This application is a national stage application under 35 U.S.C. §371 of International Application No. PCT/DE2011/000338 filed 28 Mar. 2011, which claims priority to German Application No. DE 10 2010 013 288.8 filed 28 Mar. 2010, the disclosures of which are expressly incorporated herein by reference.
The invention relates to sheetlike absorbent materials capable of expanding in one coordinate direction at least to create room for the increased volume due to imbibition of liquid to be absorbed.
Absorbent materials are more particularly needed in connection with disposable articles such as, for example, baby diapers, incontinence products and femcare hygiene, or in the sector of absorbent articles for packaging and food technology. This function is traditionally performed by suitable combination products comprising pulp, superabsorbent granules or fibers and liquid-distributing layers comprising synthetic nonwovens, pulp or cotton.
The consumption of raw materials and packaging materials and also the outlay needed for raw materials and for manufacture and sales should be minimized as far as possible both economically and ecologically as well as from the sustainability perspective. As far as the production of hygiene articles is concerned, this means primarily a reduction in primary energy requirements, pulp, transportation volume, packaging films and cardboard and waste volume.
Numerous projects are known in the field of hygiene articles, not only from the literature but also from industrial manufacture, seeking to partially or completely replace the absorbency of cellulose/pulp by using granules of water-absorbing polymers (superabsorbents). It is technically, economically and ecologically desirable for, for example, modern baby diapers or adult incontinence articles to be completely converted to pulp-free absorbent pads in order that the influence of using disposable articles on climate change may be kept as small as possible.
Two fundamentally different approaches are being pursued to reduce/eliminate the pulp from baby diapers, incontinence products and femcare hygiene articles. The first approach seeks to replace the pulp by using stretch- or swell-capable thermoplastics as binders between the granules of superabsorbent to retain adherence as the superabsorbent swells up, to join in the swelling movement and to ensure substrate integrity even in the moist state.
The alternative is to incorporate the superabsorbent between two or more carrier layers in discrete sections, in which case the volume enlargement of the superabsorbent due to its swelling due to liquid imbibition takes place alternatively due to elasticity of one or more carrier layers, shirring or stretching of one or more carrier layers during the installation of the superabsorbent in the laminate, or by suitable bonding between the individual carrier layers such that targeted, local rupturing of this bond due to bursting pressure is made possible by the swelling of the superabsorbent without the superabsorbent fully exiting from the carrier layers.
EP 724 418 describes the production of a laminate which consists of two outer plies, of which at least one ply is hydrophilic and which are glued to each other using a water-sensitive pressure-sensitive adhesive, so that isolated unglued sections can punctiformly incorporate superabsorbent which, in the swollen state, specifically breaks open the gluing and achieves the laminate volume increase needed for the swell volume. The disadvantage of this is that only minimal integrity can be achieved for the laminate in the swollen state.
US 20020102392 likewise discloses a method for producing an absorption-capable laminate with incorporated sections of superabsorbents and elastic properties. Here there are sections of superabsorbents, positioned via a vacuum system, between two outer plies, of which one is shirred in the longitudinal direction using a profiled roller and transversely to the manufacturing direction, to obtain a longitudinally extendable laminate, wherein the elasticity and shirring can be increased by using elastic films or nonwovens.
US20020115969 discloses a further method for producing a laminate. Here the longitudinally continuous production of a laminate is described with individual sheetings of superabsorbents which have been installed with hot glue between two outer plies such that there are strips of superabsorbent-covered and superabsorbent-free regions in each case transversely to the manufacturing direction.
The production of a laminate comprising two outer plies with punctiformly incorporated sections of superabsorbents is described in WO 2004071539 and WO 2004071363. A textured vacuum roller is used to cause a first outer layer to develop depressions, which are filled with superabsorbents and fibers and bonded to the second outer layer. Comparable products have long also been used as supports in surgery and patient care.
Superabsorbents undergo a weight increase of 2500-5000% as they imbibe liquid. The associated increase in volume has to be accommodated through suitable flexibility on the part of the surrounding carrier material. This is in principle not a problem in the case of conventional pulp/superabsorbent pads, since the pulp allows expansion in all three dimensions. In the case of so-called superabsorbent laminates, in which superabsorbent granules or superabsorbent/fiber mixtures are fixed using pressure-sensitive adhesive or thermally between two or more plies of nonwovens, film, tissue or the like, this function has to be made possible by the outer plies of the laminate, whether through stretching or through geometric flexibility. But at all times the containment of the superabsorbent has to be ensured without one of the outer plies breaking or the lamination tearing open. It is further desirable that this laminate be elastically extendable not just perpendicularly to its production plane but also within this plane itself in order not only to facilitate the volume enlargement on the part of the superabsorbent due to liquid imbibition but also to combine with other components of the above-identified hygiene articles in not impairing their flexibility and ability to conform to the particular body contour.
The invention accordingly has for its object to provide a laminate which has a high manufacturing capacity and has not only improved area-elastic properties to optimally conform to the body contour of the user but also volume-elastic properties to accommodate large amounts of liquid.
This object is achieved in the present invention by a laminate in that this laminate contains a water-absorbing polymer known as a superabsorbent polymer (SAP) between one or more elastic interplies, wherein the interplies consist of sheetlike lengths of material which are firmly bonded together on the outside surface by individual threads, strands or bands and this laminate is extendable essentially transversely to the production direction and shirred in the relaxed state, and the elastic interplies contain many individual sections or cassettes of superabsorbent and create room for the expansion of the laminate on fluid imbibition perpendicularly to and within the manufacturing plane.
In a further embodiment of the present invention, the appearance of the side-by-side sections/cassettes thus produced corresponds to that of a quilted blanket having an unending number of mutually adjoining sections.
The laminate of the present invention may advantageously be used for modern ultra-thin and elastic hygiene articles, since the laminate is completely elastic and extendable and conforms perfectly to the body contour in both the dry and the moist state.
The laminate of the present invention in one embodiment consists of two outer layers, of which one is hydrophilic and the other is hydrophobic.
The invention further has for its object to provide a production method for the laminate of the present invention enabling the continuous production of absorption-capable laminate with high manufacturing capacity, wherein the end product has not only area-elastic properties to optimally adapt to the body contour of the user but also volume-elastic properties to accommodate large amounts of liquid.
This object is achieved by a method wherein the water-absorbing polymer known as a super-absorbent polymer (SAP) is introduced into one or more elastic interplies, wherein the interplies consist of individual threads, strands or bands between two outer plies of a thusly produced laminate and this laminate is made extendable essentially transversely to the production direction and shirred in the relaxed state, and the elastic interplies therefore contain many individual sections or cassettes of superabsorbent and create room for the expansion of the laminate on fluid imbibition perpendicularly to and within the manufacturing plane.
The present invention's shining and texturing on the skin-sided surface of the laminate, or to be more precise on that side from where the liquid to be imbibed comes into contact with the laminate, is advantageous in ensuring, in association with an appropriate hydrophilic and transportation-capable outer layer, an excellent conductance of liquid not only in the dry but also in the moist state.
Advantageously, a laminate produced in this way is always permeable perpendicularly to its manufacturing plane in the region of the gluing of the elastic plies even in the swollen state without being hindered by the swelling of the superabsorbent, so that the texture of the surface and the choice of appropriate outer layer ensure transportation performance even on the skin-remote side and the skin-sided outer layer can be optimized in respect of back-wetting/skin moisture. It is further the case that laminate integrity is retained.
In a further embodiment, the external layers of the laminate can consist of either a hydrophilic and hydrophobic sheetlike material or both layers can consist of hydrophilic or hydrophobic sheetlike material. Cellulose or pulp can be used as materials for example. The outer sheeting of material can consist of different materials from the group of textile materials, such as cotton, wool, plastics yarns or other plastics-containing compositions or the like, spunbonded webs, paper, self-supporting polymer films of any kind such as polypropylene, polyethylene, nylon or the like, card web, felts or the like.
In the case of the hydrophobic embodiment, the sheetlike hydrophobic material is microapertured beforehand. Advantageously microaperturing was found to create “channeling” which results in faster removal of liquid and a distinct reduction in skin moisture. In a further embodiment, channeling is effected via a chemical reaction with the pressure-sensitive adhesive which is applied to the sheetings of material.
According to the invention, first the front end of the first outer textile sheeting of material is applied to the end portion of an elongate rod- or tube-shaped core and, by imposing an advancement movement around the core, folded into a shape which is closed in a hoselike form.
In the course of the processing method, the advancement movement on the core serves, through tapering of the cross section of the core, to shorten the circumference of this hose to the effect that excess material is ducted through ducting rails or rods outside the hose into suitable cutouts in the core. Subsequently, one or more than one, preferably two and more preferably more than two driven feed devices 11 and 14 which ring the mold and are contrarotatory in pairs loosely withdraw groups of elastic threads or strands 50 and 53 from circumferentially spaced-apart individual guides 17 and place them with friction-caused low pre-tensioning around the first outer sheeting of material in the course of the advancement on the core. Areal pattern 32 of elastic threads or strands which surrounds the tube of the first outer sheeting of material in a cruciformly symmetrical manner has a pressure-sensitive adhesive 29 applied to it in thread form, which wets and enfolds the essentially bare elastic threads. In the continued course of the forward feed movement, the cross section of the core is enlarged to tauten the hose of the first outer sheeting of material and thereby cause it to come into contact with the elastic threads and finally be brought into a flat shape. On both sides of this flat hose, a pair of advancement or contact rollers 38 is used to bond two individual sheets of the second outer material layer 32 onto the free surface of the first outer material sheeting 20 and the elastic threads 17 provided with the pressure-sensitive adhesive 29. As this bond is being formed, individual tracks of superabsorbent 47 are introduced on both sides of the hose of the first outer sheeting of material, between it and the supplied second outer sheeting of material. Finally, the hose thus produced is severed lengthwise into individual sheetings and these are traversingly wound onto individual rolls or deposited in boxes.
The folding-in of the hose of the first sheeting of material and producing the circumferential elasticity of the hose by spreading apart the first outer sheeting of material by expanding the elastic thread pattern 32 are advantageous over comparable prior art winding processes for elastic hoses based on pre-tensioned threads or bands as for example from WO 03041627 or DE 102004026070 in producing an appreciable reduction in complexity by eliminating the drive for individual guides of the threads and increased productivity in proportion with the transverse extensibility of the laminate. This is based on the limiting speed which limits the manufacturing speed of the ring-shaped feed devices. The invention is further advantageous in reducing the width of the applicator system for the pressure-sensitive adhesive 29 to the same degree.
Since, following application of the elastic threads or bands to the hose of the first outer sheeting of material, this hose is only touched punctiformly and is otherwise bare, a pressure-sensitive adhesive applied spirally or meanderingly is forced through the areal pattern of the elastic threads. This is preferable in order that these elastic threads or bands may be enfolded and be oriented essentially around the threads after spreading apart of the hose or the first outer sheeting of material. This produces a glue pattern which corresponds to the areal pattern 32 and which is as shown in
The outer sheeting of material can consist of different materials from the group of textile materials, such as cotton, wool, plastics yarns or other plastics-containing compositions or the like, spunbonded webs, paper, self-supporting polymer films of any kind such as polypropylene, polyethylene, nylon or the like, card web, felts or the like.
In a further embodiment, the core 5, as shown in
Advantageously, the first outer sheeting of material, once it has been pressed into the storage struts, can easily be maintained by negative pressure in a position closely bearing against the guiding and storage struts of the core, and be pulled with low friction over the core. Further alternatives for fixing include the introduction of compressed air or electrostatic charging, which likewise lead to the closely bearing position and are held and pulled with low friction over the core.
Spreading the core apart after the elastic interlayers and the pressure-sensitive adhesive have been applied is advantageously achieved when guiding struts, which are mutually opposite pairwise, gradually widen in the further course of the core in their expansion direction transversely to the longitudinal axis of the core and a further pair of guiding struts is decreased in its width to the same degree, so that the hose of the first outer layer is continuously pulled out of the storage struts and pulled taut over the tips of the guiding struts and is thus brought into sheetlike contact with the pressure-sensitively glued elastic plies (
Advantageously, the core 5 is disposed to be perpendicular in its longitudinal direction such that the advancement rolls 56 are situated at the lower end of core 5 (
The water-absorbing polymer (superabsorbent) is supplied according to the invention in separate volumetrically or weight-dosed continuous individual lines or tracks. The water-absorbing polymer (superabsorbent) can either be introduced into the glue-free regions of the areal pattern in an intermittent manner by pulsating compressed air or pistons, or be intermittently deflected in line with the areal pattern in a direction transversely to the centrifugal direction of the hose of the first outer sheeting of material. For simplicity of use, it can be sufficient to allow these individual tracks to trickle down continuously, in which case it is advantageous to supply two individual tracks per cassette of the areal pattern.
According to the invention, the advancement rollers can be sectionally provided with negative-pressure regions, so that the water-absorbing polymer (superabsorbent) becomes laid down on the glue-free section/cassettes of the areal pattern in a precise manner, so that no water-absorbing polymer (superabsorbent) escapes into the adjacent region.
In a further embodiment, the hose of the first outer material sheeting 20 can be relaxed in the transverse direction by reducing the width of the guiding struts before being supplied into the advancement rolls 56, so that it has a slight degree of waviness at the time the second outer sheeting 44 is supplied. This favors the formation of pockets in the region of the nonglued zones of areal pattern 26, which facilitate the laydown of superabsorbent 33.
In a further embodiment of the invention, this waviness can be policed to advantageously control the ratio of the widths of the first and second outer sheetings of material relative to each other such that the laminate produced has a higher degree of waviness on the side of the first outer layer than on the side of the second outer layer. This makes it possible to minimize the particular costly material of the outer layers 20 and 44 while keeping the swell volume of individual cassettes the same.
The drawings which follow are intended to more particularly illuminate the present invention without restricting it to these embodiments.
In the drawings
a shows the construction of the core comprising guiding and storage struts;
b shows the construction of the core comprising guiding and storage struts and guiding rails in the region of the tapering of the core;
c shows the construction of the core in the region of the spreading apart of the core;
d shows the construction of the core after spreading apart is complete;
b shows areal patterns, obtained on using two oppositely driven feed means as per
c shows areal patterns, obtained on using two oppositely driven feed means as per
a shows a schematic depiction of a detail from the cross section of the core on using two storage struts between respectively two guiding struts and policing the sectionwise intake of the first outer layer by positioning the guiding rails; and
b shows areal patterns of elastic threads of the elastic laminate produced according to
Said
Said
In
In
In the continued course of advancement on the core 5, the elastic threads 50 and 53 have pressure-sensitive adhesive applied to them, preferably as a curtain of spiraling or meandering threads, which on impingement on the bare oppositely diagonal pattern of elastic threads 50 and 53 is diverted by these and preferentially wets and enfolds the elastic threads, but specifically cross-over points between threads 50 and 53,
In the continued course of advancement on the core 5, the latter is spread in its cross section such that any two opposite guiding struts are expanded in their width, and a complementary pair of guiding struts is reduced in its width, to the effect that initially the material of the first layer 20 remaining in the storage struts 38 of the core 5 is continuously detached and the hose of the first material layer 20 is tensioned taut over the ends of the guiding rails 35 (
In a further step, this hose thus formed into a flat shape is introduced into a device of two driven opposite advancement elements, in the form of two rolls or rollers 56 in the present embodiment, which supply the advancement for unrolling the first outer layer 20 of the material roll 26 and the transportation of all materials over the core.
The advancement rollers 56 provide withdrawal and feeding, preferably under sheeting tension control, of an individual sheeting each of the second outer layer 44 of two mutually spaced-apart, rotatingly driven material rolls 41, on both sides of the material sheeting 20, and sheetlike bonding thereof to the first material layer 20 and the elastic areal pattern 32 via the pressure-sensitive adhesive 29.
As the flattened hose of the first material sheeting 20 is brought together with the supplied planar lengths of the second material sheeting 44 by the advancement unit 56, a water-absorbing polymer (superabsorbent 47) is introduced on both sides of the hose in a perpendicular manner such that, in line with the areal pattern 32, individual lines or tracks adapted individually volumetrically or grammetrically to the advancement speed of the hose of the first material sheeting 20 are continuously trickled in, resulting in a product pattern as per
In one embodiment, the pressure-sensitive adhesive is set by the contact pressure of the advancement rolls 56 after bonding the two outer layers 20 and 44 to each other, wherein the incorporation of the water-absorbing polymer (superabsorbent 47) takes place between the incorporated elastic elements 50, 53, and this multi-ply hose thus formed is severed longitudinally into individual sheetings in the course of the continued advancement movement. These sheetings can selectively be transversingly wound up on rolls movement or deposited in boxes or coiled up.
In a further embodiment, the planar laminate can be endowed transversely to its production direction with sections/cassettes of differing shining for the external plies and thus differing swell volume, leading by controlling the superabsorbent distribution transversely to the production direction of the laminate to an advantageous transverse distribution of absorbency.
It can be advantageous to achieve the function of pressing the first outer material sheeting into the vacant spaces of the storage struts instead of the guiding rails 8 by negative-pressure from the guiding core, by static charge build-up on the first outer material sheeting 20 versus the struts 35, 38 of the core, or by applying compressed air to the outside surface of the hose.
It can further be sensible and advantageous to achieve the functions of the respectively four guiding and storage struts from
Even if the isolation of individual sections of superabsorbents in glue-free regions of an otherwise mutually glued-together sheeting material comprising two outer material sheetings 20 and 44 and incorporating elastic plies 50 and 53 is advantageous for the swelling effect and volume enlargement on the part of superabsorbent 47 in the liquid imbibition in accordance with the intended use, it can be sensible to wet the second outer material sheeting 44 with an additional slight layer of pressure-sensitive adhesive before combining with the first outer material sheeting 20 in a sheetlike manner or in longitudinal strips in order that the superabsorbent may be fixed as sheetlike as possible to thereby preempt any possible clumping of this material before commencement of liquid imbibition and to improve the haptics of the laminate thus produced.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 013 288 | Mar 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2011/000338 | 3/28/2011 | WO | 00 | 9/21/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/141009 | 11/17/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4227952 | Sabee | Oct 1980 | A |
4525407 | Ness | Jun 1985 | A |
4753643 | Kassai | Jun 1988 | A |
4842666 | Werenicz | Jun 1989 | A |
4886511 | Korpman | Dec 1989 | A |
4892535 | Bjornberg et al. | Jan 1990 | A |
4994053 | Lang | Feb 1991 | A |
5226992 | Morman | Jul 1993 | A |
5275676 | Rooyakkers et al. | Jan 1994 | A |
5336545 | Morman | Aug 1994 | A |
5366452 | Widlund et al. | Nov 1994 | A |
5411497 | Tanzer et al. | May 1995 | A |
5425725 | Tanzer et al. | Jun 1995 | A |
5433715 | Tanzer et al. | Jul 1995 | A |
5451219 | Suzuki et al. | Sep 1995 | A |
5505718 | Roe et al. | Apr 1996 | A |
5514470 | Haffner et al. | May 1996 | A |
5562646 | Goldman et al. | Oct 1996 | A |
5593399 | Tanzer et al. | Jan 1997 | A |
5601542 | Melius et al. | Feb 1997 | A |
5643238 | Baker | Jul 1997 | A |
5843059 | Niemeyer et al. | Dec 1998 | A |
5938650 | Baer et al. | Aug 1999 | A |
5938659 | Tu et al. | Aug 1999 | A |
5964743 | Abuto et al. | Oct 1999 | A |
6129717 | Fujioka et al. | Oct 2000 | A |
6149638 | Vogt et al. | Nov 2000 | A |
6231557 | Krautkramer et al. | May 2001 | B1 |
6258196 | Suzuki et al. | Jul 2001 | B1 |
6362389 | McDowall et al. | Mar 2002 | B1 |
6420625 | Jones et al. | Jul 2002 | B1 |
6429350 | Tanzer et al. | Aug 2002 | B1 |
6436081 | Wada et al. | Aug 2002 | B1 |
6570056 | Tanzer et al. | May 2003 | B1 |
6582413 | Krautkramer et al. | Jun 2003 | B2 |
6602234 | Klemp et al. | Aug 2003 | B2 |
6610900 | Tanzer | Aug 2003 | B1 |
6682512 | Uitenbroek et al. | Jan 2004 | B2 |
6790202 | Klemp et al. | Sep 2004 | B2 |
6855223 | Johnson | Feb 2005 | B2 |
6972011 | Maeda et al. | Dec 2005 | B2 |
7037300 | Kling | May 2006 | B2 |
7175910 | Ehrnsperger et al. | Feb 2007 | B2 |
7247152 | Klemp et al. | Jul 2007 | B2 |
7361246 | Chang et al. | Apr 2008 | B2 |
7744576 | Busam et al. | Jun 2010 | B2 |
7750203 | Becker et al. | Jul 2010 | B2 |
20020095127 | Fish et al. | Jul 2002 | A1 |
20020102392 | Fish et al. | Aug 2002 | A1 |
20020115969 | Maeda et al. | Aug 2002 | A1 |
20030225382 | Tombult-Meyer et al. | Dec 2003 | A1 |
20040087923 | Cole | May 2004 | A1 |
20040127874 | Nishizawa et al. | Jul 2004 | A1 |
20040110325 | Nanni et al. | Dec 2004 | A1 |
20060048880 | Blessing et al. | Mar 2006 | A1 |
20060206073 | Crane et al. | Sep 2006 | A1 |
20080156418 | Fenske | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
1984772 | Jun 2007 | CN |
101155564 | Apr 2008 | CN |
102004026070 | Dec 2005 | DE |
724418 | Aug 1996 | EP |
0803602 | Oct 1997 | EP |
06269475 | Sep 1994 | JP |
10165432 | Jun 1998 | JP |
11099169 | Apr 1999 | JP |
2002192641 | Jul 2002 | JP |
2007130819 | May 2007 | JP |
9511654 | May 1995 | WO |
03041627 | May 2003 | WO |
2004011046 | Feb 2004 | WO |
2004071363 | Aug 2004 | WO |
2004071539 | Aug 2004 | WO |
2005115754 | Dec 2005 | WO |
Entry |
---|
Machine Translation of JP 2007130819 A, May 2007. |
Fenske, U.S. Appl. No. 11/569,454, filed Jun. 6, 2007, Non-Final Office Action dated Jan. 21, 2010. |
Fenske, U.S. Appl. No. 11/569,454, filed Jun. 6, 2007, Final Office Action dated Jul. 22, 2010. |
Fenske, U.S. Appl. No. 13/636,457, filed Sep. 21, 2012. |
German language Written Opinion mailed on Jan. 13, 2012 in PCT/DE2011/000338. |
German language Written Opinion mailed on Jan. 13, 2012 in PCT/DE2011/000339. |
International Search Report mailed on Jan. 13, 2012 in PCT/DE2011/000338. |
International Search Report mailed on Jan. 13, 2012 in PCT/DE2011/000339. |
Number | Date | Country | |
---|---|---|---|
20130011601 A1 | Jan 2013 | US |