(Not Applicable)
(Not Applicable)
1. Field of the Invention
This invention relates generally to photolithography, photoablation, and crystallization techniques as part of a method for large-scale fabrication of highly-reflective reduced-mass-per-area plastic film with integrated microelectronics, MEMS, sensors, etc.
2. Description of Related Art
The solar sail is a propulsive device that uses a thin reflecting foil to deflect sunlight, transferring photon momentum to the sail and thereby accelerating it and the attached payload. Although the pressure per unit area of solar photons is rather small, it can be utilized to accelerate spacecraft to very high velocities—spacecraft with very low mass that are driven by very large sails can take advantage of the steady propulsion offered by the sun to attain speeds that are significantly higher than those achieved with chemical rockets. For example, at a distance of 1 Astronomical Unit the solar pressure is approximately 9 μN/m2, a force that will accelerate a one-gram, one-meter-square object at a rate of 9 mm/s2. Thus, if the material of a penny (2.5 grams) were spread over an area of one meter and reflected 100% of the incident solar light, it would accelerate to a velocity of 300 m/sec in just one day, assuming that it is steered directly away from the sun. This freely available energy makes solar sails an attractive propulsion system, but the relatively small momentum carried by photons presents a technical challenge to reduce mass.
To achieve useful acceleration of a solar sail by momentum transfer from solar photons, a sail made of very low-mass-per-area materials is required. Since the acceleration of the spacecraft will vary inversely with its mass, large surface area (on the order of hundreds of square meters) would be required effectively to gather sufficient photon momentum to move a spacecraft carrying even a small payload, such as a micro-satellite. A solar sail of this size, in addition to the electronics, communications equipment, sensors, and power sources required to operate the spacecraft and payload, stands to make up a significant part of the overall mass. Further, solar sail material must be resistant to ultraviolet (UV) radiation and easy to carry and deploy into space.
Thus, mass per unit area is a key factor in selecting materials for solar sails. Solar sails have been designed and constructed using, for example, thin films of aluminum around 100 nm thick, deposited on a 5-μm-thick substrate, such as polyester or polyimide. The coated substrate has a density of approximately 7 g/m2, with 0.5 g/m2 arising from the aluminum and the remaining 6.5 g/m2 from the substrate. With an aluminum reflectivity of close to 0.9, these sails accelerate at a rate of approximately 1 mm/s2 at 1 AU, and could reach Mars within a year. A prototype of a solar sail deployed at NASA's Jet Propulsion Laboratory uses 3-μm-thick polyester coated with a thin-film aluminum layer achieving a total mass density slightly over 6 g/m2.
For interplanetary or interstellar travel, sails will need to be made significantly lighter than this. For example, an all-metal sail with no backing substrate would significantly reduce the mass of the sail. Various means for achieving this have been explored, such as substrates that vaporize upon exposure to UV radiation or the use of UV-degradable adhesion layers which bind the aluminum layer to the underlying substrate. In both cases, exposure to the sun after deployment results in a free standing aluminum foil. While an intermediate step might be simply to reduce the thickness of the underlying substrate, we must note that although polyester is readily available in 0.5 μm thickness, it is not an ideal sail material because it is easily degraded by the sun's ultraviolet radiation, potentially leading to a loss of the structural integrity of the sail; and while polyimide can withstand ultraviolet radiation, it is not available in layers much thinner than 8 μm.
A recently developed material comprised of carbon nanotubes is rigid, strong, and lightweight, only 5 g/m2, making it a desirable material for solar sails. However, given that it is rigid, it cannot be packaged in a very small volume like polyester and polyimide, and therefore, solar sails fabricated from the material would likely need to be assembled in space, adding significantly to the complexity of building and deploying the sail. Thus, no currently available material fulfills this role cost-effectively.
Several projects planned by NASA have called for large quantities of highly-reflective, lightweight, deployable, and durable materials. The fabrication method and resulting product presented here provides a cost-effective material sufficiently light, flexible, and UV-tolerant to satisfy this need.
The object of the invention is to provide a novel solar sail material that addresses the shortcomings of existing materials by producing a low-mass substrate that will survive UV radiation, accommodate the integration of microelectronics, and that can be stored and deployed easily.
A feature of the invention is a weight reducing ablation pattern of ridges and wells formed by removal of material from the original substrate. Due to the laser ablation method employed in this process, this pattern may be any shape or profile suitable to the user's purposes, but polygons, specifically hexagonal ridges, are preferred in many uses.
Another feature of the invention is the ability to deposit and crystallize semiconductor material such as silicon on the substrate, allowing integration of microelectronic components without additional mounting hardware.
An advantage of the invention is its substantial weight savings.
Another advantage of the invention is that its laser ablation process allows the manufacturer flexibility in the ablation pattern in order to suit user-specific needs.
Another advantage of the invention is that the pattern ablated into the material's surface may be selected in order to prevent the propagation of rips in the material.
Another advantage of the invention is that it allows further mass reduction by miniaturizing and integrating electronic components that otherwise might need to be included in the payload, possibly requiring additional wiring and mounting components.
Another advantage of the invention is that it enables increased functionality through the integration of electronic components such as photovoltaic cells and sensors on the surface of the sail.
The invention has been described in its preferred utility as a solar sail, but other objects, features, and advantages of the invention will be apparent from the following written description, claims, abstract, and the annexed drawings.
The layer of reflective material 15, preferably aluminum, is on the surface opposite the ablated surface. This material provides the reflective layer necessary to gather photon momentum. The aluminum layer also will serve as an etch stop if ablation should remove all the plastic at the floor of the well.
The mass reduction realized by the ablation (illustrated in
V
S=(1.5*lS√{square root over (3)})*hS.
The region removed by ablation has a volume of
V
R=(1.5*lS√{square root over (3)})*hR.
Thus, removing this region leaves a well-shaped substrate cell with volume
V
W
=V
S
−V
R.
To illustrate the benefit of the invention, a hexagonal ablation pattern with a side length (lR) of 10 μm to a depth (hR) of 7 μm in a 10.5 μm (lS) grid of 8-μm-thick (hS) polyimide substrate material would remove a volume of about 181 μm3 from an original solid hexagonal prism of about 218 μm3, resulting in a well with a volume of approximately 36 μm3—a volume (and hence mass) savings of approximately 83% over the unablated substrate material. This 83% savings changes the mass-per-unit-area density of the substrate from about 6.5 g/m2 to about 1.1 g/m2.
As shown in
The low temperature at which this process occurs does not risk melting the substrate material, which further facilitates large-scale production; large sheets may be produced without the risk of ruining an entire sheet by melting one portion.
The invention has been shown preferably in the form of a solar sail with its mass reduced by a polygonal ablation pattern and with microelectronic components integrated into the surface of the substrate. It will be clear that the modifications described above and other modifications, whether described as alternatives or not, will be apparent, without departing from the spirit and scope of the invention, as described in the following claims:
This is a divisional application of U.S. patent application Ser. No. 10/865,429, filed Jun. 10, 2004, Klosner et al., HIGHLY-INTEGRATED LOW-MASS SOLAR SAIL.
Number | Date | Country | |
---|---|---|---|
Parent | 10865429 | Jun 2004 | US |
Child | 11640608 | US |