCAGATGTGGACCT


GTCCGGTTCCTTCTATGCAGCAGACTGGGAGCCTCTGCACAGCAATTCCTTGGGGATGGG


GCCCATGGTCACAGAGCTGGAGCCCCTGTGTACTCCCGTGGTCACCTGTACTCCGGGCTG


CACTACTTACACGTCTTCCTTTGTCTTCACCTACCCTGAAGCTGACTCCTTCCCAAGCTG


TGCCGCTGCCCACCGAAAGGGCAGCAGCAGCAACGAGCCCTCCTCCGACTCCCTGAGCTC


ACCCACGCTGCTGGCCCTGTGAGCAGTCAGAGAAGGCAAGGCAGCCGGCATCCAGACGTG


CCACTGCCCGAGCTGGTGCATTACAGAGAGGAGAAACACGTCTTCCCTCGAAGGTTCCCG


TCGACCTAGGGAGGACCTTACCTGTTCGTGAAACACACCAGGCTGTGGGCCTCAAGGACT


TGCAAGCATCCACATCTGGCCTCCAGTCCTCACCTCTTCCAGAGATGTAGCAAAAACAAA


ACAAAACAAAACAAAAAACCGCATGGAGTGTGTTGTTCCTAGTGACACCTGAGAGCTGGT


AGTTAGTAGAGCATGTGAGTCAAGGCCTGGTCTGTGTCTCTTTTCTCTTTCTCCTTAGTT


TTCTCATAGCACTAACTAATCTGTTGGGTTCATTATTGGAATTAACCTGGTGCTGGATTG


TATCTAGTGCAGCTGATTTTAACAATACCTACTGTGTTCCTGGCAATAGCGTGTTCCAAT


TAGAAACGACCAATATTAAACTAAGAAAAGATAGGACTTTATTTTCCAGTAGATAGAAAT


CAATAGCTATATCCATGTACTGTAGTCCTTCAGCGTCAATGTTCATTGTCATGTTACTGA


TCATGCATTGTCGAGGTGGTCTGAATGTTCTGACATTAACAGTTTTCCATGAAAACGTTT


TTATTGTGTTTTCAATTTATTTATTAAGATGGATTCTCAGATATTTATATTTTTATTTTA


TTTTTTTCTACCCTGAGGTCTTTCGACATGTGGAAAGTGAATTTGAATGAAAAATTTTAA


GCATTGTTTGCTTATTGTTCCAAGACATTGTCAATAAAAGCATTTAAGTTGAAAAAAAAA


AAAAAAA





CD93 Human DNA


CTTCTCTGCGCCGGAGTGGCTGCAGCTCACCCCTCAGCTCCCCTTGGGGCCCAGCTGGGA


GCCGAGATAGAAGCTCCTGTCGCCGCTGGGCTTCTCGCCTCCCGCAGAGGGCCACACAGA


GACCGGGATGGCCACCTCCATGGGCCTGCTGCTGCTGCTGCTGCTGCTCCTGACCCAGCC


CGGGGCGGGGACGGGAGCTGACACGGAGGCGGTGGTCTGCGTGGGGACCGCCTGCTACAC


GGCCCACTCGGGCAAGCTGAGCGCTGCCGAGGCCCAGAACCACTGCAACCAGAACGGGGG


CAACCTGGCCACTGTGAAGAGCAAGGAGGAGGCCCAGCACGTCCAGCGAGTACTGGCCCA


GCTCCTGAGGCGGGAGGCAGCCCTGACGGCGAGGATGAGCAAGTTCTGGATTGGGCTCCA


GCGAGAGAAGGGCAAGTGCCTGGACCCTAGTCTGCCGCTGAAGGGCTTCAGCTGGGTGGG


CGGGGGGGAGGACACGCCTTACTCTAACTGGCACAAGGAGCTCCGGAACTCGTGCATCTC


CAAGCGCTGTGTGTCTCTGCTGCTGGACCTGTCCCAGCCGCTCCTTCCCAGCCGCCTCCC


CAAGTGGTCTGAGGGCCCCTGTGGGAGCCCAGGCTCCCCCGGAAGTAACATTGAGGGCTT


CGTGTGCAAGTTCAGCTTCAAAGGCATGTGCCGGCCTCTGGCCCTGGGGGGCCCAGGTCA


GGTGACCTACACCACCCCCTTCCAGACCACCAGTTCCTCCTTGGAGGCTGTGCCCTTTGC


CTCTGCGGCCAATGTAGCCTGTGGGGAAGGTGACAAGGACGAGACTCAGAGTCATTATTT


CCTGTGCAAGGAGAAGGCCCCCGATGTGTTCGACTGGGGCAGCTCGGGCCCCCTCTGTGT


CAGCCCCAAGTATGGCTGCAACTTCAACAATGGGGGCTGCCACCAGGACTGCTTTGAAGG


GGGGGATGGCTCCTTCCTCTGCGGCTGCCGACCAGGATTCCGGCTGCTGGATGACCTGGT


GACCTGTGCCTCTCGAAACCCTTGCAGCTCCAGCCCATGTCGTGGGGGGGCCACGTGCGT


CCTGGGACCCCATGGGAAAAACTACACGTGCCGCTGCCCCCAAGGGTACCAGCTGGACTC


GAGTCAGCTGGACTGTGTGGACGTGGATGAATGCCAGGACTCCCCCTGTGCCCAGGAGTG


TGTCAACACCCCTGGGGGCTTCCGCTGCGAATGCTGGGTTGGCTATGAGCCGGGCGGTCC


TGGAGAGGGGGCCTGTCAGGATGTGGATGAGTGTGCTCTGGGTCGCTCGCCTTGCGCCCA


GGGCTGCACCAACACAGATGGCTCATTTCACTGCTCCTGTGAGGAGGGCTACGTCCTGGC


CGGGGAGGACGGGACTCAGTGCCAGGACGTGGATGAGTGTGTGGGCCCGGGGGGCCCCCT


CTGCGACAGCTTGTGCTTCAACACACAAGGGTCCTTCCACTGTGGCTGCCTGCCAGGCTG


GGTGCTGGCCCCAAATGGGGTCTCTTGCACCATGGGGCCTGTGTCTCTGGGACCACCATC


TGGGCCCCCCGATGAGGAGGACAAAGGAGAGAAAGAAGGGAGCACCGTGCCCCGTGCTGC


AACAGCCAGTCCCACAAGGGGCCCCGAGGGCACCCCCAAGGCTACACCCACCACAAGTAG


ACCTTCGCTGTCATCTGACGCCCCCATCACATCTGCCCCACTCAAGATGCTGGCCCCCAG


TGGGTCCCCAGGCGTCTGGAGGGAGCCCAGCATCCATCACGCCACAGCTGCCTCTGGCCC


CCAGGAGCCTGCAGGTGGGGACTCCTCCGTGGCCACACAAAACAACGATGGCACTGACGG


GCAAAAGCTGCTTTTATTCTACATCCTAGGCACCGTGGTGGCCATCCTACTCCTGCTGGC


CCTGGCTCTGGGGCTACTGGTCTATCGCAAGCGGAGAGCGAAGAGGGAGGAGAAGAAGGA


GAAGAAGCCCCAGAATGCGGCAGACAGTTACTCCTGGGTTCCAGAGCGAGCTGAGAGCAG


GGCCATGGAGAACCAGTACAGTCCGACACCTGGGACAGACTGCTGAAAGTGAGGTGGCCC


TAGAGACACTAGAGTCACCAGCCACCATCCTCAGAGCTTTGAACTCCCCATTCCAAAGGG


GCACCCACATTTTTTTGAAAGACTGGACTGGAATCTTAGCAAACAATTGTAAGTCTCCTC


CTTAAAGGCCCCTTGGAACATGCAGGTATTTTCTACGGGTGTTTGATGTTCCTGAAGTGG


AAGCTGTGTGTTGGCGTGCCACGGTGGGGATTTCGTGACTCTATAATGATTGTTACTCCC


CCTCCCTTTTCAAATTCCAATGTGACCAATTCCGGATCAGGGTGTGAGGAGGCCGGGGCT


AAGGGGCTCCCCTGAATATCTTCTCTGCTCACTTCCACCATCTAAGAGGAAAAGGTGAGT


TGCTCATGCTGATTAGGATTGAAATGATTTGTTTCTCTTCCTAGGATGAAAACTAAATCA


ATTAATTATTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA


AAAAAAAAA





CD93 Mouse Protein


MAISTGLFLLLGLLGQPWAGAAADSQAVVCEGTACYTAHWGKLSAAEAQHRCNENGGNLA


TVKSEEEARHVQQALTQLLKTKAPLEAKMGKFWIGLQREKGNCTYHDLPMRGFSWVGGGE


DTAYSNWYKASKSSCIFKRCVSLILDLSLTPHPSHLPKWHESPCGTPEAPGNSIEGFLCK


FNFKGMCRPLALGGPGRVTYTTPFQATTSSLEAVPFASVANVACGDEAKSETHYFLCNEK


TPGIFHWGSSGPLCVSPKFGCSFNNGGCQQDCFEGGDGSFRCGCRPGFRLLDDLVTCASR


NPCSSNPCTGGGMCHSVPLSENYTCRCPSGYQLDSSQVHCVDIDECQDSPCAQDCVNTLG


SFHCECWVGYQPSGPKEEACEDVDECAAANSPCAQGCINTDGSFYCSCKEGYIVSGEDST


QCEDIDECSDARGNPCDSLCFNTDGSFRCGCPPGWELAPNGVFCSRGTVFSELPARPPQK


EDNDDRKESTMPPTEMPSSPSGSKDVSNRAQTTGLFVQSDIPTASVPLEIEIPSEVSDVW


FELGTYLPTTSGHSKPTHEDSVSAHSDTDGQNLLLFYILGTVVAISLLLVLALGILIYHK


RRAKKEEIKEKKPQNAADSYSWVPERAESQAPENQYSPTPGTDC





CD93 Mouse DNA


GAAAGCAGCAGTGCGCCTCTGCTCCCTTCAGAGCACAGCCTGGTGTCAAGGTCCAGGTTC


CACCGGCTGCTGCTGTCACCGCAGGGGAGTCTAGCCCCTCCCAGAAGGAGACACAGAAGA


ATGGCCATCTCAACTGGTTTGTTCCTGCTGCTGGGGCTCCTTGGCCAGCCCTGGGCAGGG


GCTGCTGCTGATTCACAGGCTGTGGTGTGCGAGGGGACTGCCTGCTATACAGCCCATTGG


GGCAAGCTGAGTGCCGCTGAAGCCCAGCATCGCTGCAATGAGAATGGAGGCAATCTTGCC


ACCGTGAAGAGTGAGGAGGAGGCCCGGCATGTTCAGCAAGCCCTGACTCAGCTCCTGAAG


ACCAAGGCACCCTTGGAAGCAAAGATGGGCAAATTCTGGATCGGGCTCCAGCGAGAGAAG


GGCAACTGTACGTACCATGATTTGCCAATGAGGGGCTTCAGCTGGGTGGGTGGTGGAGAG


GACACAGCTTATTCAAACTGGTACAAAGCCAGCAAGAGCTCCTGTATCTTTAAACGCTGT


GTGTCCCTCATACTGGACCTGTCCTTGACACCTCACCCCAGCCATCTGCCCAAGTGGCAT


GAGAGTCCCTGTGGGACCCCCGAAGCTCCAGGTAACAGCATTGAAGGTTTCCTGTGCAAG


TTCAACTTCAAAGGCATGTGTAGGCCACTGGCGCTGGGTGGTCCAGGGCGGGTGACCTAT


ACCACCCCTTTCCAGGCCACTACCTCCTCTCTGGAGGCTGTGCCTTTTGCCTCTGTAGCC


AATGTAGCTTGTGGGGATGAAGCTAAGAGTGAAACCCACTATTTCCTATGCAATGAAAAG


ACTCCAGGAATATTTCACTGGGGCAGCTCAGGCCCACTCTGTGTCAGCCCCAAGTTTGGT


TGCAGTTTCAACAACGGGGGCTGCCAGCAGGATTGCTTCGAAGGTGGCGATGGCTCCTTC


CGCTGCGGCTGCCGGCCTGGATTTCGACTGCTGGATGATCTAGTAACTTGTGCCTCCAGG


AACCCCTGCAGCTCAAACCCATGCACAGGAGGTGGCATGTGCCATTCTGTACCACTCAGT


GAAAACTACACTTGCCGTTGTCCCAGCGGCTACCAGCTGGACTCTAGCCAAGTGCACTGT


GTGGATATAGATGAGTGCCAGGACTCCCCCTGTGCCCAGGATTGTGTCAACACTCTAGGG


AGCTTCCACTGTGAATGTTGGGTTGGTTACCAACCCAGTGGCCCCAAGGAAGAGGCCTGT


GAAGATGTGGATGAGTGTGCAGCTGCCAACTCGCCCTGTGCCCAAGGCTGCATCAACACT


GATGGCTCTTTCTACTGCTCCTGTAAAGAGGGCTATATTGTGTCTGGGGAAGACAGTACC


CAGTGTGAGGATATAGATGAGTGTTCGGACGCAAGGGGCAATCCATGTGATTCCCTGTGC


TTCAACACAGATGGTTCCTTCAGGTGTGGCTGCCCGCCAGGCTGGGAGCTGGCTCCCAAT


GGGGTCTTTTGTAGCAGGGGCACTGTGTTTTCTGAACTACCAGCCAGGCCTCCCCAAAAG


GAAGACAACGATGACAGAAAGGAGAGTACTATGCCTCCTACTGAAATGCCCAGTTCTCCT


AGTGGCTCTAAGGATGTCTCCAACAGAGCACAGACAACAGGTCTCTTCGTCCAATCAGAT


ATTCCCACTGCCTCTGTTCCACTAGAAATAGAAATCCCTAGTGAAGTATCTGATGTCTGG


TTCGAGTTGGGCACATACCTCCCCACGACCTCCGGCCACAGCAAGCCGACACATGAAGAT


TCTGTGTCTGCACACAGTGACACCGATGGGCAGAACCTGCTTCTGTTTTACATCCTGGGG


ACGGTGGTGGCCATCTCACTCTTGCTGGTGCTGGCCCTAGGGATTCTCATTTATCATAAA


CGGAGAGCCAAGAAGGAGGAGATAAAAGAGAAGAAGCCTCAGAATGCAGCCGACAGCTAT


TCCTGGGTTCCAGAGCGAGCAGAGAGCCAAGCCCCGGAGAATCAGTACAGCCCAACACCA


GGGACAGACTGCTGAAGACTATGTGGCCTTAGAGACAGCTGCCACTACCTTCAGAGCTAC


CTTCTTAGATGAGGGGGAAGCCACATCATTCTGAATGACTTGACTGGACTCTCAGCAAAA


AAATTGTGCACCTTCCACTTAAGAACCTGGTGGCTTGGGATAGGCAGGTATTTTCTTGGT


GCCTTTGATATGTCTGGGGGTGAAAGCTGTGTGTTGGTTTGTCATTGTGGGGAGTTTTGT


GGATATTGACAGACCTCACTCAAACACCCTTTTCAAATCCAATAGCAACTGGTTCCTCTG


GTTCCTAATTAGGGGGAAAGGAGTCAGAGGGGTGGGACAGGGTGGGGGGATGGGGCTTCA


AAGTTTTTTCTTATCACTTGATTTATCATCGAAGGAGTTACTGGTGCTAATTACAATGGA


AACAGTTCCTTTCCATCACAGGACAGACACACCTCAATCCTCCATGGGGTCAACAACTAT


ATACCCCCAGTGACCCCTTAGGCAAGGACTTGTTGAGAACTGCATCACATTTTGACCTGT


TCTCAACAGTACCCATCTATTTCAGGTGGGATCTCTGGACCTTTCCTCCTTCCCATCTTG


TCTGCAATGTGGCAAATGGCTTCTTTTTGCATTTTTACTCCGCCCCCACCCCAAGCTGAA


GTTCATTTGCAGATCAGCGATTAAGTCTGAATTGTGTGGTGGTCAGTCTTGTTTCCTTTT


GTCAGGGGTTATTGTAAATGTTAGTAATTTCGCCTCAAGCCCTCAGTAAGAACATAAATA


TTTTAAAATATGTGCGTTTGAAATCTGTTTCATGCATCCTGGAACTGTGGGATGCTCAGG


CAAGAGTGACTTTAGTCTTTCAGTGAATGTTGCCCAGAATGTGGGTAGGGAAGGCTCACA


GGTTACTCTCCTCCTTAGAGCTACAACATAACATTCTGAGGGGAGTCACAGGGTTGCCTT


TAAAAAGTGGGAGCTATGTCATGCTTTGAGCTTTCTGTTAAGCACCTCTCCTAATAAACT


CTGAAAAAAT





FOSB Human DNA


CATTCATAAGACTCAGAGCTACGGCCACGGCAGGGACACGCGGAACCAAGACTTGGAAAC


TTGATTGTTGTGGTTCTTCTTGGGGGTTATGAAATTTCATTAATCTTTTTTTTTTCCGGG


GAGAAAGTTTTTGGAAAGATTCTTCCAGATATTTCTTCATTTTCTTTTGGAGGACCGACT


TACTTTTTTTGGTCTTCTTTATTACTCCCCTCCCCCCGTGGGACCCGCCGGACGCGTGGA


GGAGACCGTAGCTGAAGCTGATTCTGTACAGCGGGACAGCGCTTTCTGCCCCTGGGGGAG


CAACCCCTCCCTCGCCCCTGGGTCCTACGGAGCCTGCACTTTCAAGAGGTACAGCGGCAT


CCTGTGGGGGCCTGGGCACCGCAGGAAGACTGCACAGAAACTTTGCCATTGTTGGAACGG


GACGTTGCTCCTTCCCCGAGCTTCCCCGGACAGCGTACTTTGAGGACTCGCTCAGCTCAC


CGGGGACTCCCACGGCTCACCCCGGACTTGCACCTTACTTCCCCAACCCGGCCATAGCCT


TGGCTTCCCGGCGACCTCAGCGTGGTCACAGGGGCCCCCCTGTGCCCAGGGAAATGTTTC


AGGCTTTCCCCGGAGACTACGACTCCGGCTCCCGGTGCAGCTCCTCACCCTCTGCCGAGT


CTCAATATCTGTCTTCGGTGGACTCCTTCGGCAGTCCACCCACCGCCGCGGCCTCCCAGG


AGTGCGCCGGTCTCGGGGAAATGCCCGGTTCCTTCGTGCCCACGGTCACCGCGATCACAA


CCAGCCAGGACCTCCAGTGGCTTGTGCAACCCACCCTCATCTCTTCCATGGCCCAGTCCC


AGGGGCAGCCACTGGCCTCCCAGCCCCCGGTCGTCGACCCCTACGACATGCCGGGAACCA


GCTACTCCACACCAGGCATGAGTGGCTACAGCAGTGGCGGAGCGAGTGGCAGTGGTGGGC


CTTCCACCAGCGGAACTACCAGTGGGCCTGGGCCTGCCCGCCCAGCCCGAGCCCGGCCTA


GGAGACCCCGAGAGGAGACGCTCACCCCAGAGGAAGAGGAGAAGCGAAGGGTGCGCCGGG


AACGAAATAAACTAGCAGCAGCTAAATGCAGGAACCGGCGGAGGGAGCTGACCGACCGAC


TCCAGGCGGAGACAGATCAGTTGGAGGAAGAAAAAGCAGAGCTGGAGTCGGAGATCGCCG


AGCTCCAAAAGGAGAAGGAACGTCTGGAGTTTGTGCTGGTGGCCCACAAACCGGGCTGCA


AGATCCCCTACGAAGAGGGGCCCGGGCCGGGCCCGCTGGCGGAGGTGAGAGATTTGCCGG


GCTCAGCACCGGCTAAGGAAGATGGCTTCAGCTGGCTGCTGCCGCCCCCGCCACCACCGC


CCCTGCCCTTCCAGACCAGCCAAGACGCACCCCCCAACCTGACGGCTTCTCTCTTTACAC


ACAGTGAAGTTCAAGTCCTCGGCGACCCCTTCCCCGTTGTTAACCCTTCGTACACTTCTT


CGTTTGTCCTCACCTGCCCGGAGGTCTCCGCGTTCGCCGGCGCCCAACGCACCAGCGGCA


GTGACCAGCCTTCCGATCCCCTGAACTCGCCCTCCCTCCTCGCTCGGTGAACTCTTTAGA


CACACAAAACAAACAAACACATGGGGGAGAGAGACTTGGAAGAGGAGGAGGAGGAGGAGA


AGGAGGAGAGAGAGGGGAAGAGACAAAGTGGGTGTGTGGCCTCCCTGGCTCCTCCGTCTG


ACCCTCTGCGGCCACTGCGCCACTGCCATCGGACAGGAGGATTCCTTGTGTTTTGTCCTG


CCTCTTGTTTCTGTGCCCCGGCGAGGCCGGAGAGCTGGTGACTTTGGGGACAGGGGGTGG


GAAGGGGATGGACACCCCCAGCTGACTGTTGGCTCTCTGACGTCAACCCAAGCTCTGGGG


ATGGGTGGGGAGGGGGGCGGGTGACGCCCACCTTCGGGCAGTCCTGTGTGAGGATGAAGG


GACGGGGGTGGGAGGTAGGCTGTGGGGTGGGCTGGAGTCCTCTCCAGAGAGGCTCAACAA


GGAAAAATGCCACTCCCTACCCAATGTCTCCCACACCCACCCTTTTTTTGGGGTGCCCAG


GTTGGTTTCCCCTGCACTCCCGACCTTAGCTTATTGATCCCACATTTCCATGGTGTGAGA


TCCTCTTTACTCTGGGCAGAAGTGAGCCCCCCCTTAAAGGGAATTCGATGCCCCCCTAGA


ATAATCTCATCCCCCCACCCGACTTCTTTTGAAATGTGAACGTCCTTCCTTGACTGTCTA


GCCACTCCCTCCCAGAAAAACTGGCTCTGATTGGAATTTCTGGCCTCCTAAGGCTCCCCA


CCCCGAAATCAGCCCCCAGCCTTGTTTCTGATGACAGTGTTATCCCAAGACCCTGCCCCC


TGCCAGCCGACCCTCCTGGCCTTCCTCGTTGGGCCGCTCTGATTTCAGGCAGCAGGGGCT


GCTGTGATGCCGTCCTGCTGGAGTGATTTATACTGTGAAATGAGTTGGCCAGATTGTGGG


GTGCAGCTGGGTGGGGCAGCACACCTCTGGGGGGATAATGTCCCCACTCCCGAAAGCCTT


TCCTCGGTCTCCCTTCCGTCCATCCCCCTTCTTCCTCCCCTCAACAGTGAGTTAGACTCA


AGGGGGTGACAGAACCGAGAAGGGGGTGACAGTCCTCCATCCACGTGGCCTCTCTCTCTC


TCCTCAGGACCCTCAGCCCTGGCCTTTTTCTTTAAGGTCCCCCGACCAATCCCCAGCCTA


GGACGCCAACTTCTCCCACCCCTTGGCCCCTCACATCCTCTCCAGGAAGGCAGTGAGGGG


CTGTGACATTTTTCCGGAGAAGATTTCAGAGCTGAGGCTTTGGTACCCCCAAACCCCCAA


TATTTTTGGACTGGCAGACTCAAGGGGCTGGAATCTCATGATTCCATGCCCGAGTCCGCC


CATCCCTGACCATGGTTTTGGCTCTCCCACCCCGCCGTTCCCTGCGCTTCATCTCATGAG


GATTTCTTTATGAGGCAAATTTATATTTTTTAATATCGGGGGGTGGACCACGCCGCCCTC


CATCCGTGCTGCATGAAAAACATTCCACGTGCCCCTTGTCGCGCGTCTCCCATCCTGATC


CCAGACCCATTCCTTAGCTATTTATCCCTTTCCTGGTTTCCGAAAGGCAATTATATCTAT


TATGTATAAGTAAATATATTATATATGGATGTGTGTGTGTGCGTGCGCGTGAGTGTGTGA


GCGCTTCTGCAGCCTCGGCCTAGGTCACGTTGGCCCTCAAAGCGAGCCGTTGAATTGGAA


ACTGCTTCTAGAAACTCTGGCTCAGCCTGTCTCGGGCTGACCCTTTTCTGATCGTCTCGG


CCCCTCTGATTGTTCCCGATGGTCTCTCTCCCTCTGTCTTTTCTCCTCCGCCTGTGTCCA


TCTGACCGTTTTCACTTGTCTCCTTTCTGACTGTCCCTGCCAATGCTCCAGCTGTCGTCT


GACTCTGGGTTCGTTGGGGACATGAGATTTTATTTTTTGTGAGTGAGACTGAGGGATCGT


AGATTTTTACAATCTGTATCTTTGACAATTCTGGGTGCGAGTGTGAGAGTGTGAGCAGGG


CTTGCTCCTGCCAACCACAATTCAATGAATCCCCGACCCCCCTACCCCATGCTGTACTTG


TGGTTCTCTTTTTGTATTTTGCATCTGACCCCGGGGGGCTGGGACAGATTGGCAATGGGC


CGTCCCCTCTCCCCTTGGTTCTGCACTGTTGCCAATAAAAAGCTCTTAAAA


ACGC





FOSB Mouse DNA


ATAAATTCTTATTTTGACACTCACCAAAATAGTCACCTGGAAAACCCGCTTTTTGTGACA


AAGTACAGAAGGCTTGGTCACATTTAAATCACTGAGAACTAGAGAGAAATACTATCGCAA


ACTGTAATAGACATTACATCCATAAAAGTTTCCCCAGTCCTTATTGTAATATTGCACAGT


GCAATTGCTACATGGCAAACTAGTGTAGCATAGAAGTCAAAGCAAAAACAAACCAAAGAA


AGGAGCCACAAGAGTAAAACTGTTCAACAGTTAATAGTTCAAACTAAGCCATTGAATCTA


TCATTGGGATCGTTAAAATGAATCTTCCTACACCTTGCAGTGTATGATTTAACTTTTACA


GAACACAAGCCAAGTTTAAAATCAGCAGTAGAGATATTAAAATGAAAAGGTTTGCTAATA


GAGTAACATTAAATACCCTGAAGGAAAAAAAACCTAAATATCAAAATAACTGATTAAAAT


TCACTTGCAAATTAGCACACGAATATGCAACTTGGAAATCATGCAGTGTTTTATTTAAGA


AAACATAAAACAAAACTATTAAAATAGTTTTAGAGGGGGTAAAATCCAGGTCCTCTGCCA


GGATGCTAAAATTAGACTTCAGGGGAATTTTGAAGTCTTCAATTTTGAAACCTATTAAAA


AGCCCATGATTACAGTTAATTAAGAGCAGTGCACGCAACAGTGACACGCCTTTAGAGAGC


ATTACTGTGTATGAACATGTTGGCTGCTACCAGCCACAGTCAATTTAACAAGGCTGCTCA


GTCATGAACTTAATACAGAGAGAGCACGCCTAGGCAGCAAGCACAGCTTGCTGGGCCACT


TTCCTCCCTGTCGTGACACAATCAATCCGTGTACTTGGTGTATCTGAAGCGCACGCTGCA


CCGCGGCACTGCCCGGCGGGTTTCTGGGCGGGGAGCGATCCCCGCGTCGCCCCCCGTGAA


ACCGACAGAGCCTGGACTTTCAGGAGGTACAGCGGCGGTCTGAAGGGGATCTGGGATCTT


GCAGAGGGAACTTGCATCGAAACTTGGGCAGTTCTCCGAACCGGAGACTAAGCTTCCCCG


AGCAGCGCACTTTGGAGACGTGTCCGGTCTACTCCGGACTCGCATCTCATTCCACTCGGC


CATAGCCTTGGCTTCCCGGCGACCTCAGCGTGGTCACAGGGGCCCCCCTGTGCCCAGGGA


AATGTTTCAAGCTTTTCCCGGAGACTACGACTCCGGCTCCCGGTGTAGCTCATCACCCTC


CGCCGAGTCTCAGTACCTGTCTTCGGTGGACTCCTTCGGCAGTCCACCCACCGCCGCCGC


CTCCCAGGAGTGCGCCGGTCTCGGGGAAATGCCCGGCTCCTTCGTGCCAACGGTCACCGC


AATCACAACCAGCCAGGATCTTCAGTGGCTCGTGCAACCCACCCTCATCTCTTCCATGGC


CCAGTCCCAGGGGCAGCCACTGGCCTCCCAGCCTCCAGCTGTTGACCCTTATGACATGCC


AGGAACCAGCTACTCAACCCCAGGCCTGAGTGCCTACAGCACTGGCGGGGCAAGCGGAAG


TGGTGGGCCTTCAACCAGCACAACCACCAGTGGACCTGTGTCTGCCCGTCCAGCCAGAGC


CAGGCCTAGAAGACCCCGAGAAGAGACACTTACCCCAGAAGAAGAAGAAAAGCGAAGGGT


TCGCAGAGAGCGGAACAAGCTGGCTGCAGCTAAGTGCAGGAACCGTCGGAGGGAGCTGAC


AGATCGACTTCAGGCGGAAACTGATCAGCTTGAAGAGGAAAAGGCAGAGCTGGAGTCGGA


GATCGCCGAGCTGCAAAAAGAGAAGGAACGCCTGGAGTTTGTCCTGGTGGCCCACAAACC


GGGCTGCAAGATCCCCTACGAAGAGGGGCCGGGGCCAGGCCCGCTGGCCGAGGTGAGAGA


TTTGCCAGGGTCAACATCCGCTAAGGAAGACGGCTTCGGCTGGCTGCTGCCGCCCCCTCC


ACCACCCCCCCTGCCCTTCCAGAGCAGCCGAGACGCACCCCCCAACCTGACGGCTTCTCT


CTTTACACACAGTGAAGTTCAAGTCCTCGGCGACCCCTTCCCCGTTGTTAGCCCTTCGTA


CACTTCCTCGTTTGTCCTCACCTGCCCGGAGGTCTCCGCGTTCGCCGGCGCCCAACGCAC


CAGCGGCAGCGAGCAGCCGTCCGACCCGCTGAACTCGCCCTCCCTTCTTGCTCTGTAAAC


TCTTTAGACAAACAAAACAAACAAACCCGCAAGGAACAAGGAGGAGGAAGATGAGGAGGA


GAGGGGAGGAAGCAGTCCGGGGGTGTGTGTGTGGACCCTTTGACTCTTCTGTCTGACCAC


CTGCCGCCTCTGCCATCGGACATGACGGAAGGACCTCCTTTGTGTTTTGTGCTCCGTCTC


TGGTTTTCTGTGCCCCGGCGAGACCGGAGAGCTGGTGACTTTGGGGACAGGGGGTGGGGC


GGGGATGGACACCCCTCCTGCATATCTTTGTCCTGTTACTTCAACCCAACTTCTGGGGAT


AGATGGCTGGCTGGGTGGGTAGGGTGGGGTGCAACGCCCACCTTTGGCGTCTTGCGTGAG


GCTGGAGGGGAAAGGGTGCTGAGTGTGGGGTGCAGGGTGGGTTGAGGTCGAGCTGGCATG


CACCTCCAGAGAGACCCAACGAGGAAATGACAGCACCGTCCTGTCCTTCTTTTCCCCCAC


CCACCCATCCACCCTCAAGGGTGCAGGGTGACCAAGATAGCTCTGTTTTGCTCCCTCGGG


CCTTAGCTGATTAACTTAACATTTCCAAGAGGTTACAACCTCCTCCTGGACGAATTGAGC


CCCCGACTGAGGGAAGTCGATGCCCCCTTTGGGAGTCTGCTAACCCCACTTCCCGCTGAT


TCCAAAATGTGAACCCCTATCTGACTGCTCAGTCTTTCCCTCCTGGGAAAACTGGCTCAG


GTTGGATTTTTTTCCTCGTCTGCTACAGAGCCCCCTCCCAACTCAGGCCCGCTCCCACCC


CTGTGCAGTATTATGCTATGTCCCTCTCACCCTCACCCCCACCCCAGGCGCCCTTGGCCG


TCCTCGTTGGGCCTTACTGGTTTTGGGCAGCAGGGGGCGCTGCGACGCCCATCTTGCTGG


AGCGCTTTATACTGTGAATGAGTGGTCGGATTGCTGGGTGCGCCGGATGGGATTGACCCC


CAGCCCTCCAAAACTTTCCCTGGGCCTCCCCTTCTTCCACTTGCTTCCTCCCTCCCCTTG


ACAGGGAGTTAGACTCGAAAGGATGACCACGACGCATCCCGGTGGCCTTCTTGCTCAGGC


CCCAGACTTTTTCTCTTTAAGTCCTTCGCCTTCCCCAGCCTAGGACGCCAACTTCTCCCC


ACCCTGGGAGCCCCGCATCCTCTCACAGAGGTCGAGGCAATTTTCAGAGAAGTTTTCAGG


GCTGAGGCTTTGGCTCCCCTATCCTCGATATTTGAATCCCCAAATATTTTTGGACTAGCA


TACTTAAGAGGGGGCTGAGTTCCCACTATCCCACTCCATCCAATTCCTTCAGTCCCAAAG


ACGAGTTCTGTCCCTTCCCTCCAGCTTTCACCTCGTGAGAATCCCACGAGTCAGATTTCT


ATTTTTTAATATTGGGGAGATGGGCCCTACCGCCCGTCCCCCGTGCTGCATGGAACATTC


CATACCCTGTCCTGGGCCCTAGGTTCCAAACCTAATCCCAAACCCCACCCCCAGCTATTT


ATCCCTTTCCTGGTTCCCAAAAAGCACTTATATCTATTATGTATAAATAAATATATTATA


TATGAGTGTGCGTGTGTGTGCGTGTGCGTGCGTGCGTGCGTGCGTGCGAGCTTCCTTGTT


TTCAAGTGTGCTGTGGAGTTCAAAATCGCTTCTGGGGATTTGAGTCAGACTTTCTGGCTG


TCCCTTTTTGTCACCTTTTTGTTGTTGTCTCGGCTCCTCTGGCTGTTGGAGACAGTCCCG


GCCTCTCCCTTTATCCTTTCTCAAGTCTGTCTCGCTCAGACCACTTCCAACATGTCTCCA


CTCTCAATGACTCTGATCTCCGGTNTGTCTGTTAATTCTGGATTTGTCGGGGACATGCAA


TTTTACTTCTGTAAGTAAGTGTGACTGGGTGGTAGATTTTTTACAATCTATATCGTTGAG


AATTC





FOSB Mouse Protein


MFQAFPGDYDSGSRCSSSPSAESQYLSSVDSFGSPPTAAASQECAGLGEMPGSFVPTVTA


ITTSQDLQWLVQPTLISSMAQSQGQPLASQPPAVDPYDMPGTSYSTPGLSAYSTGGASGS


GGPSTSTTTSGPVSARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRRELT


DRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPGCKIPYEEGPGPGPLAEVRD


LPGSTSAKEDGFGWLLPPPPPPPLPFQSSRDAPPNLTASLFTHSEVQVLGDPFPVVSPSY


TSSFVLTCPEVSAFAGAQRTSGSEQPSDPLNSPSLLAL





Dusp1 Human DNA


TTTGGGCTGTGTGTGCGACGCGGGTCGGAGGGGCAGTCGGGGGAACCGCGAAGAAGCCGA


GGAGCCCGGAGCCCCGCGTGACGCTCCTCTCTCAGTCCAAAAGCGGCTTTTGGTTCGGCG


CAGAGAGACCCGGGGGTCTAGCTTTTCCTCGAAAAGCGCCGCCCTGCCCTTGGCCCCGAG


AACAGACAAAGAGCACCGCAGGGCCGATCACGCTGGGGGCGCTGAGGCCGGCCATGGTCA


TGGAAGTGGGCACCCTGGACGCTGGAGGCCTGCGGGCGCTGCTGGGGGAGCGAGCGGCGC


AATGCCTGCTGCTGGACTGCCGCTCCTTCTTCGCTTTCAACGCCGGCCACATCGCCGGCT


CTGTCAACGTGCGCTTCAGCACCATCGTGCGGCGCCGGGCCAAGGGCGCCATGGGCCTGG


AGCACATCGTGCCCAACGCCGAGCTCCGCGGCCGCCTGCTGGCCGGCGCCTACCACGCCG


TGGTGTTGCTGGACGAGCGCAGCGCCGCCCTGGACGGCGCCAAGCGCGACGGCACCCTGG


CCCTGGCGGCCGGCGCGCTCTGCCGCGAGGCGCGCGCCGCGCAAGTCTTCTTCCTCAAAG


GAGGATACGAAGCGTTTTCGGCTTCCTGCCCGGAGCTGTGCAGCAAACAGTCGACCCCCA


TGGGGCTCAGCCTTCCCCTGAGTACTAGCGTCCCTGACAGCGCGGAATCTGGGTGCAGTT


CCTGCAGTACCCCACTCTACGATCAGGGTGGCCCGGTGGAAATCCTGCCCTTTCTGTACC


TGGGCAGTGCGTATCACGCTTCCCGCAAGGACATGCTGGATGCCTTGGGCATAACTGCCT


TGATCAACGTCTCAGCCAATTGTCCCAACCATTTTGAGGGTCACTACCAGTACAAGAGCA


TCCCTGTGGAGGACAACCACAAGGCAGACATCAGCTCCTGGTTCAACGAGGCCATTGACT


TCATAGACTCCATCAAGAATGCTGGAGGAAGGGTGTTTGTCCACTGCCAGGCAGGCATTT


CCCGGTCAGCCACCATCTGCCTTGCTTACCTTATGAGGACTAATCGAGTCAAGCTGGACG


AGGCCTTTGAGTTTGTGAAGCAGAGGCGAAGCATCATCTCTCCCAACTTCAGCTTCATGG


GCCAGCTGCTGCAGTTTGAGTCCCAGGTGCTGGCTCCGCACTGTTCGGCAGAGGCTGGGA


GCCCCGCCATGGCTGTGCTCGACCGAGGCACCTCCACCACCACCGTGTTCAACTTCCCCG


TCTCCATCCCTGTCCACTCCACGAACAGTGCGCTGAGCTACCTTCAGAGCCCCATTACGA


CCTCTCCCAGCTGCTGAAAGGCCACGGGAGGTGAGGCTCTTCACATCCCATTGGGACTCC


ATGCTCCTTGAGAGGAGAAATGCAATAACTCTGGGAGGGGCTCGAGAGGGCTGGTCCTTA


TTTATTTAACTTCACCCGAGTTCCTCTGGGTTTCTAAGCAGTTATGGTGATGACTTAGCG


TCAAGACATTTGCTGAACTCAGCACATTCGGGACCAATATATAGTGGGTACATCAAGTCC


ATCTGACAAAATGGGGCAGAAGAGAAAGGACTCAGTGTGTGATCCGGTTTCTTTTTGCTC


GCCCCTGTTTTTTGTAGAATCTCTTCATGCTTGACATACCTACCAGTATTATTCCCGACG


ACACATATACATATGAGAATATACCTTATTTATTTTTGTGTAGGTGTCTGCCTTCACAAA


TGTCATTGTCTACTCCTAGAAGAACCAAATACCTCAATTTTTGTTTTTGAGTACTGTACT


ATCCTGTAAATATATCTTAAGCAGGTTTGTTTTCAGCACTGATGGAAAATACCAGTGTTG


GGTTTTTTTTTAGTTGCCAACAGTTGTATGTTTGCTGATTATTTATGACCTGAAATAATA


TATTTCTTCTTCTAAGAAGACATTTTGTTACATAAGGATGACTTTTTTATACAATGGAAT


AAATTATGGCATTTCTATTG





Dusp1 Mouse DNA


CGGCGGGAGGAAAGCGCGGTGAAGCCAGATTAGGAGCAGCGAGCACTTGGGGACTTAGGG


CCACAGGACACCGCACAAGATCGACCGACTTTTTCTGGAGAACCGCAGAACGGGCACGCT


GGGGTCGCTGGGGCTGGCCATGGTGATGGAGGTGGGCATCCTGGACGCCGGGGGGCTGCG


CGCGCTGCTGCGAGAGGGCGCCGCGCAGTGCCTGTTGTTGGATTGTCGCTCCTTCTTCGC


TTTCAACGCCGGCCACATCGCGGGCTCAGTGAACGTGCGCTTCAGCACCATCGTGCGGCG


CCGCGCCAAGGGCGCCATGGGCCTGGAGCATATCGTGCCCAACGCTGAACTGCGTGGCCG


CCTGCTGGCCGGAGCCTACCACGCCGTGGTGCTGCTGGACGAGCGCAGCGCCTCCCTGGA


CGGCGCCAAGCGCGACGGCACCCTGGCCCTGGCCGCGGGCGCGCTCTGCCGAGAGGCGCG


CTCCACTCAAGTCTTCTTTCTCCAAGGAGGATATGAAGCGTTTTCGGCTTCCTGCCCTGA


GCTGTGCAGCAAACAGTCCACCCCCACGGGGCTCAGCCTCCCCCTGAGTACTAGTGTGCC


TGACAGTGCAGAATCCGGATGCAGCTCCTGTAGTACCCCTCTCTACGATCAGGGGGGCCC


AGTGGAGATCCTGTCCTTCCTGTACCTGGGCAGTGCCTATCACGCTTCTCGGAAGGATAT


GCTTGACGCCTTGGGCATCACCGCCTTGATCAACGTCTCAGCCAATTGTCCTAACCACTT


TGAGGGTCACTACCAGTACAAGAGCATCCCTGTGGAGGACAACCACAAGGCAGACATCAG


CTCCTGGTTCAACGAGGCTATTGACTTCATAGACTCCATCAAGGATGCTGGAGGGAGAGT


GTTTGTTCATTGCCAGGCCGGCATCTCCCGGTCAGCCACCATCTGCCTTGCTTACCTCAT


GAGGACTAACCGGGTAAAGCTGGACGAGGCCTTTGAGTTTGTGAAGCAGAGGCGGAGTAT


CATCTCCCCGAACTTCAGCTTCATGGGCCAGCTGCTGCAGTTTGAGTCCCAAGTGCTAGC


CCCTCACTGCTCTGCTGAAGCTGGGAGCCCTGCCATGGCTGTCCTTGACCGGGGCACCTC


TACTACCACAGTCTTCAACTTCCCTGTTTCCATCCCCGTCCACCCCACGAACAGTGCCCT


GAACTACCTTAAAAGCCCCATCACCACCTCTCCAAGCTGCTGAAGGGCAAGGGGAGGTGT


GGAGTTTCACTTGCCACCGGGTCGCCACTCCTCCTGTGGGAGGAGCAATGCAATAACTCT


GGGAGAGGCTCATGGGAGCTGGTCCTTATTTATTTAACACCCCCCTCACCCCCCAACTCC


TCCTGAGTTCCACTGAGTTCCTAAGCAGTCACAACAATGACTTGACCGCAAGACATTTGC


TGAACTCGGCACATTCGGGACCAATATATTGTGGGTACATCAAGTCCCTCTGACAAAACA


GGGCAGAAGAGAAAGGACTCTGTTTGAGGCAGTTTCTTCGCTTGCCTGTTTTTTTTTTCT


AGAAACTTCATGCTTGACACACCCACCAGTATTAACCATTCCCGATGACATGCGCGTATG


AGAGTTTTTACCTTTATTTATTTTTGTGTAGGTCGGTGGTTTCTGCCTTCACAAATGTCA


TTGTCTACTCATAGAAGAACCAAATACCTCAATTTTGTGTTTGCGTACTGTACTATCTTG


TAAATAGACCCAGAGCAGGTTTGCTTTCGGCACTGACAGACAAAGCCAGTGTAGGTTTGT


AGCTTTCAGTTATCGACAGTTGTATGTTTGTTTATTTATGATCTGAAGTAATATATTTCT


TCTTCTGTGAAGACATTTTGTTACTGGGATGACTTTTTTTATACAACAGAATAAATTATG


ACGTTTCTATTGA





Dusp1 Mouse Protein


MVMEVGILDAGGLRALLREGAAQCLLLDCRSFFAFNAGHIAGSVNVRFSTIVRRRAKGAM


GLEHIVPNAELRGRLLAGAYHAVVLLDERSASLDGAKRDGTLALAAGALCREARSTQVFF


LQGGYEAFSASCPELCSKQSTPTGLSLPLSTSVPDSAESGCSSCSTPLYDQGGPVEILSF


LYLGSAYHASRKDMLDALGITALINVSANCPNHFEGHYQYKSIPVEDNHKADISSWFNEA


IDFIDSIKDAGGRVFVHCQAGISRSATICLAYLMRTNRVKLDEAFEFVKQRRSIISPNFS


FMGQLLQFESQVLAPHCSAEAGSPAMAVLDRGTSTTTVFNFPVSIPVHPTNSALNYLKSP


ITTSPSC





Jun Human DNA


ATGACTGCAAAGATGGAAACGACCTTCTATGACGATGCCCTCAACGCCTCGTTCCTCCCG


TCCGAGAGCGGACCTTATGGCTACAGTAACCCCAAGATCCTGAAACAGAGCATGACCCTG


AACCTGGCCGACCCAGTGGGGAGCCTGAAGCCGCACCTCCGCGCCAAGAACTCGGACCTC


CTCACCTCGCCCGACGTGGGGCTGCTCAAGCTGGCGTCGCCCGAGCTGGAGCGCCTGATA


ATCCAGTCCAGCAACGGGCACATCACCACCACGCCGACCCCCACCCAGTTCCTGTGCCCC


AAGAACGTGACAGATGAGCAGGAGGGCTTCGCCGAGGGCTTCGTGCGCGCCCTGGCCGAA


CTGCACAGCCAGAACACGCTGCCCAGCGTCACGTCGGCGGCGCAGCCGGTCAACGGGGCA


GGCATGGTGGCTCCCGCGGTAGCCTCGGTGTCAGGGGGCAGCGGCAGCGGCGGCTTCAGC


GCCAGCCTGCACAGCGAGCCGCCGGTCTACGCAAACCTCAGCAACTTCAACCCAGGCGCG


CTGAGCAGCGGCGGCGGGGCGCCCTCCTACGGCGCGGCCGGCCTGGCCTTTCCCGCGCAA


CCCCAGCAGCAGCAGCAGCCGCCGCACCACCTGCCCCAGCAGATGCCCGTGCAGCACCCG


CGGCTGCAGGCCCTGAAGGAGGAGCCTCAGACAGTGCCCGAGATGCCCGGCGAGACACCG


CCCCTGTCCCCCATCGACATGGAGTCCCAGGAGCGGATCAAGGCGGAGAGGAAGCGCATG


AGGAACCGCATCGCTGCCTCCAAGTGCCGAAAAAGGAAGCTGGAGAGAATCGCCCGGCTG


GAGGAAAAAGTGAAAACCTTGAAAGCTCAGAACTCGGAGCTGGCGTCCACGGCCAACATG


CTCAGGGAACAGGTGGCACAGCTTAAACAGAAAGTCATGAACCACGTTAACAGTGGGTGC


CAACTCATGCTAACGCAGCAGTTGCAAACATTTTGA





Jun Mouse DNA


GTGACGACTGGTCAGCACCGCCGGAGAGCCGCTGTTGCTGGGACTGGTCTGCGGGCTCCA


AGGAACCGCTGCTCCCCGAGAGCGCTCCGTGAGTGACCGCGACTTTTCAAAGCTCGGCAT


CGCGCGGGAGCCTACCAACGTGAGTGCTAGCGGAGTCTTAACCCTGCGCTCCCTGGAGCA


ACTGGGGAGGAGGGCTCAGGGGGAAGCACTGCCGTCTGGAGCGCACGCTCTAAACAAACT


TTGTTACAGAAGCGGGGACGCGCGGGTATCCCCCCGCTTCCCGGCGCGCTGTTGCGGCCC


CGAAACTTCTGCGCACAGCCCAGGCTAACCCCGCGTGAAGTGACGGACCGTTCTATGACT


GCAAAGATGGAAACGACCTTCTACGACGATGCCCTCAACGCCTCGTTCCTCCAGTCCGAG


AGCGGTGCCTACGGCTACAGTAACCCTAAGATCCTAAAACAGAGCATGACCTTGAACCTG


GCCGACCCGGTGGGCAGTCTGAAGCCGCACCTCCGCGCCAAGAACTCGGACCTTCTCACG


TCGCCCGACGTCGGGCTGCTCAAGCTGGCGTCGCCGGAGCTGGAGCGCCTGATCATCCAG


TCCAGCAATGGGCACATCACCACTACACCGACCCCCACCCAGTTCTTGTGCCCCAAGAAC


GTGACCGACGAGCAGGAGGGCTTCGCCGAGGGCTTCGTGCGCGCCCTGGCTGAACTGCAT


AGCCAGAACACGCTTCCCAGTGTCACCTCCGCGGCACAGCCGGTCAGCGGGGCGGGCATG


GTGGCTCCCGCGGTGGCCTCAGTAGCAGGCGCTGGCGGCGGTGGTGGCTACAGCGCCAGC


CTGCACAGTGAGCCTCCGGTCTACGCCAACCTCAGCAACTTCAACCCGGGTGCGCTGAGC


TGCGGCGGTGGGGCGCCCTCCTATGGCGCGGCCGGGCTGGCCTTTCCCTCGCAGCCGCAG


CAGCAGCAGCAGCCGCCTCAGCCGCCGCACCACTTGCCCCAACAGATCCCGGTGCAGCAC


CCGCGGCTGCAAGCCCTGAAGGAAGAGCCGCAGACCGTGCCGGAGATGCCGGGAGAGACG


CCGCCCCTGTCCCCTATCGACATGGAGTCTCAGGAGCGGATCAAGGCAGAGAGGAAGCGC


ATGAGGAACCGCATTGCCGCCTCCAAGTGCCGGAAAAGGAAGCTGGAGCGGATCGCTCGG


CTAGAGGAAAAAGTGAAAACCTTGAAAGCGCAAAACTCCGAGCTGGCATCCACGGCCAAC


ATGCTCAGGGAACAGGTGGCACAGCTTAAGCAGAAAGTCATGAACCACGTTAACAGTGGG


TGCCAACTCATGCTAACGCAGCAGTTGCAAACGTTTTGAGAACAGACTGTCAGGGCTGAG


GGGCAATGGAAGAAAAAAAATAACAGAGACAAACTTGAGAACTTGACTGGAAGCGACAGA


GAAAAAAAAAGTGTCCGAGTACTGAAGCCAAGGGTACACAAGATGGACTGGGTTGCGACC


TGACGGCGCCCCCAGTGTGCTGGAGTGGGAAGGACGTGGCGCGCCTGGCTTTGGCGTGGA


GCCAGAGAGCAGAGGCCTATTGGCCGGCAGACTTTGCGGACGGGCTGTGCCCGCGCGACC


AGAACGATGGACTTTTCGTTAACATTGACCAAGAACTGCATGGACCTAACATTCGATCTC


ATTCAGTATTAAAGGGGGGTGGGAGGGGTTACAAACTGCAATAGAGACTGTAGATTGCTT


CTGTAGTGCTCCTTAACACAAAGCAGGGAGGGCTGGGAAGGGGGGGGAGGCTTGTAAGTG


CCAGGCTAGACTGCAGATGAACTCCCCTGGCCTGCCTCTCTCAACTGTGTATGTACATAT


ATTTTTTTTTTTAATTTGATGAAAGCTGATTACTGTCAATAAACAGCTTCCGCCTTTGTA


AGTTATTCCATGTTTGTTTGGGTGTCCTGCCCAGTGTTTGTAAATAAGAGATTTGAAGCA


TTCTGAGTTTACCATTTGTAATAAAGTATATAATTTTTTTATGTTTTGTTTCTGAAAATT


TCCAGAAAGGATATTTAAGAAAAATACAATAAACTATTGAAAAGTAGCCCCCAACCTCTT


TGCTGCATTATCCATAGATAATGATAGCTAGATGAAGTGACAGCTGAGTGCCCAATATAC


TAGGGTGAAAGCTGTGTCCCCTGTCTGATTGTAGGAATAGATACCCTGCATGCTATCATT


GGCTCATACTCTCTCCCCCGGCAACACACAAGTCCAGACTGTACACCAGAAGATGGTGTG


GTGTTTCTTAAGGCTGGAAGAAGGGCTGTTGCAAGGGGAGAGGGTCAGCCCGCTGGAAAG


CAGACACTTTGGTTGAAAGCTGTATGAAGTGGCATGTGCTGTGATCATTTATAATCATAG


GAAAGATTTAGTAATTAGCTGTTGATTCTCAAAGCAGGGACCCATGGAAGTTTTTAACAA


AAGGTGTCTCCTTCCAACTTTGAATCTGACAACTCCTAGAAAAAGATGACCTTTGCTTGT


GCATATTTATAATAGCGTTCGTTATCACAATAAATGTATTCAAAT





Jun Mouse Protein


MTAKMETTFYDDALNASFLQSESGAYGYSNPKILKQSMTLNLADPVGSLKPHLRAKNSDL


LTSPDVGLLKLASPELERLIIQSSNGHITTTPTPTQFLCPKNVTDEQEGFAEGFVRALAE


LHSQNTLPSVTSAAQPVSGAGMVAPAVASVAGAGGGGGYSASLHSEPPVYANLSNFNPGA


LSSGGGAPSYGAAGLAFPSQPQQQQQPPQPPHHLPQQIPVQHPRLQALKEEPQTVPEMPG


ETPPLSPIDMESQERIKAERKRMRNRIAASKCRKRKLERIARLEEKVKTLKAQNSELAST


ANMLREQVAQLKQKVMNHVNSGCQLMLTQQLQTF





Dusp6 Human DNA


CCAGCCTCGGAGGGAGGGATTAGAAGCCGCTAGACTTTTTTTCCTCCCCTCTCAGTAGCA


CGGAGTCCGAATTAATTGGATTTCATTCACTGGGGAGGAACAAAAACTATCTGGGCAGCT


TCATTGAGAGAGATTCATTGACACTAAGAGCCAGCGCTGCAGCTGGTGCAGAGAGAACCT


CCGGCTTTGACTTCTGTCTCGTCTGCCCCAAGGCCGCTAGCCTCGGCTTGGGAAGGCGAG


GCGGAATTAAACCCCGCTCCGAGAGCGCACGTTCGCGCGCGGTGCGTCGGCCATTGCCTG


CCCCGAGGGGCGTCTGGTAGGCACCCCGCCCTCTCCCGCAGCTCGACCCCCATGATAGAT


ACGCTCAGACCCGTGCCCTTCGCGTCGGAAATGGCGATCAGCAAGACGGTGGCGTGGCTC


AACGAGCAGCTGGAGCTGGGCAACGAGCGGCTGCTGCTGATGGACTGCCGGCCGCAGGAG


CTATACGAGTCGTCGCACATCGAGTCGGCCATCAACGTGGCCATCCCGGGCATCATGCTG


CGGCGCCTGCAGAAGGGTAACCTGCCGGTGCGCGCGCTCTTCACGCGCGGCGAGGACCGG


GACCGCTTCACCCGGCGCTGTGGCACCGACACAGTGGTGCTCTACGACGAGAGCAGCAGC


GACTGGAACGAGAATACGGGCGGCGAGTCGTTGCTCGGGCTGCTGCTCAAGAAGCTCAAG


GACGAGGGCTGCCGGGCGTTCTACCTGGAAGGTGGCTTCAGTAAGTTCCAAGCCGAGTTC


TCCCTGCATTGCGAGACCAATCTAGACGGCTCGTGTAGCAGCAGCTCGCCGCCGTTGCCA


GTGCTGGGGCTCGGGGGCCTGCGGATCAGCTCTGACTCTTCCTCGGACATCGAGTCTGAC


CTTGACCGAGACCCCAATAGTGCAACAGACTCGGATGGTAGTCCGCTGTCCAACAGCCAG


CCTTCCTTCCCAGTGGAGATCTTGCCCTTCCTCTACTTGGGCTGTGCCAAAGACTCCACC


AACTTGGACGTGTTGGAGGAATTCGGCATCAAGTACATCTTGAACGTCACCCCCAATTTG


CCGAATCTCTTTGAGAACGCAGGAGAGTTTAAATACAAGCAAATCCCCATCTCGGATCAC


TGGAGCCAAAACCTGTCCCAGTTTTTCCCTGAGGCCATTTCTTTCATAGATGAAGCCCGG


GGCAAGAACTGTGGTGTCTTGGTACATTGCTTGGCTGGCATTAGCCGCTCAGTCACTGTG


ACTGTGGCTTACCTTATGCAGAAGCTCAATCTGTCGATGAACGATGCCTATGACATTGTC


AAAATGAAAAAATCCAACATATCCCCTAACTTCAACTTCATGGGTCAGCTGCTGGACTTC


GAGAGGACGCTGGGACTCAGCAGCCCATGTGACAACAGGGTTCCAGCACAGCAGCTGTAT


TTTACCACCCCTTCCAACCAGAATGTATACCAGGTGGACTCTCTGCAATCTACGTGAAAG


ACCCCACACCCCTCCTTGCTGGAATGTGTCTGGCCCTTCAGCAGTTTCTCTTGGCAGCAT


CAGCTGGGCTGCTTTCTTTGTGTGTGGCCCCAGGTGTCAAAATGACACCAGCTGTCTGTA


CTAGACAAGGTTACCAAGTGCGGAATTGGTTAATACTAACAGAGAGATTTGCTCCATTCT


CTTTGGAATAACAGGACATGCTGTATAGATACAGGCAGTAGGTTTGCTCTGTACCCATGT


GTACAGCCTACCCATGCAGGGACTGGGATTCGAGGACTTCCAGGCGCATAGGGTAGAACC


AAATGATAGGGTAGGAGCATGTGTTCTTTAGGGCCTTGTAAGGCTGTTTCCTTTTGCATC


TGGAACTGACTATATAATTGTCTTCAATGAAGACTAATTCAATTTTGCATATAGAGGAGC


CAAAGAGAGATTTCAGCTCTGTATTTGTGGTATCAGTTTGGAAAAAAAAATCTGATACTC


CATTTGATTATTGTAAATATTTGATCTTGAATCACTTGACAGTGTTTGTTTGAATTGTGT


TTGTTTTTTCCTTTGATGGGCTTAAAAGAAATTATCCAAAGGGAGAAAGAGCAGTATGCC


ACTTCTTAA





Dusp6 Mouse DNA


GATCCATTGAGGAGCTGCCTCGCACAGGGGGTGTGCTCTCGCGGAGTCCTAGGGACTGTG


AGCAAACCCAGTCTTGAATAATCCGGCGAGAAACACCGGGTTGGATCCGAGGTGCAGCCT


CAGAGGGAAGGATTAAGAGCCGCTAGACTTTTTTTCTTTTCCCTTTTTCTCCTCTCAGTG


GCACGGAGTCCGAATTAATTGGATTTCATTCACTGGGTAGGAACAAAACTGGGCACCTTC


ATTCAGAGAGAGAGATTCATTGACTCGGAGAGTGATCTGGTGCAGAGGGACCACCGACTT


GACTTCTGTGTCGCTTTCCCTAACCGCTAGCCTCGGCTTGGGAAAGGCGAGGCGGAATCA


AACCCCGCTCCGAGAGCGGGAGCTTCGCGCAGCGTGCTCGGCCTATGCCTGCCTCGAGGG


GCGTCTGCTAGGCACCCCGCCTTCTCCTGCAGCTCGACCCCCATGATAGATACGCTCAGA


CCCGTGCCCTTCGCGTCGGAAATGGCGATCTGCAAGACGGTGTCGTGGCTCAACGAGCAG


CTGGAGCTGGGCAACGAACGGCTTCTGCTGATGGACTGCCGACCACAGGAGCTGTACGAG


TCGTCACACATCGAATCTGCCATTAATGTGGCCATCCCCGGCATCATGCTGCGGCGTCTG


CAGAAGGGCAACCTGCCCGTGCGTGCGCTCTTCACGCGCTGCGAGGACCGGGACCGCTTT


ACCAGGCGCTGCGGCACCGACACCGTGGTGCTGTACGACGAGAATAGCAGCGACTGGAAT


GAGAACACTGGTGGAGAGTCGGTCCTCGGGCTGCTGCTCAAGAAACTCAAAGACGAGGGC


TGCCGGGCGTTCTACCTGGAAGGTGGCTTCAGTAAGTTCCAGGCCGAGTTCGCCCTGCAC


TGCGAGACCAATCTAGACGGCTCGTGCAGCAGCAGTTCCCCGCCTTTGCCAGTGCTGGGG


CTCGGGGGCCTGCGGATCAGCTCGGACTCTTCCTCGGACATTGAGTCTGACCTTGACCGA


GACCCCAATAGTGCAACGGACTCTGATGGCAGCCCGCTGTCCAACAGCCAGCCTTCCTTC


CCGGTGGAGATTTTGCCCTTCCTTTACCTGGGCTGTGCCAAGGACTCGACCAACTTGGAC


GTGTTGGAAGAGTTTGGCATCAAGTACATCTTGAATGTCACCCCCAATTTGCCCAATCTG


TTTGAGAATGCGGGCGAGTTCAAATACAAGCAAATTCCTATCTCGGATCACTGGAGCCAA


AACCTGTCCCAGTTTTTCCCTGAGGCCATTTCTTTCATAGATGAAGCCCGAGGCAAAAAC


TGTGGTGTCCTGGTGCATTGCTTGGCAGGTATCAGCCGCTCTGTCACCGTGACAGTGGCG


TACCTCATGCAGAAGCTCAACCTGTCCATGAACGATGCTTACGACATTGTTAAGATGAAG


AAGTCCAACATCTCCCCCAACTTCAACTTCATGGGCCAGCTGCTTGACTTCGAAAGGACC


CTGGGACTGAGCAGCCCTTGTGACAACCGTGTCCCCACTCCGCAGCTGTACTTCACCACG


CCCTCCAACCAGAACGTCTACCAGGTGGACTCCCTGCAGTCTACGTGAAAGGCACCCACC


TCTCCTAGCCGGGAGTTGTCCCCATTCCTTCAGTTCCTCTTGAGCAGCATCGACCAGGCT


GCTTTCTTTCTGTGTGTGGCCCCGGGTGTCAAAAGTGTCACCAGCTGTCTGTGTTAGACA


AGGTTGCCAAGTGCAAAATTGGTTATTACGGAGGGAGAGATTTGCTCCATTCATTGTTTT


TTTGGAAGGACAGGACATGCTGTCTCTAGATCCAGCAATAGGTTTGCTTCTGTACCCCAG


CCTACCCAAGCAGGGACTGGACATCCATCCAGATAGAGGGTAGCATAGGAATAGGGACAG


GAGCATCTGTTCTTTAAGGCCTTGTATGGCTGTTTCCTGTTGCATCTGGAACTAACTATA


TATATTGTCTTCAGTGAAGACTGATTCAACTTTGGGTATAGTGGAGCCAAAGAGATTTTT


AGCTCTGTATTTGCGGTATCGGTTTAGAAGACAAAAAAAATTAAAACCTGATACTTTTAT


CTGATTATTGTAAATATTTGATCTTCAATCACTTGACAGTGTTTGTTTGGCTTGTATTTG


TTTTTTATCTTTGGGCTTAAAAGAGATCCAAAGAGAGAAAGAGCAGTATGCCACTTCTTA


GAACAAAAGTATAAGGAAAAAAATGTTCTTTTTAATCCAAAGGGTATATTTGCAGCATGC


TTGACCTTGATGTACCAATTCTGACGGCATTTTCGTGGATATTATTATCACTAAGACTTT


GTTATGATGAGGTCTTCAGTCTCTTTCATATATCTTCCTTGTAACTTTTTTTTTCCTCTT


AATGTAGTTTTGACTCTGCCTTACCTTTGTAAATATTTGGCTTACAGTGTCTCAAGGGGT


ATTTTGGAAAGACACCAAAATTGTGGGTTCACTTTTTTTTTTTTTTTAAATAACTTCAGC


TGTGCTAAACAGCATATTACCTCTGTACAAAATTCTTCAGGGAGTGTCACCTCAAATGCA


ATACTTTGGGTTGGTTTCTTTCCTTTTAAAAAAAAAATACGAAACTGGAAGTGTGTGTAT


GTGTGCGAGTATGAGCGCCCATTTGGTGGATGCAACAGGTTGAGAGGAAGGGAGAATTAA


CTTGCTCCATGATGTTCGTGGTGTAAAGTTTTGAGCTGGAATTTATTATAAGAATGTAAA


ACCTTAAATTATTAATAAATAACTATTTTGGCT





Dusp6 Mouse Protein


MIDTLRPVPFASEMAICKTVSWLNEQLELGNERLLLMDCRPQELYESSHIESAINVAIPG


IMLRRLQKGNLPVRALFTRCEDRDRFTRRCGTDTVVLYDENSSDWNENTGGESVLGLLLK


KLKDEGCRAFYLEGGFSKFQAEFALHCETNLDGSCSSSSPPLPVLGLGGLRISSDSSSDI


ESDLDRDPNSATDSDGSPLSNSQPSFPVEILPFLYLGCAKDSTNLDVLEEFGIKYILNVT


PNLPNLFENAGEFKYKQIPISDHWSQNLSQFFPEAISFIDEARGKNCGVLVHCLAGISRS


VTVTVAYLMQKLNLSMNDAYDIVKMKKSNISPNFNFMGQLLDFERTLGLSSPCDNRVPTP


QLYFTTPSNQNVYQVDSLQST





Cdk1 Human DNA


GGGGGGGGGGGGCACTTGGCTTCAAAGCTGGCTCTTGGAAATTGAGCGGAGACGAGCGGC


TTGTTGTAGCTGCCGTGCGGCCGCCGCGGAATAATAAGCCGGGATCTACCATACCATTGA


CTAACTATGGAAGATTATACCAAAATAGAGAAAATTGGAGAAGGTACCTATGGAGTTGTG


TATAAGGGTAGACACAAAACTACAGGTCAAGTGGTAGCCATGAAAAAAATCAGACTAGAA


AGTGAAGAGGAAGGGGTTCCTAGTACTGCAATTCGGGAAATTTCTCTATTAAAGGAACTT


CGTCATCCAAATATAGTCAGTCTTCAGGATGTGCTTATGCAGGATTCCAGGTTATATCTC


ATCTTTGAGTTTCTTTCCATGGATCTGAAGAAATACTTGGATTCTATCCCTCCTGGTCAG


TACATGGATTCTTCACTTGTTAAGAGTTATTTATACCAAATCCTACAGGGGATTGTGTTT


TGTCACTCTAGAAGAGTTCTTCACAGAGACTTAAAACCTCAAAATCTCTTGATTGATGAC


AAAGGAACAATTAAACTGGCTGATTTTGGCCTTGCCAGAGCTTTTGGAATACCTATCAGA


GTATATACACATGAGGTAGTAACACTCTGGTACAGATCTCCAGAAGTATTGCTGGGGTCA


GCTCGTTACTCAACTCCAGTTGACATTTGGAGTATAGGCACCATATTTGCTGAACTAGCA


ACTAAGAAACCACTTTTCCATGGGGATTCAGAAATTGATCAACTCTTCAGGATTTTCAGA


GCTTTGGGCACTCCCAATAATGAAGTGTGGCCAGAAGTGGAATCTTTACAGGACTATAAG


AATACATTTCCCAAATGGAAACCAGGAAGCCTAGCATCCCATGTCAAAAACTTGGATGAA


AATGGCTTGGATTTGCTCTCGAAAATGTTAATCTATGATCCAGCCAAACGAATTTCTGGC


AAAATGGCACTGAATCATCCATATTTTAATGATTTGGACAATCAGATTAAGAAGATGTAG


CTTTCTGACAAAAAGTTTCCATATGTTATG





Cdk1 Mouse DNA


TCCGTCGTAACCTGTTGAGTAACTATGGAAGACTATATCAAAATAGAGAAAATTGGAGAA


GGTACTTACGGTGTGGTGTATAAGGGTAGACACAGAGTCACTGGCCAGATAGTGGCCATG


AAGAAGATCAGACTTGAAAGCGAGGAAGAAGGAGTGCCCAGTACTGCAATTCGGGAAATC


TCTCTATTAAAAGAACTTCGACATCCAAATATAGTCAGCCTGCAGGATGTGCTCATGCAG


GACTCCAGGCTGTATCTCATCTTTGAGTTCCTGTCCATGGACCTCAAGAAGTACCTGGAC


TCCATCCCTCCTGGGCAGTTCATGGATTCTTCACTCGTTAAGAGTTACTTACACCAAATC


CTCCAGGGAATTGTGTTTTGCCACTCCCGGCGAGTTCTTCACAGAGACTTGAAACCTCAA


AATCTATTGATTGATGACAAAGGAACAATCAAACTGGCTGATTTCGGCCTTGCCAGAGCG


TTTGGAATACCGATACGAGTGTACACACACGAGGTAGTGACGCTGTGGTACCGATCTCCA


GAAGTGTTGCTGGGCTCGGCTCGTTACTCCACTCCGGTTGACATCTGGAGTATAGGGACC


ATATTTGCAGAACTGGCCACCAAGAAGCCGCTTTTCCACGGCGACTCAGAGATTGACCAG


CTCTTCAGGATCTTCAGAGCTCTGGGCACTCCTAACAACGAAGTGTGGCCAGAAGTCGAG


TCCCTGCAGGACTACAAGAACACCTTTCCCAAGTGGAAGCCGGGGAGCCTCGCATCCCAC


GTCAAGAACCTGGACGAGAACGGCTTGGATTTGCTCTCAAAAATGCTAGTCTATGATCCT


GCCAAACGAATCTCTGGCAAAATGGCCCTGAAGCACCCGTACTTTGATGACTTGGACAAT


CAGATTAAGAAGATGTAGCCCTCTGGATGGATGTCCCTGTCTGCTGGTCGTAGGGGAAGA


TCG





Cdk1 Mouse Protein


MEDYIKIEKIGEGTYGVVYKGRHRVTGQIVAMKKIRLESEEEGVPSTAIREISLLKELRH


PNIVSLQDVLMQDSRLYLIFEFLSMDLKKYLDSIPPGQFMDSSLVKSYLHQILQGIVFCH


SRRVLHRDLKPQNLLIDDKGTIKLADFGLARAFGIPIRVYTHEVVTLWYRSPEVLLGSAR


YSTPVDIWSIGTIFAELATKKPLFHGDSEIDQLFRIFRALGTPNNEVWPEVESLQDYKNT


FPKWKPGSLASHVKNLDENGLDLLSKMLVYDPAKRISGKMALKHPYFDDLD


NQIKKM





Fignl1 Human DNA


GTCAGTCCCCGCGCTTTTCGGAGGCTGCCAGCGTCCCACACCAGCCGCAGGTGAAAACCG


GCAGAAAGACATTAAGAGATTTTCCTGCAGTCACTGCTGGCAGATGATAGAGCCAGGATT


TGAAAGCAGGCAGCCTGGCTCCAGACCCTGTGCTCTTAACTCCCGTTTTGCATCAAGAAC


AGAATCCTATGAAAGGCTTGTACAGTGCTTGGATAGCAGCATCAAGGAGCATTGTGTACA


TGCAGAAGTGCACAGTACCTGGAGTGAAACTGCTTGTGTTCGATTTCTGATACCATTCAT


AACTGGCTGTGTGATCTCAAAACCTCTAAAATGCAGACCTCCAGCTCTAGATCTGTGCAC


CTGAGTGAATGGCAGAAGAATTACTTCGCAATTACATCTGGCATATGTACCGGACCGAAG


GCAGATGCATACCGTGCACAGATATTACGCATTCAGTATGCATGGGCAAACTCTGAGATT


TCCCAGGTCTGTGCTACCAAACTGTTCAAAAAATATGCAGAGAAATATTCTGCAATTATT


GATTCTGACAATGTTGAATCTGGGTTGAATAATTATGCAGAAAACATTTTAACTTTGGCA


GGATCTCAACAAACAGATAGTGACAAGTGGCAGTCTGGATTGTCAATAAATAATGTTTTC


AAAATGAGTAGTGTACAGAAGATGATGCAAGCTGGCAAAAAATTCAAAGACTCTCTGTTG


GAACCTGCTCTTGCATCAGTGGTAATCCATAAGGAGGCCACTGTCTTTGATCTTCCTAAA


TTTAGTGTTTGTGGTAGTTCTCAAGAGAGTGACTCATTACCTAACTCAGCTCATGATCGA


GACCGGACCCAAGACTTCCCGGAGAGCAATCGTTTGAAACTCCTTCAGAATGCCCAGCCA


CCTATGGTGACTAACACTGCTAGGACTTGTCCTACATTCTCAGCACCTGTAGGTGAGTCA


GCTACTGCAAAATTCCATGTCACACCATTGTTTGGAAATGTCAAAAAGGAAAATCACAGC


TCTGCAAAAGAAAACATAGGACTTAATGTGTTCTTATCTAACCAGTCTTGTTTTCCTGCT


GCCTGTGAAAATCCACAGAGGAAGTCTTTTTATGGTTCTGGCACCATTGATGCACTTTCC


AATCCAATACTGAATAAGGCTTGTAGTAAAACAGAAGATAATGGCCCAAAGGAGGATAGC


AGCCTGCCTACATTTAAAACTGCAAAAGAACAATTATGGGTAGATCAGCAAAAAAAGTAC


CACCAACCTCAGCGTGCATCAGGGTCTTCATATGGTGGTGTAAAAAAGTCTCTAGGAGCT


AGTAGATCCCGAGGGATACTTGGAAAGTTTGTTCCTCCTATACCCAAGCAAGATGGGGGA


GAGCAGAATGGAGGAATGCAATGTAAGCCTTATGGGGCAGGACCTACAGAACCAGCACAT


CCAGTTGATGAGCGTCTGAAGAACTTGGAGCCAAAGATGATTGAACTTATTATGAATGAG


ATTATGGATCATGGACCTCCAGTAAATTGGGAAGATATTGCAGGAGTAGAATTTGCTAAA


GCCACCATAAAGGAAATAGTTGTGTGGCCCATGTTGAGGCCAGACATCTTTACTGGTTTA


AGGGGACCCCCTAAAGGAATTTTGCTCTTTGGTCCTCCTGGGACTGGTAAAACTCTAATT


GGCAAGTGCATTGCTAGTCAGTCTGGGGCAACATTCTTTAGCATCTCTGCTTCATCCTTA


ACTTCTAAATGGGTAGGTGAGGGGGAGAAAATGGTCCGTGCATTGTTTGCTGTTGCAAGG


TGTCAGCAACCAGCTGTGATATTTATTGACGAAATTGATTCCTTGTTATCTCAACGGGGA


GATGGTGAGCATGAATCTTCTAGAAGGATAAAAACAGAATTTTTAGTTCAATTAGATGGA


GCAACAACATCTTCTGAAGATCGTATCCTAGTGGTGGGAGCAACAAATCGGCCACAAGAA


ATTGATGAGGCTGCCCGGAGAAGATTGGTGAAAAGGCTTTATATTCCCCTCCCAGAAGCT


TCAGCCAGGAAACAGATAGTAATTAATCTAATGTCCAAAGAGCAGTGTTGCCTCAGTGAA


GAAGAAATTGAACAGATTGTACAGCAGTCTGATGCGTTTTCAGGAGCAGACATGACACAG


CTTTGCAGGGGGGCTTCTCTTGGTCCTATTCGCAGTTTACAAACTGCTGACATTGCTACC


ATAACACCGGATCAAGTTCGACCCATAGCTTACATTGATTTTGAAAATGCTTTTAGAACT


GTGCGACCTAGTGTTTCTCCAAAAGATTTAGAGCTTTATGAAAACTGGAACAAAACTTTT


GGTTGTGGAAAGTAAGTGGGATACTTGGAATCAAGGCATCTCTGTATTACAGTCTTCTTT


ATTTTTTAGCATAGAAAGTTGGGGATGTGTTAATTGTATTTTTAAGAATATATTCTAAAT


TCTGTACTTCAAATAATAGCACAGATTTTACATCTG





Fignl1 Mouse DNA


CATCGAGAAGTGTTCAGTGCCTGGTAAAGTACATAGACCTTGCTTCACTTGGAACTCGGC


CTTGATTTCTGCCGTTGGTCATAATCAGCAGAGTTCTCTCTAAACCTTTGACATGGAGAC


GTCCAGCTCCATGTCTGTGGAGACGACTAGGTCTGTGCAGGTGGACGAATGGCAGAAGAA


TTACTGTGTGGTTACATCCAGCATATGTACACCAAAGCAGAAGGCCGATGCATACCGTGC


ACTACTACTGCATATTCAGTATGCATATGCCAACTCCGAGATCTCTCAGGTCTTTGCTAC


CAACCTGTTCAAAAGGTATACAGAAAAATACTCTGCAATTATTGATTCTGACAATGTTGT


AACTGGCTTGAATAACTATGCAGAGAGCATTTTTGCTTTGGCAGGATCTCGACAGGCTGA


CAGTAACAAGTGGCAGTCTGGATTGTCAATAGATAATGTTTTCAAAATGAGTTGTGTACA


GGAGATGATGCAGGCTGGCAAGAAATTTGAAGAGTCTCTGTTGGAACCTGCTGATGCATC


AGTAGTCCTGTGTAAAGAGCCCACCGCCTTTGAGGTTCCTCAGCTTAGTGTTTGTGGAGG


TTCTGAAGACGCTGACATATTATCCAGTTCAGGTCATGACACAGATAAGACCCAAGCCAT


TCCAGGGAGCAGTCTGAGATGTTCCCCTTTTCAGAGTGCTCGGCTGCCTAAGGAAACTAA


TACCACTAAGACATGCCTCACCTCCTCAACATCTTTAGGTGAGTCAGCCACTGCAGCATT


TCACATGACACCATTATTTGGAAACACCGAAAAGGACACTCAAAGCTTTCCTAAAACCAG


CACAGGACTAAATATGTTCTTATCTAATCTGTCTTGTGTTCCTTCTGGCTGTGAAAACCC


TCAAGAAAGGAAGGCTTTTAATGACTCTGACATCATTGACATACTTTCCAATCCAACACT


GAACAAGGCTCCTAGTAAAACAGAAGACAGAGGCCGAAGGGAAGATAATAGCCTGCCTAC


CTTTAAAACTGCAAAAGAACAATTATGGGTAGATCAAAAGAAAAAGGGCCATCAATCCCA


GCATACATCTAAATCTTCTAATGGTGTTATGAAAAAGTCTCTGGGAGCTGGGAGGTCGAG


AGGGATATTTGGCAAGTTTGTTCCTCCTGTATCTAATAAGCAAGACGGAAGTGAGCAGCA


TGCCAAGAAGCACAAGTCTAGTAGGGCAGGGTCTGCAGAACCAGCACACCTCACTGATGA


TTGTCTGAAGAACGTGGAGCCAAGGATGGTTGAACTTGTTATGAATGAAATTATGGACCA


TGGGCCTCCAGTACATTGGGACGATATTGCTGGAGTAGAATTTGCCAAAGCCACAATAAA


GGAAATCGTTGTGTGGCCCATGATGAGGCCAGATATCTTTACTGGATTGCGAGGGCCCCC


TAAAGGAATTCTACTCTTTGGCCCTCCAGGGACTGGTAAAACTCTGATTGGCAAGTGCAT


TGCTAGCCAGTCTGGAGCAACATTCTTCAGCATCTCTGCTTCATCGCTGACTTCTAAGTG


GGTAGGTGAGGGAGAAAAAATGGTCCGTGCACTGTTTGCTGTTGCCAGGTGTCAGCAGCC


AGCTGTCATATTTATTGATGAAATTGATTCTTTATTGTCTCAACGAGGAGATGGTGAACA


TGAATCTTCAAGAAGGATAAAAACGGAATTTTTAGTTCAGTTAGATGGAGCAACCACATC


TTCTGAAGACCGGATTCTTGTGGTGGGAGCTACAAATCGGCCCCAAGAGATTGATGAAGC


TGCCCGGAGAAGATTGGTGAAAAGACTTTATATTCCCCTCCCAGAAGCTTCAGCCAGGAA


ACAGATAGTAGGTAATCTAATGTCTAAGGAGCAATGTTGTCTCAGTGATGAAGAAACTGA


TCTGGTAGTGCAGCAGTCTGATGGGTTTTCTGGCGCAGATATGACACAGCTTTGCAGAGA


GGCTTCTCTTGGTCCTATTCGCAGTTTGCACGCTGCTGACATTGCTACCATAAGTCCAGA


TCAAGTTCGACCAATAGCTTATATTGATTTTGAAAATGCTTTTAAAACTGTGCGACCTAC


TGTATCTCCAAAAGACTTGGAGCTTTATGAAAACTGGAATGAAACATTTGGTTGTGGAAA


GTGAATATAGCGATTGAAAGGAGAAGCTGTTATCTAGTAGTCGTCTTTACCTTTAGCCTC


GGAAGCTTGCTGTGCTACTTGTATTGTTTTGGAGTATATCCTGAATTCTGTGCCTCAGAT


TAGAATGATAACAGCTTGACTACTGACTGATATATTAGTATGTTGTATTTG


CC





Fignl1 Mouse Protein


METSSSMSVETTRSVQVDEWQKNYCVVTSSICTPKQKADAYRALLLHIQYAYANSEISQV


FATNLFKRYTEKYSAIIDSDNVVTGLNNYAESIFALAGSRQADSNKWQSGLSIDNVFKMS


CVQEMMQAGKKFEESLLEPADASVVLCKEPTAFEVPQLSVCGGSEDADILSSSGHDTDKT


QAIPGSSLRCSPFQSARLPKETNTTKTCLTSSTSLGESATAAFHMTPLFGNTEKDTQSFP


KTSTGLNMFLSNLSCVPSGCENPQERKAFNDSDIIDILSNPTLNKAPSKTEDRGRREDNS


LPTFKTAKEQLWVDQKKKGHQSQHTSKSSNGVMKKSLGAGRSRGIFGKFVPPVSNKQDGS


EQHAKKHKSSRAGSAEPAHLTDDCLKNVEPRMVELIMNEIMDHGPPVHWDDIAGVEFAKA


TIKEIVVWPMMRPDIFTGLRGPPKGILLFGPPGTGKTLIGKCIASQSGATFFSISASSLT


SKWVGEGEKMVRALFAVARCQQPAVIFIDEIDSLLSQRGDGEHESSRRIKTEFLVQLDGA


TTSSEDRILVVGATNRPQEIDEAARRRLVKRLYIPLPEASARKQIVGNLMSKEQCCLSDE


ETDLVVQQSDGFSGADMTQLCREASLGPIRSLHAADIATISPDQVRPIAYIDFENAFKTV


RPTVSPKDLELYENWNETFGCGK





P1k2 Human DNA


GCGCGCGGCTCCGATGGGAAGCATGACCCGGGTGGCGGGACAAGACTTGCTTCCCGGCCA


CGCGCGCTCGGCCGGCCGTGGGGCGGGGCATAGGCGTGACGTGGTGTCGCGTATCGAGTC


TCCGCCCCCTTCCCGCCTCCCCGTATATAAGACTTCGCCGAGCACTCTCACTCGCACAAG


TGGACCGGGGTGTTGGGTGCTAGTCGGCACCAGAGGCAAGGGTGCGAGGACCACGGCCGG


CTCGGACGTGTGACCGCGCCTAGGGGGTGGCAGCGGGCAGTGCGGGGCGGCAAGGCGACC


ATGGARCTTTTGCGGACTATCACCTACCAGCCAGCCGCCAGCACCAAAATGTGCGAGCAG


GCGCTGGGCAAGGGTTGCGGAGGGGACTCGAAGAAGAAGCGGCCGCCGCAGCCCCCCGAG


GAATCGCAGCCACCTCAGTCCCAGGCGCAAGTGCCCCCGGCGGCCCCTCACCACCATCAC


CACCATTCGCACTCGGGGCCGGAGATCTCGCGGATTATCGTCGACCCCACGACTGGGAAG


CGCTACTGCCGGGGCAAAGTGCTGGGAAAGGGTGGCTTTGCAAAATGTTACGAGATGACA


GATTTGACAAATAACAAAGTCTACGCCGCAAAAATTATTCCTCACAGCAGAGTAGCTAAA


CCTCATCAAAGGGAAAAGATTGACAAAGAAATAGAGCTTCACAGAATTCTTCATCATAAG


CATGTAGTGCAGTTTTACCACTACTTCGAGGACAAAGAAAACATTTACATTCTCTTGGAA


TACTGCAGTAGAAGGTCAATGGCTCATATTTTGAAAGCAAGAAAGGTGTTGACAGAGCCA


GAAGTTCGATACTACCTCAGGCAGATTGTGTCTGGACTGAAATACCTTCATGAACAAGAA


ATCTTGCACAGAGATCTCAAACTAGGGAACTTTTTTATTAATGAAGCCATGGAACTAAAA


GTTGGGGACTTCGGTCTGGCAGCCAGGCTAGAACCCYTGGAACACAGAAGGAGAACGATA


TGTGGTACCCCAAATTATCTCTCTCCTGAAGTCCTCAACAAACAAGGACATGGCTGTGAA


TCAGACATTTGGGCCCTGGGCTGTGTAATGTATACAATGTTACTAGGGAGGCCCCCATTT


GAAACTACAAATCTCAAAGAAACTTATAGGTGCATAAGGGAAGCAAGGTATACAATGCCG


TCCTCATTGCTGGCTCCTGCCAAGCACTTAATTGCTAGTATGTTGTCCAAAAACCCAGAG


GATCGTCCCAGTTTGGATGACATCATTCGACATGACTTTTTTTTGCAGGGCTTCACTCCG


GACAGACTGTCTTCTAGCTGTTGTCATACAGTTCCAGATTTCCACTTATCAAGCCCAGCT


AAGAATTTCTTTAAGAAAGCAGCTGCTGCTCTTTTTGGTGGCAAAAAAGACAAAGCAAGA


TATATTGACACACATAATAGAGTGTCTAAAGAAGATGAAGACATCTACAAGCTTAGGCAT


GATTTGAAAAAGACTTCAATAACTCAGCAACCCAGCAAACACAGGACAGATGAGGAGCTC


CAGCCACCTACCACCACAGTTGCCAGGTCTGGAACACCCGCAGTAGAAAACAAGCAGCAG


ATTGGGGATGCTATTCGGATGATAGTCAGAGGGACTCTTGGCAGCTGTAGCAGCAGCAGT


GAATGCCTTGAAGACAGTACCATGGGAAGTGTTGCAGACACAGTGGCAAGGGTTCTTCGG


GGATGTCTGGAAAACATGCCGGAAGCTGATTGCATTCCCAAAGAGCAGCTGAGCACATCA


TTTCAGTGGGTCACCAAATGGGTTGATTACTCTAACAAATATGGCTTTGGGTACCAGCTC


TCAGACCACACCGTCGGTGTCCTTTTCAACAATGGTGCTCACATGAGCCTCCTTCCAGAC


AAAAAAACAGTTCACTATTACGCAGAGCTTGGCCAATGCTCAGTTTTCCCAGCAACAGAT


GCTCCTGAGCAATTTATTAGTCAAGTGACGGTGCTGAAATACTTTTCTCATTACATGGAG


GAGAACCTCATGGATGGTGGAGATCTGCCTAGTGTTACTGATATTCGAAGACCTCGGCTC


TACCTCCTTCAGTGGCTAAAATCTGATAAGGCCCTAATGATGCTCTTTAATGATGGCACC


TTTCAGGTGAATTTCTACCATGATCATACAAAAATCATCATCTGTAGCCAAAATGAAGAA


TACCTTCTCACCTACATCAATGAGGATAGGATATCTACAACTTTCAGGCTGACAACTCTG


CTGATGTCTGGCTGTTCATCAGAATTAAAAAATCGAATGGAATATGCCCTGAACATGCTC


TTACAAAGATGTAACTGAAAGACTTTTCGAATGGACCCTATGGGACTCCTCTTTTCCACT


GTGAGATCTACAGGGAAGCCAAAAGAATGATCTAGAGTATGTTGAAGAAGATGGACATGT


GGTGGTACGAAAACAATTCCCCTGTGGCCTGCTGGACTGGGTGGAACCCAGAACCAGGCT


AAGGCATACAGTTCTTGACTTTGGACAATCCCAAGAGTGAACCAGAATGCAGTTTTCCTT


GAGATACCTGTTTTAAAAGGTTTTTCAGACAATTTTGCAGAAAGGTGCATTGATTCTTAA


ATTCTCTCTGTTGAGAGCATTTCAGCCAGAGGACTTTGGAACTGTGAATATACTTCCTGA


AGGGGAGGGAGAAGGGAGGAAGCTCCCATGTTGTTTAAAGGCTGTAATTGGAGCAGCTTT


TGGCTGCGTAACTGTGAACTATGGCCATATATAATTTTTTTTCATTAATTTTTGAAGATA


CTTGTGGCTGGAAAAGTGCATTCCTTGTTAATAAACTTTTTATTTATTACAGCCCAAAGA


GCAGTATTTATTATCAAAATGTCTTTTTTTTTATGTTGACCATTTTAAACCGTTGGCAAT


AAAGAGTATGAAAACGCAAAAAAAAAAAAAAA





P1k2 Mouse DNA


CGTAGGGAGAGAGACTGGTGCTCGAGGGACAGGGCTAGCCCGGACGCGTGTCCGCGCCTC


GGAGGTGGCAAGTAGGCAGTGTCGGGTGGCGAGGCAACGATGGAGCTCCTGCGGACTATC


ACCTACCAGCCGGCCGCCGGCACCAAGATGTGCGAGCAGGCTCTGGGCAAAGCTTGCGGC


GGGGACTCAAAGAAGAAGCGACCACAGCAGCCTTCTGAAGATGGGCAGCCCCAAGCCCAG


GTGACCCCGGCGGCCCCGCACCACCATCACCACCATTCCCACTCGGGACCCGAGATCTCG


CGGATTATAGTCGACCCCACGACGGGGAAGCGCTACTGCCGGGGCAAAGTGCTGGGCAAG


GGTGGATTTGCAAAGTGTTACGAAATGACAGATCTGACAAACAACAAAGTCTACGCTGCA


AAAATTATTCCTCACAGCAGAGTAGCTAAACCTCATCAGAGGGAAAAGATCGACAAAGAA


ATCGAGCTTCACAGACTACTGCACCATAAGCATGTCGTGCAGTTTTACCACTACTTTGAA


GACAAAGAAAACATTTACATTCTCTTGGAATACTGCAGTAGAAGGTCCATGGCTCACATC


TTGAAAGCAAGAAAGGTGTTGACAGAGCCAGAAGTCCGATACTACCTCAGGCAGATTGTG


TCAGGACTCAAGTATCTTCACGAACAAGAAATCTTGCACAGGGATCTCAAGCTAGGGAAC


TTTTTTATTAATGAAGCCATGGAGCTGAAGGTGGGAGACTTTGGTTTGGCAGCCAGACTG


GAACCACTGGAACACAGAAGGAGAACAATATGTGGAACCCCAAATTATCTCTCCCCCGAA


GTCCTCAACAAACAAGGACACGGCTGTGAATCAGACATCTGGGCCTTAGGCTGTGTAATG


TATACGATGCTGCTAGGAAGACCTCCATTCGAAACCACAAATCTGAAAGAAACGTACAGG


TGCATAAGGGAAGCAAGGTATACCATGCCGTCCTCATTGCTGGCCCCTGCTAAGCACTTG


ATAGCTAGCATGCTGTCCAAAAACCCAGAGGACCGCCCCAGTTTGGATGACATCATTCGG


CATGACTTCTTCCTGCAGGGTTTCACTCCGGACAGACTCTCTTCCAGCTGTTGCCACACA


GTTCCAGATTTCCACTTGTCAAGCCCAGCCAAGAATTTCTTTAAGAAAGCCGCAGCCGCT


CTTTTTGGTGGCAAGAAGGACAAAGCAAGATATAACGACACACACAATAAGGTGTCTAAG


GAAGATGAAGACATTTACAAGCTTCGGCATGATTTGAAGAAAGTGTCGATAACCCAGCAG


CCTAGCAAACACAGAGCAGACGAGGAGCCCCAGCCGCCTCCCACTACTGTTGCCAGATCT


GGAACGTCCGCAGTGGAAAACAAACAGCAGATTGGGGATGCAATCCGGATGATAGTCAGG


GGGACTCTCGGCAGCTGCAGCAGCAGCAGCGAATGCCTTGAAGACAGCACCATGGGAAGT


GTTGCAGACACAGTGGCAAGAGTCCTTCGAGGATGTCTAGAAAACATGCCGGAAGCTGAC


TGTATCCCCAAAGAGCAGCTGAGCACGTCCTTTCAGTGGGTCACCAAGTGGGTCGACTAC


TCCAACAAATATGGCTTTGGGTACCAGCTCTCGGACCACACTGTTGGCGTCCTTTTCAAC


AACGGGGCTCACATGAGCCTCCTTCCGGACAAAAAGACAGTTCACTATTATGCGGAACTT


GGCCAATGCTCTGTTTTCCCAGCAACAGATGCCCCTGAACAATTTATTAGTCAAGTGACG


GTGCTGAAATACTTTTCTCATTACATGGAGGAGAACCTCATGGATGGTGGTGATCTCCCG


AGTGTTACTGACATTCGAAGACCTCGGCTCTACCTCCTGCAGTGGTTAAAGTCTGATAAA


GCCTTAATGATGCTCTTCAATGACGGCACATTTCAGGTGAATTTCTACCACGATCATACA


AAAATCATCATCTGTAACCAGAGTGAAGAATACCTTCTCACCTACATCAATGAGGACAGG


ATCTCTACAACTTTCAGACTGACGACTCTGCTGATGTCTGGCTGTTCGTTAGAATTGAAA


AATCGAATGGAATATGCCCTGAACATGCTCTTACAGAGATGTAACTGAAAACATTATTAT


TATTATTATTATAATTATTTCGAGCGGACCTCATGGGACTCTTTTCCACTGTGAGATCAA


CAGGGAAGCCAGCGGAAAGATACAGAGCATGTTAGAGAAGTCGGACAGGTGGTGGTACGA


ATACAATTCCTCTGTGGCCTGCTGGACTGCTGGAACCAGACCAGCCTAAGGTGTAGAGTT


GACTTTGGACAATCCTGAGTGTGGAGCCGAGTGCAGTTTTCCCTGAGATACCTGTCGTGA


AAAGGTTTATGGGACAGTTTTTCAGAAAGATGCATTGACTCTGAAGTTCTCTCTGTTGAG


AGCGTCTTCAGTTGGAAGACTTGGAACTGTGAATACACTTCCTGAAGGGGAGGGAGAAGG


GAGGTTGCTCCCTTGCTGTTTAAAGGCTACAATCAGAGCAGCTTTTGGCTGCTTAACTGT


GAACTATGGCCATACATTTTTTTTTTTTTTGGTTATTTTTGAATACACTTGTGGTTGGAA


AAGTGCATTCCTTGTTAATAAACTTTTTATTTATTACAGCCCCAAGAGCAGTATTTATTA


TCAAGATGTTCTCTTTTTTTATGTTGACCATTTCAAACTCTTGGCAATAAAGAGTATGAC


ATAGAAAAAAAA





P1k2 Mouse Protein


MELLRTITYQPAAGTKMCEQALGKACGGDSKKKRPQQPSEDGQPQAQVTPAAPHHHHHHS


HSGPEISRIIVDPTTGKRYCRGKVLGKGGFAKCYEMTDLTNNKVYAAKIIPHSRVAKPHQ


REKIDKEIELHRLLHHKHVVQFYHYFEDKENIYILLEYCSRRSMAHILKARKVLTEPEVR


YYLRQIVSGLKYLHEQEILHRDLKLGNFFINEAMELKVGDFGLAARLEPLEHRRRTICGT


PNYLSPEVLNKQGHGCESDIWALGCVMYTMLLGRPPFETTNLKETYRCIREARYTMPSSL


LAPAKHLIASMLSKNPEDRPSLDDIIRHDFFLQGFTPDRLSSSCCHTVPDFHLSSPAKNF


FKKAAAALFGGKKDKARYNDTHNKVSKEDEDIYKLRHDLKKVSITQQPSKHRADEEPQPP


PTTVARSGTSAVENKQQIGDAIRMIVRGTLGSCSSSSECLEDSTMGSVADTVARVLRGCL


ENMPEADCIPKEQLSTSFQWVTKWVDYSNKYGFGYQLSDHTVGVLFNNGAHMSLLPDKKT


VHYYAELGQCSVFPATDAPEQFISQVTVLKYFSHYMEENLMDGGDLPSVTDIRRPRLYLL


QWLKSDKALMMLFNDGTFQVNFYHDHTKIIICNQSEEYLLTYINEDRISTTFRLTTLLMS


GCSLELKNRMEYALNMLLQRCN





Rsad2 Human DNA


CAGGAAGGGCCATGAAGATTAATAAAGATTTGGACTCAGGGCAAATATTTACTTAGTAGC


AATAACTCAAAGAATTACTGTTGAATAAATAAGCCAATTAAGCAGCCAATCACGTACTAT


GCGGATGCACACAAATGAAACCCTCACTTCAACCTGAAGACATTCGCACATGAGTTACGT


AGAGGGACCTGCAGGAAGCGGTAGAGAAAACATAAGGCTTATGCGTTTAATTTCCACACC


AATTTCAGGATCTTTGTCACTGACAGCAGCACTAAGACTTGTTAACTTTATATAGTTAAG


AAGAACAAGGCTGAGCGCGATGACTCACGCCTGTAAGCCTAGAACTTTGGGAGGCCAAAG


CAGGCAGACTGCTTGAGCCCAGGAGTTCCAGACCAGCCTGGGCAACATGGCAACACCCCA


TCTCTACAAAAAAATACAAGAATCAGCTGGGCGTGGTGATGTGTTCCTGTAATCTCAGCT


ACTCGGGAGGCAGAGGCAGGAGGATTGCTTGAACCCGGGAGGCAGAGGTTGTAGTTAGCC


GAGATCTCGCCACTGCACTCCAGTCTGGACGACAGAGTGAGACTCAGTCTCAAATAAATA


AATAAATACATAAATATAAGGAAAAAAATAAAGCTGCTTTCTCCTCTTCCTCCTCTTTGG


TCTCATCTGGCTCTGCTCCAGGCATCTGCCACAATGTGGGTGCTTACACCTGCTGCTTTT


GCTGGGAAGTTCTTGAGTGTGTTCAGGCAACCTCTGAGCTCTCTGTGGAGGAGCCTGGTC


CCGCTGTTCTGCTGGCTGAGGGCAACCTTCTGGCTGCTAGCTACCAAGAGGAGAAAGCAG


CAGCTGGTCCTGAGAGGGCCAGATGAGACCAAAGAGGAGGAAGAGGACCCTCCTCTGCCC


ACCACCCCAACCAGCGTCAACTATCACTTCACTCGCCAGTGCAACTACAAATGCGGCTTC


TGTTTCCACACAGCCAAAACATCCTTTGTGCTGCCCCTTGAGGAAGCAAAGAGAGGATTG


CTTTTGCTTAAGGAAGCTGGTATGGAGAAGATCAACTTTTCAGGTGGAGAGCCATTTCTT


CAAGACCGGGGAGAATACCTGGGCAAGTTGGTGAGGTTCTGCAAAGTAGAGTTGCGGCTG


CCCAGCGTGAGCATCGTGAGCAATGGAAGCCTGATCCGGGAGAGGTGGTTCCAGAATTAT


GGTGAGTATTTGGACATTCTCGCTATCTCCTGTGACAGCTTTGACGAGGAAGTCAATGTC


CTTATTGGCCGTGGCCAAGGAAAGAAGAACCATGTGGAAAACCTTCAAAAGCTGAGGAGG


TGGTGTAGGGATTATAGAATCCCTTTCAAGATAAATTCTGTCATTAATCGTTTCAACGTG


GAAGAGGACATGACGGAACAGATCAAAGCACTAAACCCTGTCCGCTGGAAAGTGTTCCAG


TGCCTCTTAATTGAAGGTGAGAATTGTGGAGAAGATGCTCTAAGAGAAGCAGAAAGATTT


GTTATTGGTGATGAAGAATTTGAAAGATTCTTGGAGCGCCACAAAGAAGTGTCCTGCTTG


GTGCCTGAATCTAACCAGAAGATGAAAGACTCCTACCTTATTCTGGATGAATATATGCGC


TTTCTGAACTGTAGAAAGGGACGGAAGGACCCTTCCAAGTCCATCCTGGATGTTGGTGTA


GAAGAAGCTATAAAATTCAGTGGATTTGATGAAAAGATGTTTCTGAAGCGAGGAGGAAAA


TACATATGGAGTAAGGCTGATCTGAAGCTGGATTGGTAGAGCGGAAAGTGGAACGAGACT


TCAACACACCAGTGGGAAAACTCCTAGAGTAACTGCCATTGTCTGCAATACTATCCCGTT


GGTATTTCCCAGTGGCTGAAAACCTGATTTTCTGCTGCACGTGGCATCTGATTACCTGTG


GTCACTGAACACACGAATAACTTGGATAGCAAATCCTGAGACAATGGAAAACCATTAACT


TTACTTCATTGGCTTATAACCTTGTTGTTATTGAAACAGCACTTCTGTTTTTGAGTTTGT


TTTAGCTAAAAAGAAGGAATACACACAGGAATAATGACCCCAAAAATGCTTAGATAAGGC


CCCTATACACAGGACCTGACATTTAGCTCAATGATGCGTTTGTAAGAAATAAGCTCTAGT


GATATCTGTGGGGGCAATATTTAATTTGGATTTGATTTTTTAAAACAATGTTTACTGCGA


TTTCTATATTTCCATTTTGAAACTATTTCTTGTTCCAGGTTTGTTCATTTGACAGAGTCA


GTATTTTTTGCCAAATATCCAGATAACCAGTTTTCACATCTGAGACATTACAAAGTATCT


GCCTCAATTATTTCTGCTGGTTATAATGCTTTTTTTTTTTTTTGCTTTTATGCCATTGCA


GTCTTGTACTTTTTACTGTGATGTACAGAAATAGTCAACAGATGTTTCCAAGAACATATG


ATATGATAATCCTACCAATTTTCAAGAAGTCTCTAGAAAGAGATAACACATGGAAAGACG


GCGTGGTGCAGCCCAGCCCACGGTGCCTGTTCCATGAATGCTGGCTACCTATGTGTGTGG


TACCTGTTGTGTCCCTTTCTCTTCAAAGATCCCTGAGCAAAACAAAGATACGCTTTCCAT


TTGATGATGGAGTTGACATGGAGGCAGTGCTTGCATTGCTTTGTTCGCCTATCATCTGGC


CACATGAGGCTGTCAAGCAAAAGAATAGGAGTGTAGTTGAGTAGCTGGTTGGCCCTACAT


TTCTGAGAAGTGACGTTACACTGGGTTGGCATAAGATATCCTAAAATCACGCTGGAACCT


TGGGCAAGGAAGAATGTGAGCAAGAGTAGAGAGAGTGCCTGGATTTCATGTCAGTGAAGC


CATGTCACCATATCATATTTTTGAATGAACTCTGAGTCAGTTGAAATAGGGTACCATCTA


GGTCAGTTTAAGAAGAGTCAGCTCAGAGAAAGCAAGCATAAGGGAAAATGTCACGTAAAC


TAGATCAGGGAACAAAATCCTCTCCTTGTGGAAATATCCCATGCAGTTTGTTGATACAAC


TTAGTATCTTATTGCCTAAAAAAAAATTTCTTATCATTGTTTCAAAAAAGCAAAATCATG


GAAAATTTTTGTTGTCCAGGCAAATAAAAGGTCATTTTAATTTAAAAAAAAAAAAAAAAA


AAAAAAAAAAAAAAAGGCCA





Rsad2 Mouse DNA


CCTATCACCATGGGGATGCTGGTGCCCACTGCTCTAGCTGCTCGGCTGCTGAGCCTGTTC


CAGCAGCAGCTGGGTTCCCTCTGGAGTGGCCTGGCCATCCTGTTCTGCTGGCTGAGAATA


GCATTAGGGTGGCTAGATCCCGGGAAGGAACAGCCACAGGTCCGGGGTGAGCTGGAGGAG


ACCCAGGAGACCCAGGAAGATGGGAACAGCACTCAGCGCACAACCCCCGTGAGTGTCAAC


TACCACTTCACTCGTCAGTGCAACTACAAATGTGGCTTCTGCTTCCACACAGCCAAGACA


TCCTTCGTGCTGCCCCTGGAGGAGGCCAAGCGAGGACTGCTTCTGCTCAAACAGGCTGGT


TTGGAGAAGATCAACTTTTCTGGAGGAGAACCCTTCCTTCAGGACAGGGGTGAATACTTG


GGCAAGCTTGTGAGATTCTGCAAGGAGGAGCTAGCCCTGCCCTCTGTGAGCATAGTGAGC


AATGGCAGCCTTATCCAGGAGAGATGGTTCAAGGACTATGGGGAGTATTTGGACATTCTT


GCTATCTCCTGCGACAGCTTCGATGAGCAGGTTAATGCTCTGATTGGCCGTGGTCAAGGA


AAAAAGAACCACGTGGAAAACCTTCAAAAGCTGAGGAGGTGGTGCAGGGATTACAAGGTG


GCTTTCAAGATCAACTCTGTCATTAATCGCTTCAACGTGGACGAAGACATGAATGAACAC


ATCAAGGCCCTGAGCCCTGTGCGCTGGAAGGTTTTCCAGTGCCTCCTAATTGAGGGTGAG


AACTCAGGAGAAGATGCCCTGAGGGAAGCAGAAAGATTTCTTATAAGCAATGAAGAATTT


GAAACATTCTTGGAGCGTCACAAAGAGGTGTCCTGTTTGGTGCCTGAATCTAACCAGAAG


ATGAAAGACTCCTACCTTATCCTAGATGAATATATGCGCTTTCTGAACTGTACCGGTGGC


CGGAAGGACCCTTCCAAGTCTATTCTGGATGTTGGCGTGGAAGAAGCAATAAAGTTCAGT


GGATTTGATGAGAAGATGTTTCTGAAGCGTGGCGGAAAGTATGTGTGGAGTAAAGCTGAC


CTGAAGCTGGACTGGTGAGGCTGAGATGGGAAGGAAACTCCGACCAGCTACAGGGACATT


CACGCCCAGCTATCCTTCAACAAGCTACATCTTCTGGCTGTCTACAGACTG


TTGTT





Rsad2 Mouse Protein


MGMLVPTALAARLLSLFQQQLGSLWSGLAILFCWLRIALGWLDPGKEQPQVRGEPEDTQE


TQEDGNSTQPTTPVSVNYHFTRQCNYKCGFCFHTAKTSFVLPLEEAKRGLLLLKQAGLEK


INFSGGEPFLQDRGEYLGKLVRFCKEELALPSVSIVSNGSLIRERWFKDYGEYLDILAIS


CDSFDEQVNALIGRGQGKKNHVENLQKLRRWCRDYKVAFKINSVINRFNVDEDMNEHIKA


LSPVRWKVFQCLLIEGENSGEDALREAERFLISNEEFETFLERHKEVSCLVPESNQKMKD


SYLILDEYMRFLNCTGGRKDPSKSILDVGVEEAIKFSGFDEKMFLKRGGKYVWSKADLKL


DW





Sgk1 Human DNA


CACGAGGGAGCGCTAACGTCTTTCTGTCTCCCCGCGGTGGTGATGACGGTGAAAACTGAG


GCTGCTAAGGGCACCCTCACTTACTCCAGGATGAGGGGCATGGTGGCAATTCTCATCGCT


TTCATGAAGCAGAGGAGGATGGGTCTGAACGACTTTATTCAGAAGATTGCCAATAACTCC


TATGCATGCAAACACCCTGAAGTTCAGTCCATCTTGAAGATCTCCCAACCTCAGGAGCCT


GAGCTTATGAATGCCAACCCTTCTCCTCCACCAAGTCCTTCTCAGCAAATCAACCTTGGC


CCGTCGTCCAATCCTCATGCTAAACCATCTGACTTTCACTTCTTGAAAGTGATCGGAAAG


GGCAGTTTTGGAAAGGTTCTTCTAGCAAGACACAAGGCAGAAGAAGTGTTCTATGCAGTC


AAAGTTTTACAGAAGAAAGCAATCCTGAAAAAGAAAGAGGAGAAGCATATTATGTCGGAG


CGGAATGTTCTGTTGAAGAATGTGAAGCACCCTTTCCTGGTGGGCCTTCACTTCTCTTTC


CAGACTGCTGACAAATTGTACTTTGTCCTAGACTACATTAATGGTGGAGAGTTGTTCTAC


CATCTCCAGAGGGAACGCTGCTTCCTGGAACCACGGGCTCGTTTCTATGCTGCTGAAATA


GCCAGTGCCTTGGGCTACCTGCATTCACTGAACATCGTTTATAGAGACTTAAAACCAGAG


AATATTTTGCTAGATTCACAGGGACACATTGTCCTTACTGATTTCGGACTCTGCAAGGAG


AACATTGAACACAACAGCACAACATCCACCTTCTGTGGCACGCCGGAGTATCTCGCACCT


GAGGTGCTTCATAAGCAGCCTTATGACAGGACTGTGGACTGGTGGTGCCTGGGAGCTGTC


TTGTATGAGATGCTGTATGGCCTGCCGCCTTTTTATAGCCGAAACACAGCTGAAATGTAC


GACAACATTCTGAACAAGCCTCTCCAGCTGAAACCAAATATTACAAATTCCGCAAGACAC


CTCCTGGAGGGCCTCCTGCAGAAGGACAGGACAAAGCGGCTCGGGGCCAAGGATGACTTC


ATGGAGATTAAGAGTCATGTCTTCTTCTCCTTAATTAACTGGGATGATCTCATTAATAAG


AAGATTACTCCCCCTTTTAACCCAAATGTGAGTGGGCCCAACGAGCTACGGCACTTTGAC


CCCGAGTTTACCGAAGAGCCTGTCCCCAACTCCATTGGCAAGTCCCCTGACAGCGTCCTC


GTCACAGCCAGCGTCAAGGAAGCTGCCGAGGCTTTCCTAGGCTTTTCCTATGCGCCTCCC


ACGGACTCTTTCCTCTGAACCCTGTTAGGGCTTGGTTTTAAAGGATTTTATGTGTGTTTC


CGAATGTTTTAGTTAGCCTTTTGGTGGAGCCGCCAGCTGACAGGACATCTTACAAGAGAA


TTTGCACATCTCTGGAAGCTTAGCAATCTTATTGCACACTGTTCGCTGGAATTTTTTGAA


GAGCACATTCTCCTCAGTGAGCTCATGAGGTTTTCATTTTTATTCTTCCTTCCAACGTGG


TGCTATCTCTGAAACGAGCGTTAGAGTGCCGCCTTAGACGGAGGCAGGAGTTTCGTTAGA


AAGCGGACCTGTTCTAAAAAAGGTCTCCTGCAGATCTGTCTGGGCTGTGATGACGAATAT


TATGAAATGTGCCTTTTCTGAAGAGATTGTGTTAGCTCCAAAGCTTTTCCTATCGCAGTG


TTTCAGTTCTTTATTTTCCCTTGTGGATATGCTGTGTGAACCGTCGTGTGAGTGTGGTAT


GCCTGATCACAGATGGATTTTGTTATAAGCATCAATGTGACACTTGCAGGACACTACAAC


GTGGGACATTGTTTGTTTCTTCCATATTTGGAAGATAAATTTATGTGTAGACTTTTTTGT


AAGATACGGTTAATAACTAAAATTTATTGAAATGGTCTTGCAATGACTCGTATTCAGATG


CCTAAAGAAAGCATTGCTGCTACAAATATTTCTATTTTTAGAAAGGGTTTTTATGGACCA


ATGCCCCAGTTGTCAGTCAGAGCCGTTGGTGTTTTTCATTGTTTAAAATGTCACCTGTAA


AATGGGCATTATTTATGTTTTTTTTTTTGCATTCCTGATAATTGTATGTATTGTATAAAG


AACGTCTGTACATTGGGTTATAACACTAGTATATTTAAACTTACAGGCTTATTTGTAATG


TAAACCACCATTTTAATGTACTGTAATTAACATGGTTATAATACGTACAATCCTTCCCTC


ATCCCATCACACAACTTTTTTTGTGTGTGATAAACTGATTTTGGTTTGCAATAAAACCTT


GAAAAATAAAAAAAAAAAAAAAAAAAAAAA





Sgk1 Mouse DNA


ACCCACGCGTCCGGCCGGTTTCACTGCTCCCCTCAGTCTCTTTTGGGCTCTTTCCGGGCA


TCGGGACGATGACCGTCAAAGCCGAGGCTGCTCGAAGCACCCTTACCTACTCCAGAATGA


GGGGAATGGTAGCGATTCTCATCGCTTTTATGAAACAGAGAAGGATGGGCCTGAACGATT


TTATTCAGAAGATTGCCAGCAACACCTATGCATGCAAACACGCTGAAGTTCAGTCCATTT


TGAAAATGTCCCATCCTCAGGAGCCGGAGCTTATGAACGCTAACCCCTCTCCTCCGCCAA


GTCCCTCTCAACAAATCAACCTGGGTCCGTCCTCCAACCCTCACGCCAAACCCTCCGACT


TTCACTTCTTGAAAGTGATCGGAAAGGGCAGTTTTGGAAAGGTTCTTCTGGCTAGGCACA


AGGCAGAAGAAGTATTCTATGCAGTCAAAGTTTTACAGAAGAAAGCCATCCTGAAGAAGA


AAGAGGAGAAGCATATTATGTCAGAGCGGAATGTTCTGTTGAAGAATGTGAAGCACCCTT


TCCTGGTGGGCCTTCACTTCTCATTCCAGACCGCTGACAAACTCTACTTTGTCCTGGACT


ACATTAATGGTGGAGAGCTGTTCTACCATCTCCAGAGGGAGCGCTGCTTCCTGGAACCAC


GGGCTCGATTCTACGCAGCTGAAATAGCCAGTGCCTTGGGCTATCTGCACTCCCTAAACA


TCGTTTATAGAGACTTAAAACCTGAGAATATTCTCCTAGACTCCCAGGGGCACATCGTCC


TCACTGACTTTGGGCTCTGCAAAGAGAATATTGAGCATAACGGGACAACATCTACCTTCT


GTGGCACGCCTGAGTATCTGGCTCCTGAGGTCCTCCATAAGCAGCCGTATGACCGGACGG


TGGACTGGTGGTGTCTTGGGGCTGTCCTGTATGAGATGCTCTACGGCCTGCCCCCGTTTT


ATAGCCGGAACACGGCTGAGATGTACGACAATATTCTGAACAAGCCTCTCCAGTTGAAAC


CAAATATTACAAACTCGGCAAGGCACCTCCTGGAAGGCCTCCTGCAGAAGGACCGGACCA


AGAGGCTGGGTGCCAAGGATGACTTTATGGAGATTAAGAGTCATATTTTCTTCTCTTTAA


TTAACTGGGATGATCTCATCAATAAGAAGATTACACCCCCATTTAACCCAAATGTGAGTG


GGCCCAGTGACCTTCGGCACTTTGATCCCGAGTTTACCGAGGAGCCGGTCCCCAGCTCCA


TCGGCAGGTCCCCTGACAGCATCCTTGTCACGGCCAGTGTGAAGGAAGCAGCAGAAGCCT


TCCTCGGCTTCTCCTATGCACCTCCTGTGGATTCCTTCCTCTGAGTGCTCCCGGGATGGT


TCTGAAGGACTTCCTCAGCGTTTCCTAAAGTGTTTTCCTTACCCTTTGGTGGAGGTTGCC


AGCTGACAGAACATTTTAAAAGAATTTGCACACCTGGAAGCTTGGCAGTCTCGCCTGCCC


GGCGTGGCGCGACGCAGCGCGCGCTGCTTGATGGGAGCTTTCCGAAGAGCACACCCTCCT


CTCAATGAGCTTGTGAGGTCTTCTTTTCTTCTCTTCCTTCCAACGTGGTGCTAGCTCCAG


GCGAGCGAGCGTGAGAGTGCCGCCTGAGACAGACACCTTGGTCTCAGTTAGAAGGAAGAT


GCAGGTCTAAGAGGAATCCCCGCAGTCTGTCTGAGCTGTGATCAAGAATATTCTGCAATG


TGCCTTTTCTGAGATCGTGTTAGCTCCAAAGCTTTTTCCTATCGCAGAGTGTTCAGTTTG


TGTTTGTTTGTTTTTGTTTTGTTTTGTTTTTCCCTTGGCGGATTTCCCGTGTGTGCAGTG


GCGTGAGTGTGCTATGCCTGATCACAGACGGTTTTGTTGTGAGCATCAATGTGACACTTG


CAGGACACTACAATGTGGGACATTGTTTGTTTCTTCCACATTTGGAAGATAAATTTATGT


GTAGACTGTTTTGTAAGATATAGTTAATAACTAAAACCTATTGAAACGGTCTTGCAATGA


CGAGCATTCAGATGCTTAAGGAAAGCATTGCTGCTACAAATATTTCTATTTTTAGAAAGG


GTTTTTATGGACCAATGCCCCAGTTGTCAGTCAAAGCCGTTGGTGTTTTCATTGTTTAAA


ATGTCACCTATAAAACGGGCATTATTTATGTTTTTTTTCCCTTTGTTCATATTCTTTTGC


ATTCCTGATTATTGTATGTATCGTGTAAAGGAAGTCTGTACATTGGGTTATAACACTAGA


TATTTAAACTTACAGGCTTATTTGTAAACCATCATTTTAATGTACTGTAATTAACATGGG


TTATAATATGTACAATTCCTCCTCCTTACCACACAACTTTTTTTGTGTGCGATAAACCAA


TTTTGGTTTGCAATAAAATCTTGAAACCT





Sgk1 Mouse Protein


MTVKAEAARSTLTYSRMRGMVAILIAFMKQRRMGLNDFIQKIASNTYACKHAEVQSILKM


SHPQEPELMNANPSPPPSPSQQINLGPSSNPHAKPSDFHFLKVIGKGSFGKVLLARHKAE


EVFYAVKVLQKKAILKKKEEKHIMSERNVLLKNVKHPFLVGLHFSFQTADKLYFVLDYIN


GGELFYHLQRERCFLEPRARFYAAEIASALGYLHSLNIVYRDLKPENILLDSQGHIVLTD


FGLCKENIEHNGTTSTFCGTPEYLAPEVLHKQPYDRTVDWWCLGAVLYEMLYGLPPFYSR


NTAEMYDNILNKPLQLKPNITNSARHLLEGLLQKDRTKRLGAKDDFMEIKSHIFFSLINW


DDLINKKITPPFNPNVSGPSDLRHFDPEFTEEPVPSSIGRSPDSILVTASVKEAAEAFLG


FSYAPPVDSFL





Sdc1 Human DNA


ATGAGACGCGCGGCGCTCTGGCTCTGGCTCTGCGCGCTGGCGCTGAGCCTGCAGCCGGCC


CTGCCGCAAATTGTGGCTACTAATTTGCCCCCTGAAGATCAAGATGGCTCTGGGGATGAC


TCTGACAACTTCTCCGGCTCAGGTGCAGGTGCTTTGCAAGATATCACCTTGTCACAGCAG


ACCCCCTCCACTTGGAAGGACACGCAGCTCCTGACGGCTATTCCCACGTCTCCAGAACCC


ACCGGCCTGGAAGCTACAGCTGCCTCCACCTCCACCCTGCCGGCTGGAGAGGGGCCCAAG


GAGGGAGAGGCTGTAGTCCTGCCAGAAGTGGAGCCTGGCCTCACCGCCCGGGAGCAGGAG


GCCACCCCCCGACCCAGGGAGACCACACAGCTCCCGACCACTCATCAGGCCTCAACGACC


ACAGCCACCACGGCCCAGGAGCCCGCCACCTCCCACCCCCACAGGGACATGCAGCCTGGC


CACCATGAGACCTCAACCCCTGCAGGACCCAGCCAAGCTGACCTTCACACTCCCCACACA


GAGGATGGAGGTCCTTCTGCCACCGAGAGGGCTGCTGAGGATGGAGCCTCCAGTCAGCTC


CCAGCAGCAGAGGGCTCTGGGGAGCAGGACTTCACCTTTGAAACCTCGGGGGAGAATACG


GCTGTAGTGGCCGTGGAGCCTGACCGCCGGAACCAGTCCCCAGTGGATCAGGGGGCCACG


GGGGCCTCACAGGGCCTCCTGGACAGGAAAGAGGTGCTGGGAGGGGTCATTGCCGGAGGC


CTCGTGGGGCTCATCTTTGCTGTGTGCCTGGTGGGTTTCATGCTGTACCGCATGAAGAAG


AAGGACGAAGGCAGCTACTCCTTGGAGGAGCCGAAACAAGCCAACGGCGGTGCCTACCAG


AAACCCACCAAGCAGGAGGAGTTCTACGCC





Sdc1 Mouse DNA


ACTCCGCGGGAGAGGTGCGGGCCAGAGGAGACAGAGCCTAACGCAGAGGAAGGGACCTGG


CAGTCGGGAGCTGACTCCAGCCGGCGAAACCTACAGCCCTCGCTCGAGAGAGCAGCGAGC


TGGGCAGGAGCCTGGGACAGCAAAGCGCAGAGCAATCAGCAGAGCCGGCCCGGAGCTCCG


TGCAACCGGCAACTCGGATCCACGAAGCCCACCGAGCTCCCGCCGCCGGTCTGGGCAGCA


TGAGACGCGCGGCGCTCTGGCTCTGGCTCTGCGCGCTGGCGCTGCGCCTGCAGCCTGCCC


TCCCGCAAATTGTGGCTGTAAATGTTCCTCCTGAAGATCAGGATGGCTCTGGGGATGACT


CTGACAACTTCTCTGGCTCTGGCACAGGTGCTTTGCCAGATACTTTGTCACGGCAGACAC


CTTCCACTTGGAAGGACGTGTGGCTGTTGACAGCCACGCCCACAGCTCCAGAGCCCACCA


GCAGCAACACCGAGACTGCTTTTACCTCTGTCCTGCCAGCCGGAGAGAAGCCCGAGGAGG


GAGAGCCTGTGCTCCATGTAGAAGCAGAGCCTGGCTTCACTGCTCGGGACAAGGAAAAGG


AGGTCACCACCAGGCCCAGGGAGACCGTGCAGCTCCCCATCACCCAACGGGCCTCAACAG


TCAGAGTCACCACAGCCCAGGCAGCTGTCACATCTCATCCGCACGGGGGCATGCAACCTG


GCCTCCATGAGACCTCGGCTCCCACAGCACCTGGTCAACCTGACCATCAGCCTCCACGTG


TGGAGGGTGGCGGCACTTCTGTCATCAAAGAGGTTGTCGAGGATGGAACTGCCAATCAGC


TTCCCGCAGGAGAGGGCTCTGGAGAACAAGACTTCACCTTTGAAACATCTGGGGAGAACA


CAGCTGTGGCTGCCGTAGAGCCCGGCCTGCGGAATCAGCCCCCGGTGGACGAAGGAGCCA


CAGGTGCTTCTCAGAGCCTTTTGGACAGGAAGGAAGTGCTGGGAGGTGTCATTGCCGGAG


GCCTAGTGGGCCTCATCTTTGCTGTGTGCCTGGTGGCTTTCATGCTGTACCGGATGAAGA


AGAAGGACGAAGGCAGCTACTCCTTGGAGGAGCCCAAACAAGCCAATGGCGGTGCCTACC


AGAAACCCACCAAGCAGGAGGAGTTCTACGCCTGATGGGGAAATAGTTCTTTCTCCCCCC


CACAGCCCCTGCCACTCACTAGGCTCCCACTTGCCTCTTCTGTGAAAAACTTCAAGCCCT


GGCCTCCCCACCACTGGGTCATGTCCTCTGCACCCAGGCCCTTCCAGCTGTTCCTGCCCG


AGCGGTCCCAGGGTGTGCTGGGAACTGATTCCCCTCCTTTGACTTCTGCCTAGAAGCTTG


GGTGCAAAGGGTTTCTTGCATCTGATCTTTCTACCACAACCACACCTGTCGTCCACTCTT


CTGACTTGGTTTCTCCAAATGGGAGGAGACCCAGCTCTGGACAGAAAGGGGACCCGACTG


CTTTGGACCTAGATGGCCTATTGCGGCTGGAGGATCCTGAGGACAGGAGAGGGGCTTCGG


CTGACCAGCCATAGCACTTACCCATAGAGACCGCTAGGGTTGGCCGTGCTGTGGTGGGGG


ATGGAGGCCTGAGCTCCTTGGAATCCACTTTTCATTGTGGGGAGGTCTACTTTAGACAAC


TTGGTTTTGCACATATTTTCTCTAATTTCTCTGTTCAGAGCCCCAGCAGACCTTATTACT


GGGGTAAGGCAAGTCTGTTGACTGGTGTCCCTCACCTCGCTTCCCTAATCTACATTCAGG


AGACCGAATCGGGGGTTAATAAGACTTTTTTTGTTTTTTGTTTTTGTTTTTAACCTAGAA


GAACCAAATCTGGACGCCAAAACGTAGGCTTAGTTTGTGTGTTGTCTCTGAGTTTGTGCT


CATGCGTACAACAGGGTATGGACTATCTGTATGGTGCCCCATTTTTGGCGGCCCGTAAGT


AGGCTAGGCTAGTCCAGGATACTGTGGAATAGCCACCTCTTGACCAGTCATGCCTGTGTG


CATGGACTCAGGGCCACGGCCTTGGCCTGGGCCACCGTGACATTGGAAGAGCCTGTGTGA


GAACTTACTCGAAGTTCACAGTCTAGGAGTGGAGGGGAGGAGACTGTAGAGTTTTGGGGG


AGGGGTAGCAAGGGTGCCCAAGCGTCTCCCACCTTTGGTACCATCTCTAGTCATCCTTCC


TCCCGGAAGTTGACAAGACACATCTTGAGTATGGCTGGCACTGGTTCCTCCATCAAGAAC


CAAGTTCACCTTCAGCTCCTGTGGCCCCGCCCCCAGGCTGGAGTCAGAAATGTTTCCCAA


AGAGTGAGTCTTTTGCTTTTGGCAAAACGCTACTTAATCCAATGGGTTCTGTACAGTAGA


TTTTGCAGATGTAATAAACTTTAATATAAAGG





Sdc1 Mouse Protein


MRRAALWLWLCALALRLQPALPQIVAVNVPPEDQDGSGDDSDNFSGSGTGALPDTLSRQT


PSTWKDVWLLTATPTAPEPTSSNTETAFTSVLPAGEKPEEGEPVLHVEAEPGFTARDKEK


EVTTRPRETVQLPITQRASTVRVTTAQAAVTSHPHGGMQPGLHETSAPTAPGQPDHQPPR


VEGGGTSVIKEVVEDGTANQLPAGEGSGEQDFTFETSGENTAVAAVEPGLRNQPPVDEGA


TGASQSLLDRKEVLGGVIAGGLVGLIFAVCLVAFMLYRMKKKDEGSYSLEEPKQANGGAY


QKPTKQEEFYA





Serpine2 Human DNA


ATGAACTGGCATCTCCCCCTCTTCCTCTTGGCCTCTGTGACGCTGCCTTCCATCTGCTCC


CACTTCAATCCTCTGTCTCTCGAGGAACTAGGCTCCAACACGGGGATCCAGGTTTTCAAT


CAGATTGTGAAGTCGAGGCCTCATGACAACATCGTGATCTCTCCCCATGGGATTGCGTCG


GTCCTGGGGATGCTTCAGCTGGGGGCGGACGGCAGGACCAAGAAGCAGCTCGCCATGGTG


ATGAGATACGGCGTAAATGGAGTTGGTAAAATATTAAAGAAGATCAACAAGGCCATCGTC


TCCAAGAAGAATAAAGACATTGTGACAGTGGCTAACGCCGTGTTTGTTAAGAATGCCTCT


GAAATTGAAGTGCCTTTTGTTACAAGGAACAAAGATGTGTTCCAGTGTGAGGTCCGGAAT


GTGAACTTTGAGGATCCAGCCTCTGCCTGTGATTCCATCAATGCATGGGTTAAAAACGAA


ACCAGGGATATGATTGACAATCTGCTGTCCCCAGATCTTATTGATGGTGTGCTCACCAGA


CTGGTCCTCGTCAACGCAGTGTATTTCAAGGGTCTGTGGAAATCACGGTTCCAACCCGAG


AACACAAAGAAACGCACTTTCGTGGCAGCCGACGGGAAATCCTATCAAGTGCCAATGCTG


GCCCAGCTCTCCGTGTTCCGGTGTGGGTCGACAAGTGCCCCCAATGATTTATGGTACAAC


TTCATTGAACTGCCCTACCACGGGGAAAGCATCAGCATGCTGATTGCACTGCCGACTGAG


AGCTCCACTCCGCTGTCTGCCATCATCCCACACATCAGCACCAAGACCATAGACAGCTGG


ATGAGCATCATGGTCCCCAAGAGGGTGCAGGTGATCCTGCCCAAGTTCACAGCTGTAGCA


CAAACAGATTTGAAGGAGCCGCTGAAAGTTCTTGGCATTACTGACATGTTTGATTCATCA


AAGGCAAATTTTGCAAAAATAACAAGGTCAGAAAACCTCCATGTTTCTCATATCTTGCAA


AAAGCAAAAATTGAAGTCAGTGAAGATGGAACCAAAGCTTCAGCAGCAACAACTGCAATT


CTCATTGCAAGATCATCGCCTCCCTGGTTTATAGTAGACAGACCTTTTCTGTTTTTCATC


CGACATAATCCTACAGGTGCTGTGTTATTCATGGGGCAGATAAACAAACC


C





Serpine2 Mouse DNA


AGTGCAGTGGTTGCACGGGAGTGCGGGCTGCACGCGTCACCGTCACCGCCGCCTGTCCCC


CACCGCCGCGCAGCGCCGATCTCCCTCCCGGTTTCGGCCGCCACCTGGGGATCCAAGCGA


GGACGGGCTGTCCTTGTTGGAAGGAACCATGAATTGGCATTTTCCTTTCTTCATCTTGAC


CACAGTGACTTTATACTCTGTGCACTCCCAGTTCAACTCTCTGTCACTGGAGGAACTAGG


CTCCAACACAGGGATCCAGGTCTTCAATCAGATCATCAAGTCACGGCCTCATGAGAACGT


TGTTGTCTCCCCACATGGGATCGCGTCCATCTTGGGCATGCTGCAGCTCGGGGCTGACGG


CAAGACAAAGAAGCAGCTCTCCACGGTGATGCGATATAATGTAAACGGAGTTGGTAAAGT


GCTGAAGAAGATCAACAAGGCTATTGTCTCCAAGAAAAATAAAGACATTGTGACCGTGGC


CAATGCTGTGTTTCTCAGGAATGGCTTTAAAATGGAAGTGCCTTTTGCAGTAAGGAACAA


AGATGTGTTTCAGTGTGAAGTGCAGAATGTGAACTTCCAGGACCCAGCCTCTGCCTCTGA


GTCCATCAATTTTTGGGTCAAAAATGAGACCAGGGGCATGATTGATAATCTGCTTTCCCC


AAATCTGATCGATGGTGCCCTTACCAGGCTGGTCCTCGTTAATGCAGTGTATTTCAAGGG


TTTGTGGAAGTCTCGGTTTCAACCAGAGAGCACAAAGAAACGGACATTCGTGGCAGGTGA


TGGGAAATCCTACCAAGTACCCATGTTGGCTCAGCTCTCTGTGTTCCGCTCAGGGTCTAC


CAGGACCCCGAATGGCTTATGGTACAACTTCATTGAGCTGCCCTACCATGGTGAGAGCAT


CAGCATGCTGATCGCCCTGCCAACAGAGAGCTCCACCCCACTGTCTGCCATCATCCCTCA


CATCACTACCAAGACCATTGATAGCTGGATGAACACCATGGTACCCAAGAGGATGCAGCT


GGTCCTACCCAAGTTCACAGCTGTGGCACAAACAGATCTGAAGGAGCCACTGAAAGCCCT


TGGCATTACTGAGATGTTTGAGCCATCAAAGGCAAATTTTACAAAAATAACAAGGTCAGA


GAGCCTTCATGTCTCTCACATCTTGCAAAAAGCAAAAATTGAAGTCAGTGAAGATGGAAC


CAAAGCTTCAGCAGCAACAACTGCAATCCTAATTGCAAGGTCATCACCTCCCTGGTTTAT


AGTAGACAGGCCTTTCCTGTTTTCCATCCGACACAATCCCACAGGTGCCATCTTGTTCCT


GGGCCAGGTGAACAAGCCCTGAAGGACAGACAAAGGAAAGCCACGCAAAGCCAAGACGAC


TTGGCTCTGAAGAGAGACTCCCTCCCCACATCTTTCATAGTTCTGTTAAATATTTTTATA


TACTGCTTTCTTTTTTGAAACTGGTTCATAGCAGCAGTTAAGTGACGCAAGTGTTTCTGG


TCGGGGCTGTGTCAGAAGAAAGGGCTGGATGCCTGGGATGCTGGATGCCTGGGATGCTGG


ATGCCTGGGATGCTGGATGCCTGGGATGCTGGATGCCTGGGATGCTGGATGCCTGGGATG


CTGTAGTGAAGGATGAGCAGGCCGGTTTCACGATGTCTAGAAGATTTCTTTAAACTACTG


ATCAGTTATCTAGGTTAACAACCCTCTCGAGTATTTGCTGTCTGTCAAGTTCAGCATCTT


TGTTTCATTCCTGTTGATATGTGTGACTTTCCAGGAGAGGATTAATCAGTGTGGCAGGAG


AGGTTAAAAAAAAAAAAGACATTTTATAGTAGTTTTTATGTTTTTATGGAAAACAATATC


ATTTGCCTTTTTAATTCTTTTTCCTCTCACTTCCACCCAAAGGCTTGAGGGTGGCAAGGG


ATGGAGCTAGCAAAAGCCGTAGCCTCTTCGTGTGTTGTTTCTGTTGCTGTTGCTCTTGTT


GTTTTATATACTGCATGTGTTCACTAAAATAAAGTTGGAAAACT





Serpine2 Mouse Protein


MNWHFPFFILTTVTLYSVHSQFNSLSLEELGSNTGIQVFNQIIKSRPHENVVVSPHGIAS


ILGMLQLGADGKTKKQLSTVMRYNVNGVGKVLKKINKAIVSKKNKDIVTVANAVFLRNGF


KMEVPFAVRNKDVFQCEVQNVNFQDPASASESINFWVKNETRGMIDNLLSPNLIDGALTR


LVLVNAVYFKGLWKSRFQPESTKKRTFVAGDGKSYQVPMLAQLSVFRSGSTRTPNGLWYN


FIELPYHGESISMLIALPTESSTPLSAIIPHITTKTIDSWMNTMVPKRMQLVLPKFTAVA


QTDLKEPLKALGITEMFEPSKANFTKITRSESLHVSHILQKAKIEVSEDGTKASAATTAI


LIARSSPPWFIVDRPFLFSIRHNPTGAILFLGQVNKP





Spp1 Human DNA


GACCAGACTCGTCTCAGGCCAGTTGCAGCCTTCTCAGCCAAACGCCGACCAAGGAAAACT


CACTACCATGAGAATTGCAGTGATTTGCTTTTGCCTCCTAGGCATCACCTGTGCCATACC


AGTTAAACAGGCTGATTCTGGAAGTTCTGAGGAAAAGCAGCTTTACAACAAATACCCAGA


TGCTGTGGCCACATGGCTAAACCCTGACCCATCTCAGAAGCAGAATCTCCTAGCCCCACA


GAATGCTGTGTCCTCTGAAGAAACCAATGACTTTAAACAAGAGACCCTTCCAAGTAAGTC


CAACGAAAGCCATGACCACATGGATGATATGGATGATGAAGATGATGATGACCATGTGGA


CAGCCAGGACTCCATTGACTCGAACGACTCTGATGATGTAGATGACACTGATGATTCTCA


CCAGTCTGATGAGTCTCACCATTCTGATGAATCTGATGAACTGGTCACTGATTTTCCCAC


GGACCTGCCAGCAACCGAAGTTTTCACTCCAGTTGTCCCCACAGTAGACACATATGATGG


CCGAGGTGATAGTGTGGTTTATGGACTGAGGTCAAAATCTAAGAAGTTTCGCAGACCTGA


CATCCAGTACCCTGATGCTACAGACGAGGACATCACCTCACACATGGAAAGCGAGGAGTT


GAATGGTGCATACAAGGCCATCCCCGTTGCCCAGGACCTGAACGCGCCTTCTGATTGGGA


CAGCCGTGGGAAGGACAGTTATGAAACGAGTCAGCTGGATGACCAGAGTGCTGAAACCCA


CAGCCACAAGCAGTCCAGATTATATAAGCGGAAAGCCAATGATGAGAGCAATGAGCATTC


CGATGTGATTGATAGTCAGGAACTTTCCAAAGTCAGCCGTGAATTCCACAGCCATGAATT


TCACAGCCATGAAGATATGCTGGTTGTAGACCCCAAAAGTAAGGAAGAAGATAAACACCT


GAAATTTCGTATTTCTCATGAATTAGATAGTGCATCTTCTGAGGTCAATTAAAAGGAGAA


AAAATACAATTTCTCACTTTGCATTTAGTCAAAAGAAAAAATGCTTTATAGCAAAATGAA


AGAGAACATGAAATGCTTCTTTCTCAGTTTATTGGTTGAATGTGTATCTATTTGAGTCTG


GAAATAACTAATGTGTTTGATAATTAGTTTAGTTTGTGGCTTCATGGAAACTCCCTGTAA


ACTAAAAGCTTCAGGGTTATGTCTATGTTCATTCTATAGAAGAAATGCAAACTATCACTG


TATTTTAATATTTGTTATTCTCTCATGAATAGAAATTTATGTAGAAGCAAACAAAATACT


TTTACCCACTTAAAAAGAGAATATAACATTTTATGTCACTATAATCTTTTGTTTTTTAAG


TTAGTGTATATTTTGTTGTGATTATCTTTTTGTGGTGTGAATAA





Spp1 Mouse DNA


CTTGCTTGGGTTTGCAGTCTTCTGCGGCAGGCATTCTCGGAGGAAACCAGCCAAGGACTA


ACTACGACCATGAGATTGGCAGTGATTTGCTTTTGCCTGTTTGGCATTGCCTCCTCCCTC


CCGGTGAAAGTGACTGATTCTGGCAGCTCAGAGGAGAAGCTTTACAGCCTGCACCCAGAT


CCTATAGCCACATGGCTGGTGCCTGACCCATCTCAGAAGCAGAATCTCCTTGCGCCACAG


AATGCTGTGTCCTCTGAAGAAAAGGATGACTTTAAGCAAGAAACTCTTCCAAGCAATTCC


AATGAAAGCCATGACCACATGGACGACGATGATGACGATGATGATGACGATGGAGACCAT


GCAGGGAGCGAGGATTCTGTGGACTCGGATGAATCTGACGAATCTCACCATTCGGATGAG


TCTGATGAGACCGTCACTGCTAGTACACAAGCAGACACTTTCACTCCAATCGTCCCTACA


GTCGATGTCCCCAACGGCCGAGGTGATAGCTTGGCTTATGGACTGAGGTCAAAGTCTAGG


AGTTTCCAGGTTTCTGATGAACAGTATCCTGATGCCACAGATGAGGACCTCACCTCTCAC


ATGAAGAGCGGTGAGTCTAAGGAGTCCCTCGATGTCATCCCTGTTGCCCAGCTTCTGAGC


ATGCCCTCTGATCAGGACAACAACGGAAAGGGCAGCCATGAGTCAAGTCAGCTGGATGAA


CCAAGTCTGGAAACACACAGACTTGAGCATTCCAAAGAGAGCCAGGAGAGTGCCGATCAG


TCGGATGTGATCGATAGTCAAGCAAGTTCCAAAGCCAGCCTGGAACATCAGAGCCACAAG


TTTCACAGCCACAAGGACAAGCTAGTCCTAGACCCTAAGAGTAAGGAAGATGATAGGTAT


CTGAAATTCCGAATTTCTCATGAATTAGAGAGTTCATCTTCTGAGGTCAACTAAAGAAGA


GGCAAAAACACAGTTCCTTACTTTGCATTTAGTAAAAACAAGAAAAAGTGTTAGTGAGGA


TTAAGCAGGAATACTAACTGCTCATTTCTCAGTTCAGTGGATATATGTATGTAGAGAAAG


AGAGGTAATATTTTGGGCTCTTAGCTTAGTCTGTTGTTTCATGCAAACAACCGTTGTAAC


CAAAAGCTTCTGCACTTTGCTTCTGTTCTTCCTGTACAAGAAATGCAAACGGCCACTGCA


TTTTAATGATTGTTATTCTTTTATGAATAAAATGTATGTAGAAACAAGCAAATTTACTGA


AACAAGCAGAATTAAAAGAGAAACTGTAACAGTCTATATCACTATACCCTTTTAGTTTTA


TAATTAGCATATATTTTGTTGTGATTATTTTTTTTGTTGGTGTGAATAAATCTTGTAACG


AATGT





Spp1 Mouse Protein


MRLAVICFCLFGIASSLPVKVTDSGSSEEKLYSLHPDPIATWLVPDPSQKQNLLAPQNAV


SSEEKDDFKQETLPSNSNESHDHMDDDDDDDDDDGDHAESEDSVDSDESDESHHSDESDE


TVTASTQADTFTPIVPTVDVPNGRGDSLAYGLRSKSRSFQVSDEQYPDATDEDLTSHMKS


GESKESLDVIPVAQLLSMPSDQDNNGKGSHESSQLDEPSLETHRLEHSKESQESADQSDV


IDSQASSKASLEHQSHKFHSHKDKLVLDPKSKEDDRYLKFRISHELESSSSEVN





Cdca8 Human DNA


GGTTGACTGTAGAGCCGCTCTCTCTCACTGGCACAGCGAGGTTTTGCTCAGCCCTTGTCT


CGGGACCGCAGGTACGTGTCTGGCGACTTCTTCGGGTGGTCCCCGTCCGCCCTCCTCGTC


CCTACCCAGTTTCTTGCTTCCCTGCCCCATCTCCGCCGCTCCCCGCAGCCTCCGCCGAGC


GCCATGGCTCCTAGGAAGGGCAGTAGTCGGGTGGCCAAGACCAACTCCTTACGGAGGCGG


AAGCTCGCCTCCTTTCTGAAAGACTTCGACCGTGAAGTGGAAATACGAATCAAGCAAATT


GAGTCAGACAGGCAGAACCTCCTCAAGGAGGTGGATAACCTCTACAACATCGAGATCCTG


CGGCTCCCCAAGGCTCTGCGCGAGATGAACTGGCTTGACTACTTCGCCCTTGGAGGAAAC


AAACAGGCCCTGGAAGAGGCGGCAACAGCTGACCTGGATATCACCGAAATAAACAAACTA


ACAGCAGAAGCTATTCAGACACCCCTGAAATCTGCCAAAACACGAAAGGTAATACAGGTA


GATGAAATGATAGTGGAAGAGGGAAGAAGGAGAAGGAAAATTTACGTAAGAATCTTCAAA


CTGCAAGAGTCAAAAGGTGTCCTCCATCCAAGAAGAGAACTCAGTCCATACAAGGCAAAG


GAAAAGGGAAAAGGTCAAGCCGTGCTAACACTGTTACCCCAGCCGTGGGCCGATTGGAGG


TGTCCATGGTCAAACCAACTCCAGGCCTGACACCCAGGTTTGACTCAAGGGTCTTCAAGA


CCCTGGCCTGCGTACTCCAGCAGCAGGAGAGCGGATTTACAACATCTCAGGGAATGGCAG


CCCTCTTGCTGACAGCAAAGAGATCTTCCTCACTGTGCCAGTGGGCGGCGGAGAGAGCCT


GCGATTATTGGCCAGTGACTTGCAGAGGCACAGTATTGCCCAGCTGGATCCAGAGGCCTT


GGGAAACATTAAGAAGCTCTCCAACCGTCTCGCCCAAATCTGCAGCAGCATACGGACCCA


CAAATGAGACACCAAAGTTGACAGGATGGACTTTTAATGGGCACTTCTGGGACCCTGAAG


AGACTTCTTCCCTTCAGGCTTATTGTTTGAGTGTGAAGTTCCAGAGCAAGGAGCCATGTT


CCTCTAAGGGAATTCAGGAATTCAGACGTGCTAGTCCCACACCAGTTAGGTAGAGCTGTC


TGTTCACCCTCCCATCCCAGCTGATCCCAGTCACTGCTTGCTGGGGCCATGCCATGGAAG


CTTCCCATCAGTCTCCCAGCTGAATCCTCCCTGCTCTCTGAGCTGCTGCCTTTTGCCTCC


TGCAACTCAACATCCTCTTCACCCTGCCCTGCCTGCAGTTGAGGGGGCGAAGAAGAACCC


TGTGTTCTCAGGAAGACTGCCTCCACCACCGCTACCCAGAGAACCTCTGCATCTGGCATT


TCTGCTCTCTATGCTTGAGACCGGGAGGTTTAGGCTCAGATAAGTGAGCTCTGGGCCATG


AGAGGGTAGGTCCAGAAGGTGGGGGGAACTGTACAGATCAGCAGAGCAGGACAGTTGGCA


GCAGTGACCTCAGTAGGGAACATGTCCGTCTACCCTCTCGCACTCATGACACCTCCCCCT


ACCAGCCTCTCTCTCTCTCACCTCCTCTGTGGGAGGTGGTCAGTGGGACTTAGGGATCTT


TCACCTGCTGTGCCCAGTAGTTCTGAAGTCTGCTTGTGGAGCAGTGTTTTATGTTTATCC


CTGTTTACTGAAGACCAAATACTGGTTTGGAGACAACTTCCATGTCTTGCTCTTCTACCT


CCCTAGTTAGTGGAAATTTGGATAAGGGAACTGTAGGGCCCAGATTCTGGAGGTTTTATG


TCATTGGCCACAGAATAACTGTCTCTAAGCTATCCATGGTCCAGTGGTCCCTGCCAAGTC


TGTAGACTTCAGAGAGCACTTCTCTCTTATGGGGTTCATGGGAACAGGGGCGGGTGTGAC


TTGCTTGGTGGCCTCATTCCATGTGTGCCTGTGCCTGGGGCATGGACTTTGTTAAGCAGA


GTCAGCAGTGAGGTCCTCATTCTCCAGCCAGCCTCTCTGCCCTGGAGAATCATGTGCTAT


GTTCTAAGAATTTGAGAACTAGAGTCCTCATCCCCAGGCTTGAAGGCACATGGCTTTCTC


ATGTAGGGCTCTCTGTGGTATTTGTTATTATTTTGCAACAAGACCATTTTAGTAAAACAG


TCCTGTTCAAGTTGTATTCTTTTAAGTTCTTTTATTCTCCTTTCCCTGAGATTTTTGTAT


ATATTGTTCTGAGTAATGGTATCTTTGAGCTGATTGTTCTAATCAGAGCTGGTACCTACT


TTCAATAAATTCTGGTTTTGTGTTTTCTTTTGT





Cdca8 Mouse DNA


GGAATTGAATTGGGTGGCGGTTAACCGAGGAGCCGCCCGTCCCTTAGTTGGAGCTGTGAG


GGTTCCTCAGACTGTGTTTTGGGACCTGCAGGTAGGTTTCGGCAGAGTTCTGGAAACCTA


GACTCCAACGACTGAACTTTCTCAGCTCTCCGACCGCTCACACCCTCTCCCCGTCTCAGT


CGCGGAGCCGGCTGCTTGGCCCCTCGCTCGACGCAGCCAGGCGCCATGGCTCCCAAGAAA


CGCAGCAGCCGCGGAACCAGGACCAACACGCTGCGGAGCCGGAAGCTCGCCTCCTTCCTG


AAGGACTTCGACCGCGAGGTGCAAGTTCGAACCAAGCAAATTGAGTCCGACAGACAGACC


CTCCTCAAGGAGGTGGAAAATCTGTACAACATCGAGATCCTTCGGCTCCCCAAGGCGCTG


CAAGGGATGAAGTGGCTTGACTACTTCGCCCTAGGAGGAAACAAGCAGGCCCTGGAAGAG


GCAGCAAAAGCTGATCGAGACATCACAGAAATAAACAATTTAACAGCTGAAGCTATTCAG


ACACCTTTGAAATCTGTTAAAAAGCGAAAGGTAATCGAGGTGGAGGAATCGATAAAGGAA


GAAGAAGAAGAGGAAGAAGAAGGAGGAGGAGAAGGAGGAAGAACAAAAAAGAGCCATAAG


AATCTTCGATCTGCAAAAGTCAAAAGATGCCTTCCATCCAAGAAGAGAACCCAGTCCATA


CAAGGAAGAGGCAGAAGTAAAAGGTTAAGCCATGACTTTGTGACGCCAGCTATGAGCAGG


CTGGAGCCGTCTCTGGTGAAACCAACCCCAGGCATGACACCTAGGTTTGACTCCCGGGTC


TTCAAGACTCCAGGGCTACGCACTCCAGCAGCCAAAGAGCAAGTTTACAACATCTCCATC


AACGGCAGCCCTCTCGCAGACAGCAAAGAGATCTCCCTCAGTGTGCCCATAGGTGGCGGT


GCGAGCTTGCGGTTATTGGCCAGTGACTTGCAAAGGATTGATATTGCTCAGCTGAATCCA


GAGGCCCTGGGAAACATTAGAAAGCTCTCGAGCCGCCTCGCCCAGATCTGCAGCAGCATA


CGGACGGGCCGATGAGAGGACAACAGGACACACAGTGGCAGCAGGGACTGTGGTAGCAGA


GTGCACACATCTGTCCTTCTTCTGTGGGGTCCTTCACTGCCAACACCTGCAACGGTGCTT


TGTCTCTCTGACAGCTATGGTGTCTTGCTGCACACTTCTAGTTAGTGGGAATTTTAGACG


GGGAACACAGGGCTAGTCAGGGCCTTTGTGTGCTTGGTGTGGAGTGACTGAGAACCGTCT


ATGGTTCAAGGTCCCACTGGGGATAAACTGCTTAGAGCACTGTCCTAGAGGGCAAGTGTA


GCCTTCGCCTCCGGGCCCAGGCAGGCTATGCAGTCAGCAGTAGGGTCTGTGCTCCATGCG


GGTCCAGGCGCACGGCTCTCCTATTCTGTTGTCATTTGTGCCCTCTATGGGCAGGTGTGT


TTCAAGTTGGTTTTCTGTTGCTGAGGCTTTCATACACATCAGTTACCATCTCAGCTGATT


TGTCTACTGAAAGCTTGCTGTTTTCAATAAATCTTAGTTTGCCATGGTTTTA


AGTC





Cdca8 Mouse Protein


MAPKKRSSRGTRTNTLRSRKLASFLKDFDREVQVRTKQIESDRQTLLKEVENLYNIEILR


LPKALQGMKWLDYFALGGNKQALEEAAKADRDITEINNLTAEAIQTPLKSVKKRKVIEVE


ESIKEEEEEEEEGGGGGGRTKKSHKNLRSAKVKRCLPSKKRTQSIQGRGRSKRLSHDFVT


PAMSRLEPSLVKPTPGMTPRFDSRVFKTPGLRTPAAKEQVYNISINGSPLADSKEISLSV


PIGGGASLRLLASDLQRIDIAQLNPEALGNIRKLSSRLAQICSSIRTGR





Nrp1 Human DNA


ATGGAGAGGGGGCTGCCGCTCCTCTGCGCCGTGCTCGCCCTCGTCCTCGCCCCGGCCGGC


GCTTTTCGCAACGATGAATGTGGCGATACTATAAAAATTGAAAGCCCCGGGTACCTTACA


TCTCCTGGTTATCCTCATTCTTATCACCCAAGTGAAAAATGCGAATGGCTGATTCAGGCT


CCGGACCCATACCAGAGAATTATGATCAACTTCAACCCTCACTTCGATTTGGAGGACAGA


GACTGCAAGTATGACTACGTGGAAGTCTTCGATGGAGAAAATGAAAATGGACATTTTAGG


GGAAAGTTCTGTGGAAAGATAGCCCCTCCTCCTGTTGTGTCTTCAGGGCCATTTCTTTTT


ATCAAATTTGTCTCTGACTACGAAACACATGGTGCAGGATTTTCCATACGTTATGAAATT


TTCAAGAGAGGTCCTGAATGTTCCCAGAACTACACAACACCTAGTGGAGTGATAAAGTCC


CCCGGATTCCCTGAAAAATATCCCAACAGCCTTGAATGCACTTATATTGTCTTTGCGCCA


AAGATGTCAGAGATTATCCTGGAATTTGAAAGCTTTGACCTGGAGCCTGACTCAAATCCT


CCAGGGGGGATGTTCTGTCGCTACGACCGGCTAGAAATCTGGGATGGATTCCCTGATGTT


GGCCCTCACATTGGGCGTTACTGTGGACAGAAAACACCAGGTCGAATCCGATCCTCATCG


GGCATTCTCTCCATGGTTTTTTACACCGACAGCGCGATAGCAAAAGAAGGTTTCTCAGCA


AACTACAGTGTCTTGCAGAGCAGTGTCTCAGAAGATTTCAAATGTATGGAAGCTCTGGGC


ATGGAATCAGGAGAAATTCATTCTGACCAGATCACAGCTTCTTCCCAGTATAGCACCAAC


TGGTCTGCAGAGCGCTCCCGCCTGAACTACCCTGAGAATGGGTGGACTCCCGGAGAGGAT


TCCTACCGAGAGTGGATACAGGTAGACTTGGGCCTTCTGCGCTTTGTCACGGCTGTCGGG


ACACAGGGCGCCATTTCAAAAGAAACCAAGAAGAAATATTATGTCAAGACTTACAAGATC


GACGTTAGCTCCAACGGGGAAGACTGGATCACCATAAAAGAAGGAAACAAACCTGTTCTC


TTTCAGGGAAACACCAACCCCACAGATGTTGTGGTTGCAGTATTCCCCAAACCACTGATA


ACTCGATTTGTCCGAATCAAGCCTGCAACTTGGGAAACTGGCATATCTATGAGATTTGAA


GTATACGGTTGCAAGATAACAGATTATCCTTGCTCTGGAATGTTGGGTATGGTGTCTGGA


CTTATTTCTGACTCCCAGATCACATCATCCAACCAAGGAGACAGAAACTGGATGCCTGAA


AACATCCGCCTGGTAACCAGTCGCTCTGGCTGGGCACTTCCACCCGCACCTCATTCCTAC


ATCAATGAGTGGCTCCAAATAGACCTGGGGGAGGAGAAGATCGTGAGGGGCATCATCATT


CAGGGTGGGAAGCACCGAGAGAACAAGGTGTTCATGAGGAAGTTCAAGATCGGGTACAGC


AACAACGGCTCGGACTGGAAGATGATCATGGATGACAGCAAACGCAAGGCGAAGTCTTTT


GAGGGCAACAACAACTATGATACACCTGAGCTGCGGACTTTTCCAGCTCTCTCCACGCGA


TTCATCAGGATCTACCCCGAGAGAGCCACTCATGGCGGACTGGGGCTCAGAATGGAGCTG


CTGGGCTGTGAAGTGGAAGCCCCTACAGCTGGACCGACCACTCCCAACGGGAACTTGGTG


GATGAATGTGATGACGACCAGGCCAACTGCCACAGTGGAACAGGTGATGACTTCCAGCTC


ACAGGTGGCACCACTGTGCTGGCCACAGAAAAGCCCACGGTCATAGACAGCACCATACAA


TCAGAGTTTCCAACATATGGTTTTAACTGTGAATTTGGCTGGGGCTCTCACAAGACCTTC


TGCCACTGGGAACATGACAATCACGTGCAGCTCAAGTGGAGTGTGTTGACCAGCAAGACG


GGACCCATTCAGGATCACACAGGAGATGGCAACTTCATCTATTCCCAAGCTGACGAAAAT


CAGAAGGGCAAAGTGGCTCGCCTGGTGAGCCCTGTGGTTTATTCCCAGAACTCTGCCCAC


TGCATGACCTTCTGGTATCACATGTCTGGGTCCCACGTCGGCACACTCAGGGTCAAACTG


CGCTACCAGAAGCCAGAGGAGTACGATCAGCTGGTCTGGATGGCCATTGGACACCAAGGT


GACCACTGGAAGGAAGGGCGTGTCTTGCTCCACAAGTCTCTGAAACTTTATCAGGTGATT


TTCGAGGGCGAAATCGGAAAAGGAAACCTTGGTGGGATTGCTGTGGATGACATTAGTATT


AATAACCACATTTCACAAGAAGATTGTGCAAAACCAGCAGACCTGGATAAAAAGAACCCA


GAAATTAAAATTGATGAAACAGGGAGCACGCCAGGATACGAAGGTGAAGGAGAAGGTGAC


AAGAACATCTCCAGGAAGCCAGGCAATGTGTTGAAGACCTTAGAACCCATCCTCATCACC


ATCATAGCCATGAGCGCCCTGGGGGTCCTCCTGGGGGCTGTCTGTGGGGTCGTGCTGTAC


TGTGCCTGTTGGCATAATGGGATGTCAGAAAGAAACTTGTCTGCCCTGGAGAACTATAAC


TTTGAACTTGTGGATGGTGTGAAGTTGAAAAAAGACAAACTGAATACACAGAGTACTTAT


TCGGAGGCATGA





Nrp1 Mouse DNA


TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCCTCCTTCTTCTTCTTCCTGAGACA


TGGCCCGGGCAGTGGCTCCTGGAAGAGGAACAAGTGTGGGAAAAGGGAGAGGAAATCGGA


GCTAAATGACAGGATGCAGGCGACTTGAGACACAAAAAGAGAAGCGCTTCTCGCGAATTC


AGGCATTGCCTCGCCGCTAGCCTTCCCCGCCAAGACCCGCTGAGGATTTTATGGTTCTTA


GGCGGACTTAAGAGCGTTTCGGATTGTTAAGATTATCGTTTGCTGGTTTTTCGTCCGCGC


AATCGTGTTCTCCTGCGGCTGCCTGGGGACTGGCTTGGCGAAGGAGGATGGAGAGGGGGC


TGCCGTTGCTGTGCGCCACGCTCGCCCTTGCCCTCGCCCTGGCGGGCGCTTTCCGCAGCG


ACAAATGTGGCGGGACCATAAAAATCGAAAACCCAGGGTACCTCACATCTCCCGGTTACC


CTCATTCTTACCATCCAAGTGAGAAGTGTGAATGGCTAATCCAAGCTCCGGAACCCTACC


AGAGAATCATAATCAACTTCAACCCACATTTCGATTTGGAGGACAGAGACTGCAAGTATG


ACTACGTGGAAGTAATTGATGGGGAGAATGAAGGCGGCCGCCTGTGGGGGAAGTTCTGTG


GGAAGATTGCACCTTCTCCTGTGGTGTCTTCAGGGCCCTTTCTCTTCATCAAATTTGTCT


CTGACTATGAGACACATGGGGCAGGGTTTTCCATCCGCTATGAAATCTTCAAGAGAGGGC


CCGAATGTTCTCAGAACTATACAGCACCTACTGGAGTGATAAAGTCCCCTGGGTTCCCTG


AAAAATACCCCAACTGCTTGGAGTGCACCTACATCATCTTTGCACCAAAGATGTCTGAGA


TAATCCTGGAGTTTGAAAGTTTTGACCTGGAGCAAGACTCGAATCCTCCCGGAGGAATGT


TCTGTCGCTATGACCGGCTGGAGATCTGGGATGGATTCCCTGAAGTTGGCCCTCACATTG


GGCGTTATTGTGGGCAGAAAACTCCTGGCCGGATCCGCTCCTCTTCAGGCGTTCTATCCA


TGGTCTTTTACACTGACAGCGCAATAGCAAAAGAAGGTTTCTCAGCCAACTACAGTGTGC


TACAGAGCAGCATCTCTGAAGATTTTAAGTGTATGGAGGCTCTGGGCATGGAATCTGGAG


AGATCCATTCTGATCAGATCACTGCATCTTCACAGTATGGTACCAACTGGTCTGTAGAGC


GCTCCCGCCTGAACTACCCTGAAAATGGGTGGACTCCAGGAGAAGACTCCTACAAGGAGT


GGATCCAGGTGGACTTGGGCCTCCTGCGATTCGTTACTGCTGTAGGGACACAGGGTGCCA


TTTCCAAGGAAACCAAGAAGAAATATTATGTCAAGACTTACAGAGTAGACATCAGCTCCA


ACGGAGAGGACTGGATCTCCCTGAAAGAGGGAAATAAAGCCATTATCTTTCAGGGAAACA


CCAACCCCACAGATGTTGTCTTAGGAGTTTTCTCCAAACCACTGATAACTCGATTTGTCC


GAATCAAACCTGTATCCTGGGAAACTGGTATATCTATGAGATTTGAAGTTTATGGCTGCA


AGATAACAGATTATCCTTGCTCTGGAATGTTGGGCATGGTGTCTGGACTTATTTCAGACT


CCCAGATTACAGCATCCAATCAAGCCGACAGGAATTGGATGCCAGAAAACATCCGTCTGG


TGACCAGTCGTACCGGCTGGGCACTGCCACCCTCACCCCACCCATACACCAATGAATGGC


TCCAAGTGGACCTGGGAGATGAGAAGATAGTAAGAGGTGTCATCATTCAGGGTGGGAAGC


ACCGAGAAAACAAGGTGTTCATGAGGAAGTTCAAGATCGCCTATAGTAACAATGGCTCTG


ACTGGAAAACTATCATGGATGACAGCAAGCGCAAGGCTAAGTCGTTCGAAGGCAACAACA


ACTATGACACACCTGAGCTTCGGACGTTTTCACCTCTCTCCACAAGGTTCATCAGGATCT


ACCCTGAGAGAGCCACACACAGTGGGCTTGGGCTGAGGATGGAGCTACTGGGCTGTGAAG


TGGAAGCACCTACAGCTGGACCAACCACACCCAATGGGAACCCAGTGCATGAGTGTGACG


ACGACCAGGCCAACTGCCACAGTGGCACAGGTGATGACTTCCAGCTCACAGGAGGCACCA


CTGTCCTGGCCACAGAGAAGCCAACCATTATAGACAGCACCATCCAATCAGAGTTCCCGA


CATACGGTTTTAACTGCGAGTTTGGCTGGGGCTCTCACAAGACATTCTGCCACTGGGAGC


ATGACAGCCATGCACAGCTCAGGTGGAGTGTGCTGACCAGCAAGACAGGGCCGATTCAGG


ACCATACAGGAGATGGCAACTTCATCTATTCCCAAGCTGATGAAAATCAGAAAGGCAAAG


TAGCCCGCCTGGTGAGCCCTGTGGTCTATTCCCAGAGCTCTGCCCACTGTATGACCTTCT


GGTATCACATGTCCGGCTCTCATGTGGGTACACTGAGGGTCAAACTACGCTACCAGAAGC


CAGAGGAATATGATCAACTGGTCTGGATGGTGGTTGGGCACCAAGGAGACCACTGGAAAG


AAGGACGTGTCTTGCTGCACAAATCTCTGAAACTATATCAGGTTATTTTTGAAGGTGAAA


TCGGAAAAGGAAACCTTGGTGGAATTGCTGTGGATGATATCAGTATTAACAACCATATTT


CTCAGGAAGACTGTGCAAAACCAACAGACCTAGATAAAAAGAACACAGAAATTAAAATTG


ATGAAACAGGGAGCACTCCAGGATATGAAGGAGAAGGGGAAGGTGACAAGAACATCTCCA


GGAAGCCAGGCAATGTGCTTAAGACCCTGGATCCCATCCTGATCACCATCATAGCCATGA


GTGCCCTGGGAGTACTCCTGGGTGCAGTCTGTGGAGTTGTGCTGTACTGTGCCTGTTGGC


ACAATGGGATGTCAGAAAGGAACCTATCTGCCCTGGAGAACTATAACTTTGAACTTGTGG


ATGGTGTAAAGTTGAAAAAAGATAAACTGAACCCACAGAGTAATTACTCAGAGGCGTGAA


GGCACGGAGCTGGAGGGAACAAGGGAGGAGCACGGCAGGAGAACAGGTGGAGGCATGGGG


ACTCTGTTACTCTGCTTTCACTGTAAGCTGGGAAGGGCGGGGACTCTGTTACTCCGCTTT


CACTGTAAGCTCGGAAGGGCATCCACGATGCCATGCCAGGCTTTTCTCAGGAGCTTCAAT


GAGCGTCACCTACAGACACAAGCAGGTGACTGCGGTAACAACAGGAATCATGTACAAGCC


TGCTTTCTTCTCTTGGTTTCATTTGGGTAATCAGAAGCCATTTGAGACCAAGTGTGACTG


ACTTCATGGTTCATCCTACTAGCCCCCTTTTTTCCTCTCTTTCTCCTTACCCTGTGGTGG


ATTCTTCTCGGAAACTGCAAAATCCAAGATGCTGGCACTAGGCGTTATTCAGTGGGCCCT


TTTGATGGACATGTGACCTGTAGCCCAGTGCCCAGAGCATATTATCATAACCACATTTCA


GGGGACGCCAACGTCCATCCACCTTTGCATCGCTACCTGCAGCGAGCACA


GG





Nrp1 Mouse Protein


MERGLPLLCATLALALALAGAFRSDKCGGTIKIENPGYLTSPGYPHSYHPSEKCEWLIQA


PEPYQRIMINFNPHFDLEDRDCKYDYVEVIDGENEGGRLWGKFCGKIAPSPVVSSGPFLF


IKFVSDYETHGAGFSIRYEIFKRGPECSQNYTAPTGVIKSPGFPEKYPNSLECTYIIFAP


KMSEIILEFESFDLEQDSNPPGGMFCRYDRLEIWDGFPEVGPHIGRYCGQKTPGRIRSSS


GVLSMVFYTDSAIAKEGFSANYSVLQSSISEDFKCMEALGMESGEIHSDQITASSQYGTN


WSVERSRLNYPENGWTPGEDSYKEWIQVDLGLLRFVTAVGTQGAISKETKKKYYVKTYRV


DISSNGEDWISLKEGNKAIIFQGNTNPTDVVLGVFSKPLITRFVRIKPVSWETGISMRFE


VYGCKITDYPCSGMLGMVSGLISDSQITASNQADRNWMPENIRLVTSRTGWALPPSPHPY


TNEWLQVDLGDEKIVRGVIIQGGKHRENKVFMRKFKIAYSNNGSDWKTIMDDSKRKAKSF


EGNNNYDTPELRTFSPLSTRFIRIYPERATHSGLGLRMELLGCEVEAPTAGPTTPNGNPV


DECDDDQANCHSGTGDDFQLTGGTTVLATEKPTIIDSTIQSEEPTYGENCEFGWGSHKTF


CHWEHDSHAQLRWSVLTSKTGPIQDHTGDGNFIYSQADENQKGKVARLVSPVVYSQSSAH


CMTFWYHMSGSHVGTLRVKLRYQKPEEYDQLVWMVVGHQGDHWKEGRVLLHKSLKLYQVI


FEGEIGKGNLGGIAVDDISINNHISQEDCAKPTDLDKKNTEIKIDETGSTPGYEGEGEGD


KNISRKPGNVLKTLDPILITIIAMSALGVLLGAVCGVVLYCACWHNGMSERNLSALENYN


FELVDGVKLKKDKLNPQSNYSEA





Mcam Human DNA


GGGAAGCATGGGGCTTCCCAGGCTGGTCTGCGCCTTCTTGCTCGCCGCCTGCTGCTGCTG


TCCTCGCGTCGCGGGTGTGCCCGGAGAGGCTGAGCAGCCTGCGCCTGAGCTGGTGGAGGT


GGAAGTGGGCAGCACAGCCCTTCTGAAGTGCGGCCTCTCCCAGTCCCAAGGCAACCTCAG


CCATGTCGACTGGTTTTCTGTCCACAAGGAGAAGCGGACGCTCATCTTCCGTGTGCGCCA


GGGCCAGGGCCAGAGCGAACCTGGGGAGTACGAGCAGCGGCTCAGCCTCCAGGACAGAGG


GGCTACTCTGGCCCTGACTCAAGTCACCCCCCAAGACGAGCGCATCTTCTTGTGCCAGGG


CAAGCGCCCTCGGTCCCAGGAGTACCGCATCCAGCTCCGCGTCTACAAAGCTCCGGAGGA


GCCAAACATCCAGGTCAACCCCCTGGGCATCCCTGTGAACAGTAAGGAGCCTGAGGAGGT


CGCTACCTGTGTAGGGAGGAACGGGTACCCCATTCCTCAAGTCATCTGGTACAAGAATGG


CCGGCCTCTGAAGGAGGAGAAGAACCGGGTCCACATTCAGTCGTCCCAGACTGTGGAGTC


GAGTGGTTTGTACACCTTGCAGAGTATTCTGAAGGCACAGCTGGTTAAAGAAGACAAAGA


TGCCCAGTTTTACTGTGAGCTCAACTACCGGCTGCCCAGTGGGAACCACATGAAGGAGTC


CAGGGAAGTCACCGTCCCTGTTTTCTACCCGACAGAAAAAGTGTGGCTGGAAGTGGAGCC


CGTGGGAATGCTGAAGGAAGGGGACCGCGTGGAAATCAGGTGTTTGGCTGATGGCAACCC


TCCACCACACTTCAGCATCAGCAAGCAGAACCCCAGCACCAGGGAGGCAGAGGAAGAGAC


AACCAACGACAACGGGGTCCTGGTGCTGGAGCCTGCCCGGAAGGAACACAGTGGGCGCTA


TGAATGTCAGGCCTGGAACTTGGACACCATGATATCGCTGCTGAGTGAACCACAGGAACT


ACTGGTGAACTATGTGTCTGACGTCCGAGTGAGTCCCGCAGCCCCTGAGAGACAGGAAGG


CAGCAGCCTCACCCTGACCTGTGAGGCAGAGAGTAGCCAGGACCTCGAGTTCCAGTGGCT


GAGAGAAGAGACAGACCAGGTGCTGGAAAGGGGGCCTGTGCTTCAGTTGCATGACCTGAA


ACGGGAGGCAGGAGGCGGCTATCGCTGCGTGGCGTCTGTGCCCAGCATACCCGGCCTGAA


CCGCACACAGCTGGTCAAGCTGGCCATTTTTGGCCCCCCTTGGATGGCATTCAAGGAGAG


GAAGGTGTGGGTGAAAGAGAATATGGTGTTGAATCTGTCTTGTGAAGCGTCAGGGCACCC


CCGGCCCACCATCTCCTGGAACGTCAACGGCACGGCAAGTGAACAAGACCAAGATCCACA


GCGAGTCCTGAGCACCCTGAATGTCCTCGTGACCCCGGAGCTGTTGGAGACAGGTGTTGA


ATGCACGGCCTCCAACGACCTGGGCAAAAACACCAGCATCCTCTTCCTGGAGCTGGTCAA


TTTAACCACCCTCACACCAGACTCCAACACAACCACTGGCCTCAGCACTTCCACTGCCAG


TCCTCATACCAGAGCCAACAGCACCTCCACAGAGAGAAAGCTGCCGGAGCCGGAGAGCCG


GGGCGTGGTCATCGTGGCTGTGATTGTGTGCATCCTGGTCCTGGCGGTGCTGGGCGCTGT


CCTCTATTTCCTCTATAAGAAGGGCAAGCTGCCGTGCAGGCGCTCAGGGAAGCAGGAGAT


CACGCTGCCCCCGTCTCGTAAGACCGAACTTGTAGTTGAAGTTAAGTCAGATAAGCTCCC


AGAAGAGATGGGCCTCCTGCAGGGCAGCAGCGGTGACAAGAGGGCTCCGGGAGACCAGGG


AGAGAAATACATCGATCTGAGGCATTAGCCCCGAATCACTTCAGCTCCCTTCCCTGCCTG


GACCATTCCCAGCTCCCTGCTCACTCTTCTCTCAGCCAAAGCTCAAAGGGACTAGAGAGA


AGCCTCCTGCTCCCCTCGCCTGCACACCCCCTTTCAGAGGGCCACTGGGTTAGGACCTGA


GGACCTCACTTGGCCCTGCAAGGCCCGCTTTTCAGGGACCAGTCCACCACCATCTCCTCC


ACGTTGAGTGAAGCTCATCCCAAGCAAGGAGCCCCAGTCTCCCGAGCGGGTAGGAGAGTT


TCTTGCAGAACGTGTTTTTTCTTTACACACATTATGCTGTAAATACGCTCGTCCTGCCAG


CAGCTGAGCTGGGTAGCCTCTCTGAGCTGGTTTCCTGCCCCAAAGGCTGGCATTCCACCA


TCCAGGTGCACCACTGAAGTGAGGACACACCGGAGCCAGGCGCCTGCTCATGTTGAAGTG


CGCTGTTCACACCCGCTCCGGAGAGCACCCCAGCAGCATCCAGAAGCAGCTGCAGTGCAA


GCTTGCATGCCTGCGTGTTGCTGCACCACCCTCCTGTCTGCCTCTTCAAAGTCTCCTGTG


ACATTTTTTCTTTGGTCAGAGGCCAGGAACTGTGTCATTCCTTAAAGATACGTGCCGGGG


CCAGGTGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGCGGATCACAA


AGTCAGACGAGACCATCCTGGCTAACACGGTGAAACCCTGTCTCTACTAAAAATACAAAA


AAAAATTAGCTAGGCGTAGTGGTTGGCACCTATAGTCCCAGCTACTCGGAAGGCTGAAGC


AGGAGAATGGTATGAATCCAGGAGGTGGAGCTTGCAGTGAGCCGAGACCGTGCCACTGCA


CTCCAGCCTGGGCAACACAGCGAGACTCCGTCTCGAGCCGGCCGGTTGCGCGGGCCCTCG


GACCCTCAGAGAGGCGAGGGTTCGAGGGCACGAGTTCGAGGCCAACCTGGTCCACATGGG


TTG





Mcam Mouse DNA


CGCCCTCCGTCGGGGAAGCATGGGGCTGCCCAAACTGGTGTGCGTCTTCTTGTTCGCTGC


CTGCTGCTGCTGTCGCCGTGCCGCGGGTGTGCCAGGAGAGGAAAAGCAGCCAGTACCCAC


GCCCGACCTGGTGGAGGCAGAAGTGGGCAGCACAGCCCTTCTCAAGTGTGGCCCCTCACG


GGCCTCAGGCAACTTCAGCCAAGTGGACTGGTTTTTGATTCACAAGGAGAGGCAGATACT


GATTTTCCGTGTGCACCAAGGCAAGGGCCAGCGGGAACCTGGTGAATATGAGCACCGCCT


TAGCCTCCAAGACTCGGTGGCTACTCTGGCCCTGAGTCACGTCACTCCCCATGATGAGCG


AATGTTCCTGTGTAAGAGCAAGCGACCACGGCTCCAGGATCACTACGTTGAGCTTCAGGT


CTTCAAAGCCCCAGAGGAACCAACTATTCAAGCCAATGTCGTGGGCATCCATGTGGACAG


GCAAGAGCTCAGGGAGGTTGCTACCTGTGTGGGGAGAAACGGCTACCCCATTCCTCAAGT


CCTATGGTACAAGAACAGTCTGCCCTTGCAAGAGGAGGAGAACCGAGTTCATATCCAGTC


ATCACAGATTGTCGAGTCCAGTGGCTTGTACACCTTGAAGAGTGTTCTGAGTGCACGCCT


AGTTAAGGAAGACAAAGATGCCCAGTTTTACTGTGAACTCAGCTACCGGCTACCCAGTGG


GAACCACATGAAGGAATCTAAGGAGGTCACTGTCCCTGTTTTCTACCCTGCAGAAAAAGT


GTGGGTGGAGGTAGAGCCTGTGGGGCTGCTGAAGGAAGGGGATCATGTGACAATCAGGTG


TCTGACAGATGGCAACCCTCAACCCCACTTCACTATCAACAAGAAGGACCCCAGCACTGG


GGAGATGGAAGAGGAGAGCACCGATGAAAATGGGCTCCTGTCCTTGGAGCCTGCCGAAAA


GCACCATAGCGGGCTCTACCAGTGTCAGAGTCTGGACCTGGAAACTACCATCACACTGTC


AAGTGACCCCCTGGAGCTGCTGGTGAACTATGTGTCTGATGTTCAAGTGAATCCAACTGC


CCCTGAAGTCCAGGAAGGTGAGAGCCTCACGCTGACCTGCGAGGCAGAAAGTAACCAGGA


CCTTGAGTTTGAGTGGCTGAGAGACAAGACAGGCCAGCTGCTGGGAAAGGGTCCCGTCCT


CCAGCTAAACAACGTGAGACGGGAAGCAGGGGGACGGTATCTCTGCATGGCATCTGTCCC


CAGAGTTCCTGGCTTGAATCGTACCCAGCTGGTCAGCGTGGGCATTTTTGGGTCCCCATG


GATGGCATTAAAGGAGAGGAAGGTGTGGGTGCAAGAGAATGCAGTGCTGAATCTGTCTTG


TGAGGCTTCAGGACATCCTCAGCCCACCATCTCCTGGAATGTCAATGGTTCGGCAACTGA


ATGGAACCCAGATCCACAGACAGTAGTGAGCACCTTGAATGTCCTTGTGACGCCAGAGCT


TCTGGAGACAGGTGCAGAGTGTACAGCCTCCAACTCCCTGGGCTCAAACACCACCACCAT


TGTTCTGAAGCTGGTCACTTTAACCACCCTCATACCTGACTCCAGCCAAACCACTGGCCT


CAGCACCCTCACAGTCAGTCCTCACACCAGAGCCAACAGCACCTCCACAGAGAAAAAGCT


GCCACAGCCAGAGAGCAAAGGTGTGGTCATCGTGGCTGTGATAGTGTGTACCTTGGTGCT


TGCTGTGCTGGGTGCTGCTCTCTATTTCCTCTACAAGAAGGGCAAGCTGCCATGTGGACG


CTCGGGAAAACAGGAGATCACGCTGCCCCCGACTCGTAAGAGTGAATTTGTAGTTGAAGT


TAAGTCAGATAAGCTCCCAGAAGAGATGGCTCTCCTTCAGGGCAGCAACGGTGACAAGAG


GGCTCCAGGAGACCAGGGAGAGAAATACATCGATCTGAGGCATTAGATGGCTCCCATTGC


ACTGCTCGCAGCTCCCTGCTCAGACTTCACCCCAAGCTGAAGCCTCCAGAGGGACAGCAG


GGACGAGCCACACTCAACCCCCCCCCTGCACATCAGGTCTGAGAGCTAGGAGCTGGGACA


GGAGTCGTCTGCAGGAGCTCAGTTGGCCACAGAGGCCTGGTTTTAGAGACCAAGCCCTCC


TCTGTGTCCAGTAAATAATGCTTATCCCAAGGGGCCCGTCTCCCAGGGCATTTCCCCCTC


CCGTGCACAGCCATTGGTGGCAAATCCTTCTGCCATCAGCTGTGTGGGCTTGCCTCTTTG


AGCTCATCTCCCCTCACAGGCTGTCTTCATGATGCAGGACCTGGGCACATGGTCACATTA


TTCCGTTCACATTGGTCCTTGTGAGAACCTCACAGTCTGGAGGCGGCTGCTTTTGTACCT


TCCTGCCTGCTACTAATTCAGGGTCTCATTTGGAACATTTTTCCTTTGGGTAGTGGTCAG


GAACTGGTGTAAGTCCTCCAGACACATCCCTGTGTAAGGAAGCCAGGGCACTGTTTCTCT


GAGTTTTGTTGTTTTGTTTTCTTTGAAGGCTACTGAGCCCAAGCTTCCCGCATTCCCTTA


GTAACAAGAGACAGGACAGAGAGAAGGTCTACTGTTCATGGGGATTAGGCTTATAGGAAT


GTTAGTACCAAATTTCTACATGTGAGCTTTGGGGGCCAGGTCCTAGAGAGCCCAAGTGGG


AGAATGGTATTTAGGAGATGAAAAACCTGGCCTAGCAAGAGCTTTTGAGGTGTGTGTGTG


TGTGTGTGTATACATATATGTGTGTATATATATATATATATATATAGGTTTTGTCTGTAA


ATTTGCAAATTTTTCCTTTTATATGTGTGTTAGAAAAATAAAGTGTTATTGTCCCAAAAA


AAAAAAAAAA





Mcam Mouse Protein


MGLPKLVCVFLFAACCCCRRAAGVPGEEKQPVPTPDLVEAEVGSTALLKCGPSRASGNFS


QVDWFLIHKERQILIFRVHQGKGQREPGEYEHRLSLQDSVATLALSHVTPHDERMFLCKS


KRPRLQDHYVELQVFKAPEEPTIQANVVGIHVDRQELREVATCVGRNGYPIPQVLWYKNS


LPLQEEENRVHIQSSQIVESSGLYTLKSVLSARLVKEDKDAQFYCELSYRLPSGNHMKES


KEVTVPVFYPAEKVWVEVEPVGLLKEGDHVTIRCLTDGNPQPHFTINKKDPSTGEMEEES


TDENGLLSLEPAEKHHSGLYQCQSLDLETTITLSSDPLELLVNYVSDVQVNPTAPEVQEG


ESLTLTCEAESNQDLEFEWLRDKTGQLLGKGPVLQLNNVRREAGGRYLCMASVPRVPGLN


RTQLVSVGIFGSPWMALKERKVWVQENAVLNLSCEASGHPQPTISWNVNGSATEWNPDPQ


TVVSTLNVLVTPELLETGAECTASNSLGSNTTTIVLKLVTLTTLIPDSSQTTGLSTLTVS


PHTRANSTSTEKKLPQPESKGVVIVAVIVCTLVLAVLGAALYFFYKKGKLPCGRSGKQEI


TLPPTRKSEFVVEVKSDKLPEEMALLQGSNGDKRAPGDQGEKYIDLRH





Pbk Human DNA


GTAAGAAAGCCAGGAGGGTTCGAATTGCAACGGCAGCTGCCGGGCGTATGTGTTGGTGCT


AGAGGCAGCTGCAGGGTCTCGCTGGGGGCCGCTCGGGACCAATTTTGAAGAGGTACTTGG


CCACGACTTATTTTCACCTCCGACCTTTCCTTCCAGGCGGTGAGACTCTGGACTGAGAGT


GGCTTTCACAATGGAAGGGATCAGTAATTTCAAGACACCAAGCAAATTATCAGAAAAAAA


GAAATCTGTATTATGTTCAACTCCAACTATAAATATCCCGGCCTCTCCGTTTATGCAGAA


GCTTGGCTTTGGTACTGGGGTAAATGTGTACCTAATGAAAAGATCTCCAAGAGGTTTGTC


TCATTCTCCTTGGGCTGTAAAAAAGATTAATCCTATATGTAATGATCATTATCGAAGTGT


GTATCAAAAGAGACTAATGGATGAAGCTAAGATTTTGAAAAGCCTTCATCATCCAAACAT


TGTTGGTTATCGTGCTTTTACTGAAGCCAATGATGGCAGTCTGTGTCTTGCTATGGAATA


TGGAGGTGAAAAGTCTCTAAATGACTTAATAGAAGAACGATATAAAGCCAGCCAAGATCC


TTTTCCAGCAGCCATAATTTTAAAAGTTGCTTTGAATATGGCAAGAGGGTTAAAGTATCT


GCACCAAGAAAAGAAACTGCTTCATGGAGACATAAAGTCTTCAAATGTTGTAATTAAAGG


CGATTTTGAAACAATTAAAATCTGTGATGTAGGAGTCTCTCTACCACTGGATGAAAATAT


GACTGTGACTGACCCTGAGGCTTGTTACATTGGCACAGAGCCATGGAAACCCAAAGAAGC


TGTGGAGGAGAATGGTGTTATTACTGACAAGGCAGACATATTTGCCTTTGGCCTTACTTT


GTGGGAAATGATGACTTTATCGATTCCACACATTAATCTTTCAAATGATGATGATGATGA


AGATAAAACTTTTGATGAAAGTGATTTTGATGATGAAGCATACTATGCAGCCTTGGGAAC


TAGGCCACCTATTAATATGGAAGAACTGGATGAATCATACCAGAAAGTAATTGAACTCTT


CTCTGTATGCACTAATGAAGACCCTAAAGATCGTCCTTCTGCTGCACACATTGTTGAAGC


TCTGGAAACAGATGTCTAGTGATCATCTCAGCTGAAGTGTGGCTTGCGTAAATAACTGTT


TATTCCAAAATATTTACATAGTTACTATCAGTAGTTATTAGACTCTAAAATTGGCATATT


TGAGGACCATAGTTTCTTGTTAACATATGGATAACTATTTCTAATATGAAATATGCTTAT


ATTGGCTATAAGCACTTGGAATTGTACTGGGTTTTCTGTAAAGTTTTAGAAACTAGCTAC


ATAAGTACTTTGATACTGCTCATGCTGACTTAAAACACTAGCAGTAAAACGCTGTAAACT


GTAACATTAAATTGAATGACCATTACTTTTATTAATGATCTTTCTTAAATATTCTATATT


TTAATGGATCTACTGACATTAGCACTTTGTACAGTACAAAATAAAGTCTACATTTGTTTA


AAACAAAAAAAAAAAAAAAAAA





Pbk Mouse DNA


GAGGGGAGCTGTTCCTGCATTTTCTGGAGCGAGTCTTCTGACTGCTTTTAGTTAGAACTC


CAGTGCCCCTCGGCGGGCCGCGGCCTTTGAAAATGCGCGCGCCCTAAACGCTGCGGCGGT


TACGCTGTTGGCGGGAGGGAGCTGAGCCTGCACTTTCCGGACTAGGTGTCCAGACAGCTT


TGAGCCAGCCCGTCACTTTCACCTTTTTACCCGAGCGTGCGAGCGTGGACCTAACGTGAT


TGCTACAATGGAAGGAATTAATAATTTCAAGACGCCAAACAAATCTGAAAAAAGGAAATC


TGTATTATGTTCCACTCCATGTGTAAATATCCCTGCCTCTCCATTTATGCAGAAGCTTGG


CTTTGGGACTGGGGTCAGCGTTTACCTAATGAAAAGATCTCCAAGAGGGTTGTCTCATTC


TCCTTGGGCCGTGAAAAAGATAAGTCTTTTATGCGATGATCATTATCGAACTGTGTATCA


GAAGAGACTAACTGATGAAGCTAAGATTTTAAAAAACCTTAATCACCCAAACATTATAGG


ATATCGTGCTTTTACTGAAGCCAGTGATGGTAGTCTGTGCCTTGCTATGGAGTATGGAGG


TGAAAAGTCTCTGAATGACTTAATAGAAGAGCGGAACAAAGACAGTGGAAGTCCTTTTCC


AGCAGCTGTAATTCTCAGAGTTGCTTTGCACATGGCCAGAGGGCTAAAGTACCTGCACCA


AGAAAAGAAGCTGCTTCATGGAGACATAAAGTCTTCAAATGTTGTAATTAAAGGTGATTT


TGAAACAATTAAAATCTGTGATGTAGGAGTCTCTCTGCCATTGGATGAAAATATGACTGT


GACTGATCCTGAGGCCTGTTATATTGGTACTGAGCCATGGAAACCCAAGGAAGCGTTGGA


AGAAAATGGCATCATTACTGACAAGGCAGATGTGTTTGCTTTTGGCCTTACTCTGTGGGA


AATGATGACTTTATGTATTCCACACGTCAATCTTCCAGATGATGATGTTGATGAAGATGC


AACCTTTGATGAGAGTGACTTCGATGATGAAGCATATTATGCAGCTCTGGGGACAAGGCC


ATCCATCAACATGGAAGAGCTGGATGACTCCTACCAGAAGGCCATTGAACTCTTCTGTGT


GTGCACTAATGAGGATCCTAAAGATCGCCCGTCTGCTGCACACATCGTTGAAGCTTTGGA


ACTAGATGGCCAATGTTGTGGTCTAAGCTCAAAGCATTAACTTGTATGGGAACTGTTAAC


TAGATATATGTAGTTAATATAACTTATGGTAGCTAGATTCTAGAAGTAGCTTTAACACTA


GTGACCCCTGTCTAAGATGACTTAAGAATCAAGGGACCATTGCTTTGTTACAGATCTTTT


TAGATATTCTTGCTTCTTTAGTGGGTTACTAAAAATTTCACTACGTACATGTGGTACAGA


TATCTGTCTGCTCATAGTGTCAGTCCTTCAGCTGGCCTGTCAGCCCATGCGCCCTGGGAC


TTGAGAAGAGTTCATAAACGTAGCTCCTAGGGTGTCTTGCCTCTCTACACTTAGCTTCTA


ATTTATTACTTTGTTTCTACTGATTGTGTCTTAAGTCTTTTAAAATAAATGTAAGAATAA


ACAATAAAAGACAGTTTTAGTACCAGGCAAAAAAAAAAAAAAAAAA





Pbk Mouse Protein


MEGINNFKTPNKSEKRKSVLCSTPCVNIPASPFMQKLGFGTGVSVYLMKRSPRGLSHSPW


AVKKISLLCDDHYRTVYQKRLTDEAKILKNLNHPNIIGYRAFTEASDGSLCLAMEYGGEK


SLNDLIEERNKDSGSPFPAAVILRVALHMARGLKYLHQEKKLLHGDIKSSNVVIKGDFET


IKICDVGVSLPLDENMTVTDPEACYIGTEPWKPKEALEENGIITDKADVFAFGLTLWEMM


TLCIPHVNLPDDDVDEDATFDESDFDDEAYYAALGTRPSINMEELDDSYQKAIELFCVCT


NEDPKDRPSAAHIVEALELDGQCCGLSSKH





Akr1c1 Human DNA


CCAGAAATGGATTCGAAATATCAGTGTGTGAAGCTGAATGATGGTCACTTCATGCCTGTC


CTGGGATTTGGCACCTATGCGCCTGCAGAGGTTCCTAAAAGTAAAGCTTTAGAGGCCACC


AAATTGGCAATTGAAGCTGGCTTCCGCCATATTGATTCTGCTCATTTATACAATAATGAG


GAGCAGGTTGGACTGGCCATCCGAAGCAAGATTGCAGATGGCAGTGTGAAGAGAGAAGAC


ATATTCTACACTTCAAAGCTTTGGTGCAATTCCCATCGACCAGAGTTGGTCCGACCAGCC


TTGGAAAGGTCACTGAAAAATCTTCAATTGGATTATGTTGACCTCTACCTTATTCATTTT


CCAGTGTCTGTAAAGCCAGGTGAGGAAGTGATCCCAAAAGATGAAAATGGAAAAATACTA


TTTGACACAGTGGATCTCTGTGCCACGTGGGAGGCCGTGGAGAAGTGTAAAGATGCAGGA


TTGGCCAAGTCCATCGGGGTGTCCAACTTCAACCGCAGGCAGCTGGAGATGATCCTCAAC


AAGCCAGGGCTCAAGTACAAGCCTGTCTGCAACCAGGTGGAATGTCATCCTTACTTCAAC


CAGAGAAAACTGCTGGATTTCTGCAAGTCAAAAGACATTGTTCTGGTTGCCTATAGTGCT


CTGGGATCCCACCGAGAAGAACCATGGGTGGACCCGAACTCCCCGGTGCTCTTGGAGGAC


CCAGTCCTTTGTGCCTTGGCAAAAAAGCACAAGCGAACCCCAGCCCTGATTGCCCTGCGC


TACCAGCTACAGCGTGGGGTTGTGGTCCTGGCCAAGAGCTACAATGAGCAGCGCATCAGA


CAGAACGTGCAGGTGTTTGAATTCCAGTTGACTTCAGAGGAGATGAAAGCCATAGATGGC


CTAAACAGAAATGTGCGATATTTGACCCTTGATATTTTTGCTGGCCCCCCTAATTATCCA


TTTTCTGATGAATATTAACATGGAGGGCATTGCATGAGGTCTGCCAGAAGGCCCTGCGTG


TGGATGGTGACACAGAGGATGGCTCTATGCTGGTGACTGGACACATCGCCTCTGGTTAAA


TCTCTCCTGCTTGGTGATTTCAGCAAGCTACAGCAAAGCCCATTGGCCAGAAAGGAAAGA


CAATAATTTTGTTTTTTCATTTTGAAAAAATTAAATGCTCTCTCCTAAAGATTCTTCACC


TAAAAAA





Akr1c1 Human Protein


MDSKYQCVKLNDGHFMPVLGFGTYAPAEVPKSKALEATKLAIEAGFRHIDSAHLYNNEEQ


VGLAIRSKIADGSVKREDIFYTSKLWCNSHRPELVRPALERSLKNLQLDYVDLYLIHFPV


SVKPGEEVIPKDENGKILFDTVDLCATWEAVEKCKDAGLAKSIGVSNFNRRQLEMILNKP


GLKYKPVCNQVECHPYFNQRKLLDFCKSKDIVLVAYSALGSHREEPWVDPNSPVLLEDPV


LCALAKKHKRTPALIALRYQLQRGVVVLAKSYNEQRIRQNVQVFEFQLTSEEMKAIDGLN


RNVRYLTLDIFAGPPNYPFSDEY





Akr1c1 Mouse DNA


TTGTCCTGACTCTGTTCTGCAGCCCTGATTGATTAGTAGCAGCTTGGTTACAATACATTT


TTGTCATCTGCATTGACCTGGTCTTTAAGTTATATTGGATTTATGTTGGATTTAAGTGGA


CCCACAACACTTTGAGGAAGAAGAAGACACTCTTCTTACTTTGGAGTACCCAGTGATATC


AGGAAAGTCAGAGGCAGAGCCTGCAGATGAATCCCAAGCGCTACATGGAACTAAGTGATG


GCCACCACATTCCTGTGCTTGGCTTTGGAACCTTTGTCCCAGGAGAGGTTTCCAAGAGTA


TGGTTGCAAAAGCCACCAAAATAGCTATAGATGCTGGATTCCGCCATATTGACTCAGCTT


ATTTCTACCAAAATGAGGAGGAAGTAGGGCTGGCCATCCGAAGCAAGGTTGCTGATGGCA


CTGTGAGGAGAGAAGATATATTCTACACTTCAAAGCTTCCCTGCACATGTCATAGACCAG


AGCTGGTCCAGCCTTGCTTGGAACAATCCCTGAGAAAGCTTCAGCTGGATTATGTTGATC


TGTACCTTATTCACTGCCCAGTGTCCATGAAGCCAGGCAATGATCTTATTCCAACAGATG


AAAATGGGAAATTATTATTTGACACAGTGGATCTCTGTGACACATGGGAGGCCATGGAGA


AGTGTAAGGATTCAGGGTTAGCCAAGTCCATTGGTGTGTCCAACTTTAACCGGAGGCAGC


TGGAGATGATCCTGAACAAGCCAGGGCTCAGGTACAAGCCTGTGTGCAACCAGGTAGAGT


GTCACCCTTATCTGAACCAGAGCAAGCTCCTGGACTACTGCAAGTCAAAAGACATCGTTC


TGGTTGCCTATGGTGCTCTTGGCAGCCAACGGTGTAAGAACTGGATAGAGGAGAATGCCC


CATATCTCTTGGAAGACCCAACTCTGTGTGCCATGGCGGAAAAGCACAAGCAAACTCCGG


CCCTAATTTCCCTCCGGTATCTGCTGCAGCGTGGGATTGTCATTGTCACCAAGAGTTTCA


ATGAGAAGCGGATCAAGGAGAACCTGAAGGTCTTTGAGTTCCACTTGCCAGCAGAGGACA


TGGCAGTTATAGATAGGCTGAACAGAAACTACCGATATGCTACTGCTCGTATTATTTCTG


CTCACCCCAATTATCCATTTTTGGATGAATATTAACGCGGAAGCCTTTGTTGTGACATCG


CTCAGAGGGAGCAATGTGGGAGATGCTGTGGATGTTGATCAGCATCACCTCTGGTCGACG


TCGACATCACCGTCAACCCACACTGAACTGGATGGAGAGGGGTGGCCATGGTGTTTTGTG


ATACTTTGAAGACAATAAAGTTTTGGTCTATGAGGT





Akr1c1 Mouse Protein


MNPKRYMELSDGHHIPVLGFGTFVPGEVSKSMVAKATKIAIDAGFRHIDSAYFYQNEEEV


GLAIRSKVADGTVRREDIFYTSKLPCTCHRPELVQPCLEQSLRKLQLDYVDLYLIHCPVS


MKPGNDLIPTDENGKLLFDTVDLCDTWEAMEKCKDSGLAKSIGVSNFNRRQLEMILNKPG


LRYKPVCNQVECHPYLNQSKLLDYCKSKDIVLVAYGALGSQRCKNWIEENAPYLLEDPTL


CAMAEKHKQTPALISLRYLLQRGIVIVTKSFNEKRIKENLKVFEFHLPAEDMAVIDRLNR


NYRYATARIISAHPNYPFLDEY





Cyp1 1a1 Human DNA


GGGCGCTGAAGTGGAGCAGGTACAGTCACAGCTGTGGGGACAGCATGCTGGCCAAGGGTC


TTCCCCCACGCTCAGTCCTGGTCAAAGGCTACCAGACCTTTCTGAGTGCCCCCAGGGAGG


GGCTGGGGCGTCTCAGGGTGCCCACTGGCGAGGGAGCTGGCATCTCCACCCGCAGTCCTC


GCCCCTTCAATGAGATCCCCTCTCCTGGTGACAATGGCTGGCTAAACCTGTACCATTTCT


GGAGGGAGACGGGCACACACAAAGTCCACCTTCACCATGTCCAGAATTTCCAGAAGTATG


GCCCGATTTACAGGGAGAAGCTCGGCAACGTGGAGTCGGTTTATGTCATCGACCCTGAAG


ATGTGGCCCTTCTCTTTAAGTCCGAGGGCCCCAACCCAGAACGATTCCTCATCCCGCCCT


GGGTCGCCTATCACCAGTATTACCAGAGACCCATAGGAGTCCTGTTGAAGAAGTCGGCAG


CCTGGAAGAAAGACCGGGTGGCCCTGAACCAGGAGGTGATGGCTCCAGAGGCCACCAAGA


ACTTTTTGCCCCTGTTGGATGCAGTGTCTCGGGACTTCGTCAGTGTCCTGCACAGGCGCA


TCAAGAAGGCGGGCTCCGGAAATTACTCGGGGGACATCAGTGATGACCTGTTCCGCTTTG


CCTTTGAGTCCATCACTAACGTCATTTTTGGGGAGCGCCAGGGGATGCTGGAGGAAGTAG


TGAACCCCGAGGCCCAGCGATTCATTGATGCCATCTACCAGATGTTCCACACCAGCGTCC


CCATGCTCAACCTTCCCCCAGACCTGTTCCGTCTGTTCAGGACCAAGACCTGGAAGGACC


ATGTGGCTGCATGGGACGTGATTTTCAGTAAAGCTGACATATACACCCAGAACTTCTACT


GGGAATTGAGACAGAAAGGAAGTGTTCACCACGATTACCGTGGCATGCTCTACAGACTCC


TGGGAGACAGCAAGATGTCCTTCGAGGACATCAAGGCCAACGTCACAGAGATGCTGGCAG


GAGGGGTGGACACGACGTCCATGACCCTGCAGTGGCACTTGTATGAGATGGCACGCAACC


TGAAGGTGCAGGATATGCTGCGGGCAGAGGTCTTGGCTGCGCGGCACCAGGCCCAGGGAG


ACATGGCCACGATGCTACAGCTGGTCCCCCTCCTCAAAGCCAGCATCAAGGAGACACTAA


GACTTCACCCCATCTCCGTGACCCTGCAGAGATATCTTGTAAATGACTTGGTTCTTCGAG


ATTACATGATTCCTGCCAAGACACTGGTGCAAGTGGCCATCTATGCTCTGGGCCGAGAGC


CCACCTTCTTCTTCGACCCGGAAAATTTTGACCCAACCCGATGGCTGAGCAAAGACAAGA


ACATCACCTACTTCCGGAACTTGGGCTTTGGCTGGGGTGTGCGGCAGTGTCTGGGACGGC


GGATCGCTGAGCTAGAGATGACCATCTTCCTCATCAATATGCTGGAGAACTTCAGAGTTG


AAATCCAACACCTCAGCGATGTGGGCACCACATTCAACCTCATTCTGATGCCTGAAAAGC


CCATCTCCTTCACCTTCTGGCCCTTTAACCAGGAAGCAACCCAGCAGTGATCAGAGAGGA


TGGCCTGCAGCCACATGGGAGGAAGGCCCAGGGGTGGGGCCCATGGGGTCTCTGCATCTT


CAGTCGTCTGTCCCAAGTCCTGCTCCTTTCTGCCCAGCCTGCTCAGCAGGTTGAATGGGT


TCTCAGTGGTCACCTTCCTCAGCTCAGCTGGGCCACTCCTCTTCACCCACCCCATGGAGA


CAATAAACAGCTGAACCATCG





Cyp1 1a1 Mouse DNA


AAGTGGCAGTCGTGGGGACAGTATGCTGGCTAAAGGACTTTCCCTGCGCTCAGTGCTGGT


CAAAGGCTGCCAACCTTTCCTGAGCCCTACGTGGCAGGGTCCAGTGCTGAGTACTGGAAA


GGGAGCTGGTACCTCTACTAGCAGTCCTAGGTCCTTCAATGAGATCCCTTCCCCTGGCGA


CAATGGTTGGCTAAACCTGTACCACTTCTGGAGGGAGAGTGGCACACAGAAAATCCATTA


CCATCAGATGCAGAGTTTCCAAAAGTATGGCCCCATTTACAGGGAGAAGCTGGGCACTTT


GGAGTCAGTTTACATCGTGGACCCCAAGGATGCGTCGATACTCTTCTCATGCGAGGGTCC


CAACCCGGAGCGGTTCCTTGTGCCCCCCTGGGTGGCCTATCACCAGTATTATCAGAGGCC


CATTGGGGTCCTGTTTAAGAGTTCAGATGCCTGGAAGAAAGACCGAATCGTCCTAAACCA


AGAGGTGATGGCGCCTGGAGCCATCAAGAACTTCGTGCCCCTGCTGGAAGGTGTAGCTCA


GGACTTCATCAAAGTCTTACACAGACGCATCAAGCAGCAAAATTCTGGAAATTTCTCAGG


GGTCATCAGTGATGACCTATTCCGCTTTTCCTTTGAGTCCATCAGCAGTGTTATATTTGG


GGAGCGCATGGGGATGCTGGAGGAGATCGTGGATCCCGAGGCCCAGCGGTTCATCAATGC


TGTCTACCAGATGTTCCACACCAGTGTCCCCATGCTCAACCTGCCTCCAGACTTCTTTCG


ACTCCTCAGAACTAAGACCTGGAAGGACCATGCAGCTGCCTGGGATGTGATTTTCAATAA


AGCTGATGAGTACACCCAGAACTTCTACTGGGACTTAAGGCAGAAGCGAGACTTCAGCCA


GTACCCTGGTGTCCTTTATAGCCTCCTGGGGGGCAACAAGCTGCCCTTCAAGAACATCCA


GGCCAACATTACCGAGATGCTGGCAGGAGGGGTGGACACGACCTCCATGACCCTGCAGTG


GAACCTTTATGAGATGGCACACAACTTGAAGGTACAGGAGATGCTGCGGGCTGAAGTCCT


GGCTGCCCGGCGCCAGGCCCAGGGAGACATGGCCAAGATGGTACAGTTGGTTCCACTCCT


CAAAGCCAGCATCAAGGAGACACTGAGACTCCACCCCATCTCCGTGACCTTGCAGAGGTA


CACTGTGAATGACCTGGTGCTTCGTAATTACAAGATTCCAGCCAAGACTTTGGTACAGGT


GGCTAGCTTTGCCATGGGTCGAGATCCGGGCTTCTTTCCCAATCCAAACAAGTTTGACCC


AACTCGTTGGCTGGAAAAAAGCCAAAATACCACCCACTTCCGGTACTTGGGCTTTGGCTG


GGGTGTTCGGCAGTGTCTGGGCCGGCGGATTGCGGAGCTGGAGATGACCATCCTCCTTAT


CAATCTGCTGGAGAACTTCAGAATTGAAGTTCAAAATCTCCGTGATGTGGGGACCAAGTT


CAGCCTCATCCTGATGCCTGAGAACCCCATCCTCTTCAACTTCCAGCCTCTCAAGCAGGA


CCTGGGCCCAGCCGTGACCAGAAAAGACAACACTGTGAACTGAAGGCTGGAGTCACATGG


GGAGGTGGCCCATGGGGCATTTGAGGGTGGTATCTCTGTATCTTCAGAAACAGCACTCTG


TGATTACCTGCCCAGGTTAGCTGGGCTCTCCTCTCCTTCATCCTCTTTCCCTCTTTCCCT


ACCCAGGGAGTTAATAAACACTTGAACACTGAGG





Cyp1 1a1 Mouse Protein


MLAKGLSLRSVLVKGCQPFLSPTWQGPVLSTGKGAGTSTSSPRSFNEIPSPGDNGWLNLY


HFWRESGTQKIHYHQMQSFQKYGPIYREKLGTLESVYIVDPKDASILFSCEGPNPERFLV


PPWVAYHQYYQRPIGVLFKSSDAWKKDRIVLNQEVMAPGAIKNFVPLLEGVAQDFIKVLH


RRIKQQNSGNFSGVISDDLFRFSFESISSVIFGERMGMLEEIVDPEAQRFINAVYQMFHT


SVPMLNLPPDFFRLLRTKTWKDHAAAWDVIFNKADEYTQNFYWDLRQKRDFSQYPGVLYS


LLGGNKLPFKNIQANITEMLAGGVDTTSMTLQWNLYEMAHNLKVQEMLRAEVLAARRQAQ


GDMAKMVQLVPLLKASIKETLRLHPISVTLQRYTVNDLVLRNYKIPAKTLVQVASFAMGR


DPGFFPNPNKFDPTRWLEKSQNTTHFRYLGFGWGVRQCLGRRIAELEMTILLINLLENFR


IEVQNLRDVGTKFSLILMPENPILFNFQPLKQDLGPAVTRKDNTVN








Claims
  • 1. An isolated, non-native highly engraftable hematopoietic stem cell (heHSC), wherein the heHSC is Sca-1+, c-kit+ and Lin− (SKL).
  • 2.-7. (canceled)
  • 8. The isolated heHSC of claim 1, wherein the heHSC is prepared by contacting hematopoietic stem cells and/or progenitor cells with at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, a t antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof.
  • 9.-14. (canceled)
  • 15. The isolated heHSC of claim 8, wherein the at least one CXCR2 agonist is GROβ or an analog or derivative thereof, and wherein the at least one CXCR4 antagonist is plerixafor or an analog or derivative thereof.
  • 16.-20. (canceled)
  • 21. The isolated heHSC of claim 1, wherein the heHSC is substantially pure.
  • 22.-26. (canceled)
  • 27. An isolated population of cells comprising a plurality of heHSC's of claim 1, wherein the isolated population has a unique cell surface marker expression profile as compared to a naturally occurring population of HSC.
  • 28.-36. (canceled)
  • 37. A method of treating a stem cell or progenitor cell disorder comprising administering a cell population comprising the isolated heHSC of claim 1 to a subject in need thereof, wherein the administered heHSC population engrafts in the subject's bone marrow compartment, thereby treating the stem cell or progenitor cell disorder.
  • 38.-42. (canceled)
  • 43. The method of claim 37, wherein the stem cell or progenitor cell disorder is a malignant hematologic disease or a non-malignant disease.
  • 44-73. (canceled)
  • 74. The isolated heHSC of claim 1; wherein the heHSC is prepared by mobilizing hematopoietic stem cells and/or progenitor cells from a bone marrow compartment of a subject to a peripheral compartment of the subject by administering at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof to the subject, and isolating the mobilized hematopoietic stem cells and/or progenitor cells from the peripheral compartment of the subject.
  • 75.-82. (canceled)
  • 83. The isolated heHSC of claim 74, wherein the at least one CXCR2 agonist is GROβ or an analog or derivative thereof, and wherein the CXCR4 antagonist is plerixafor or an analog or derivative thereof.
  • 84.-92. (canceled)
  • 93. The isolated heHSC of claim 74, wherein the heHSC differentially express one or more of the genes selected from the group consisting of Fos, CD93, Fosb, Dusp1, Jun, Dusp6, Cdk1, Fignl1, Plk2, Rsad2, Sgk1, Sdc1, Serpine2, Spp1, Cdca8, Nrp1, Mcam, Pbk, Akr1cl and Cyp11a1, relative to one or more genes expressed in hematopoietic stem cells (HSCs) mobilized using G-CSF.
  • 94.-101. (canceled)
  • 102. A method of identifying an heHSC cell population comprising a. mobilizing hematopoietic stem cells and/or progenitor cells from a bone marrow compartment of a subject to a peripheral compartment of the subject by administering at least one CXCR2 agonist and at least one CXCR4 antagonist, VLA-4 antagonist, α9β1 antagonist, α9β1 integrin/VLA-4 antagonist or combination thereof to the subject, and isolating the mobilized hematopoietic stem cells and/or progenitor cells from the peripheral compartment of the subject;b. mobilizing hematopoietic stem cells and/or progenitor cells from a bone marrow compartment of a subject to a peripheral compartment of the subject by a mobilization regimen not comprising a CXCR2 agonist, and isolating the mobilized hematopoietic stem cells and/or progenitor cells from the peripheral compartment of the subject;c. comparing one or more immunophenotypical and/or functional properties of the isolated cell population of step (a) to the isolated cell population of step (b); andd. identifying a subpopulation of the mobilized cell population of step (a) with one or more immunophenotypical and/or functional properties different than the isolated cell population of step (b).
  • 103. The method of claim 102, wherein step (a) comprises administering at least one CXCR2 agonist and at least one CXCR4 antagonist.
  • 104. The method of claim 102, wherein the mobilization regimen not comprising a CXCR2 agonist consists of G-CSF.
  • 105.-173. (canceled)
  • 174. A method of identifying an heHSC cell population comprising determining a transcriptomic signature of a population of hematopoietic stem cells (HSCs) and comparing the transcriptomic signature with a transcriptomic signature from a G-CSF mobilized population of HSCs, wherein the population of HSCs is identified as an heHSC population when the transcriptomic signature comprises a differential signature of one or more genes selected from the group consisting of Fos, CD93, Fosb, Dusp1, Jun, Dusp6, Cdk1, Fignl1, Plk2, Rsad2, Sgk1, Sdc1, Serpine2, Spp1, Cdca8, Nrp1, Mcam, Pbk, Akr1cl and Cyp11a1, relative to one or more of the genes expressed by hematopoietic stem cells mobilized using G-CSF.
  • 175. The method of claim 174, wherein the transcriptomic signature is determined using FACs.
  • 176. The method of claim 174, wherein the heHSC population is administered to a human subject having a stem cell or progenitor cell disorder.
  • 177. The method of claim 176, wherein the stem cell or progenitor cell disorder is a malignant hematologic disease.
  • 178. The method claim 177, wherein the malignant hematologic disease is selected from the group consisting of acute lymphoid leukemia, acute myeloid leukemia, chronic lymphoid leukemia, chronic myeloid leukemia, diffuse large B-cell non-Hodgkin's lymphoma, mantle cell lymphoma, lymphoblastic lymphoma, Burkitt's lymphoma, follicular B-cell non-Hodgkin's lymphoma, lymphocyte predominant nodular Hodgkin's lymphoma, multiple myeloma, and juvenile myelomonocytic leukemia.
  • 179. The method of claim 174, further comprising transforming the population of heHSCs with an expression vector comprising a polynucleotide.
  • 180. The method of claim 179, wherein the transformed heHSC population is administered to a human subject in need thereof.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 62/413,821, filed Oct. 27, 2016 and U.S. Provisional Application No. 62/300,694, filed Feb. 26, 2016, the contents of which are incorporated herein by reference in their entireties.

PCT Information
Filing Document Filing Date Country Kind
PCT/US17/19778 2/27/2017 WO 00
Provisional Applications (2)
Number Date Country
62300694 Feb 2016 US
62413821 Oct 2016 US