The natural intervertebral disc contains a jelly-like nucleus pulposus surrounded by a fibrous annulus fibrosus. Under an axial load, the nucleus pulposus compresses and radially transfers that load to the annulus fibrosus. The laminated nature of the annulus fibrosus provides it with a high tensile strength and so allows it to expand radially in response to this transferred load.
In a healthy intervertebral disc, cells within the nucleus pulposus produce an extracellular matrix (ECM) containing a high percentage of proteoglycans. These proteoglycans contain sulfated functional groups that retain water, thereby providing the nucleus pulposus within its cushioning qualities. These nucleus pulposus cells may also secrete small amounts of cytokines such as interleukin-1β and TNF-α as well as matrix metalloproteinases (“MMPs”). These cytokines and MMPs help regulate the metabolism of the nucleus pulposus cells.
In some instances of disc degeneration disease (DDD), gradual degeneration of the intervetebral disc is caused by mechanical instabilities in other portions of the spine. In these instances, increased loads and pressures on the nucleus pulposus cause the cells within the disc (or invading macrophases) to emit larger than normal amounts of the above-mentioned cytokines. In other instances of DDD, genetic factors or apoptosis can also cause the cells within the nucleus pulposus to emit toxic amounts of these cytokines and MMPs. In some instances, the pumping action of the disc may malfunction (due to, for example, a decrease in the proteoglycan concentration within the nucleus pulposus), thereby retarding the flow of nutrients into the disc as well as the flow of waste products out of the disc. This reduced capacity to eliminate waste may result in the accumulation of high levels of toxins that may cause nerve irritation and pain.
As DDD progresses, toxic levels of the cytokines and MMPs present in the nucleus pulposus begin to degrade the extracellular matrix, in particular, the MMPs (as mediated by the cytokines) begin cleaving the water-retaining portions of the proteoglycans, thereby reducing its water-retaining capabilities. This degradation leads to a less flexible nucleus pulposus, and so changes the loading pattern within the disc, thereby possibly causing delamination of the annulus fibrosus. These changes cause more mechanical instability, thereby causing the cells to emit even more cytokines, thereby upregulating MMPs. As this destructive cascade continues and DDD further progresses, the disc begins to bulge (“a herniated disc”), and then ultimately ruptures, causing the nucleus pulposus to contact the spinal cord and produce pain.
One proposed method of managing these problems is to remove the problematic disc and replace it with a porous device that restores disc height and allows for bone growth therethrough for the fusion of the adjacent vertebrae. These devices are commonly called “fusion devices”.
U.S. Pat. No. 5,865,848 (“Baker”) discloses a two piece intervertebral fusion cage having a ramp. Baker describes a intervertebral spacer comprised of two components. The two portions have opposed flanges connected by a screw to effect translation, and complimentary slopes. The components are inserted together in a collapsed condition. Post-insertion translation of one component relative to the other creates an expanded condition and the desired distraction.
US Published Patent Application 2004/0230309 (“DePuy Spine”) discloses a two piece intervertebral fusion cage having a ramp. See FIG. 14D.
US Published Patent Application Nos. US2003/0135275 and 2003/0139812 (collectively, “Garcia”) disclose a two-piece implant formed by upper and lower halves, wherein the inner surfaces of the two halves form a dovetail joint that runs along a transverse axis of the implant.
The present invention is directed to a two-piece intervertebral fusion cage, comprising:
One advantage of such a cage is its easy insertion. In a first step, the lower component is inserted into the disc space and is held in place. The first step confirms placement of the implant and its footprint. In a second step, the upper component is inserted into the disc space by sliding its interior surface along the opposed interior surface of the lower component. This two-step method of insertion eliminates the need to provide an independent distraction means, such as the use of an impaction hammer, and an independent trialing means. It also provides mechanical leverage in the cage to facilitate the creation of lordosis.
A second advantage of such a cage is its impact on patient safety. The gradual nature of the distraction of the disc space provided by this two-step insertion procedure should also reduce the possibility of over-distraction, which can cause neural damage. It also eliminates hammer-induced sudden impaction during cage insertion, thereby reducing cage failures, over-insertion and anterior damage. Lastly, the smaller height of the annular defect produced during device insertion aids in preventing device expulsion.
In a first aspect of the present invention, the outside surface of at least one of the components is substantially parallel to its corresponding interior surface. This provides the advantage of ease of insertion through a small annular defect/incision. Simply, one component can determine height and the other component can determine lordosis.
In a second aspect of the present invention, each component has a throughhole extending from its outside surface to its interior surface, and the interior surfaces of these components mate to align the first and second throughholes. This alignment provides a path for bone growth through the vertical dimension of the device, thereby facilitating fusion between the vertebral endplates.
In a third aspect of the present invention, each component has opposed sidewalls and at least one of the components has a lateral throughhole extending from a sidewall thereof to its opposed sidewall. This lateral throughhole provides a path for increased vascularization, increased diffusion, and bone growth through the lateral dimension of the device, thereby facilitating fusion between the vertebral endplates.
In a fourth aspect of the present invention, each component has a dovetail feature extending along the longitudinal axis of its interior surface and the dovetail features of the corresponding components mate along the longitudinal axes. This mating of dovetails provides for a locking of the mated upper and lower components and increases the assurance that the mated components will not disengage in vivo.
In a fifth aspect of the present invention, the upper component has a tapered distal end, preferably a bulleted nose. This tapered distal end allows for easy distraction of the opposed vertebral endplates upon insertion of the upper component into the disc space.
For the purposes of the present invention, the terms “inner surface”, “inside surface” “interior surface are interchangeable, as are the terms “exterior surface”, “outer surface” and “outside surface”.
In general, the cage possesses a two-piece structure with hard-endplates and a locking means that is compatible with MIS techniques. Both the top and bottom portions have an interior and exterior surface (
Now referring to
The device of
In use, the component halves of the device of the present invention are inserted into the disc space is a sequential fashion and are assembled in situ. Now referring to
In one embodiment, the interior surface of the top and/or bottom portion is generally parallel to their exterior surface. Now referring to
An alternative embodiment would have sloped sides and/or non-parallel throughhole walls. These walls may be curved inwards (concave) or bowed outward (convex). Such an embodiment would increase the mechanical structural stability of the assembled device. Additionally, increasing the devices' mating surface areas would give additional room for the dovetail and locking features. Simultaneously, increased mating surface areas would decrease normal and shear load distributions at the mating surfaces, thereby decreasing likelihood of mechanical failures and further minimizing potential for the generation of particulate wear debris.
The device of
Now referring to
The upper component of the device of
In another embodiment, the interior surface 63 of the lower component 61 creates a ramp having an angle α with respect to its corresponding outer surface 65 (
Because the two pieces of the cage are inserted sequentially into the disc space, the “insertion” height of the assembly and thus the height of the annular defect required during the insertion is approximately one half of the assembled device height.
Now referring to
Now referring to
The preferred method for the order of insertion of the two-piece cage of the present invention is now disclosed. The first step can be placement of the first component of the device against the inferior vertebral body. This is often followed by insertion and eventual assembly of the second component onto and over the first component. The first component should contain a lordosed or angled component such that the surface over which the second component is inserted is substantially parallel to the superior vertebral endplate.
Alternatively, the method of inserting the first component with substantially parallel bone contacting and interior surfaces requires that the second component to contain a lordotic angle. As this two-piece assembled cage is typically inserted from a posterior approach, and the angle of the interbody cavity widens anteriorly, insertion of the second component with a lordotic angle requires over-distraction of the posterior aspect of the interbody space to accommodate the larger/taller anterior aspect of the second component. This over-distraction and the associated increased insertion force is not associated with the preferred method where the lordosed component is inserted first followed by the height-restoring component with substantially parallel sides.
Now referring to
In
Now referring to
The endplates may have teeth to prevent migration and perforations to allow bone growth.
Radiographic markers can be incorporated to allow intra- or post-operative visualization.
Additionally, the outside surfaces of the superior and inferior portions can be designed with varying geometries to allow for their customization to the patient's anatomy, thereby minimizing the risk of subsidence. For instance, the outside surface of the superior half may have a convex dome while the outside surfaces of the inferior half may be flat, convex, concave or serpentine (concave posterior and convex anterior).
In an alternative embodiment, an arcuate sliding mating pathway is contemplated.
The benefit to assembling the two cage halves using an arcuate assembly pathway is the potential to provide in situ determination of lordotic angle. Also, the arcuate pathway would embody a mechanism allowing a continuously variable lordotic angle (as opposed to discrete lordotic angles represented by assembly of different superior or inferior cage components). The arcuate mating mechanism requires that one half of the cage contains a convex mating surface while the other half contains a concave mating surface with an arcuate geometry that exactly mimics the inverse of the opposite curve. The assembled halves would represent a fixed radial distance about some center of rotation (the geometric centroid of the arcuate pathway). This fixed radial distance represents the cage height. As the superior cage half slides along the arcuate mating surface of the inferior cage half, the lordotic angle of the assembly will vary continuously. Detents, stops, or teeth can be inserted into the arcuate pathway to create discrete increments of lordotic angles along the continuous arcuate pathway, if this is a preferred further embodiment.
The arcuate pathway enables similar seating features compared to the planar device mating pathway—dovetails, keyways, detents, snap-fits, set screws, etc.
The two halves of the device may be secured together by various means. For instance, a dovetail feature may be incorporated into the interior surfaces of the top and bottom portions for ease of insertion, as shown in
Both components of the device may also incorporate a variety of holding means to assist during the insertion of the device. These holding means may be located on the interior or exterior surfaces as well as along the sidewalls. For example, the top and/or bottom portion may have threaded holes, divots, or slots to provide for secure holding and cage support during insertion, placement and assembly.
After placing the inferior portion, the superior portion can be inserted by several means to expand the overall device height and provide appropriate lordosis or kyphosis.
The superior and inferior portions are generally hollow to provide for filling with various osteogenic fillers and can be porous to allow for graft filling, bony ingrowth and spinal fusion. Lateral openings can also be incorporated to increase vascularization of the osteogenic fillers as well as to provide post-operative visualization of the bony fusion process. Filling can be done preoperatively or intraoperatively, as a through hole into the wedge can facilitate filling of the entire construct in situ
Unlike traditional single-piece cages, the two-piece assembled cage requires sliding articulation of two half-cages packed with bone. Bone packed within a cage is typically held in place using friction forces. The sliding assembly mechanisms described could potentially dislodge packed bone graft during cage insertion and/or assembly. To mitigate the dislodgement of bone chips or the potential for sliding-interference of the bone chips, bonding a resorbable lamina of material between the two halfs is proposed. Such a lamina could be placed on the interior surface 45 of the upper half 43 (see
The present invention also offers novel trialing methods. The inferior or superior portion of the implant device can be inserted alone to confirm disc space clearance and device placement, and a trial of the superior component can be placed upon the inserted component to confirm disc height, lordosis, and placement.
Because these cages reduce the profile required for their insertion, they allow for implantation through a cannula that may be smaller than the conventional cannula.
The endplates can be made of any structural biocompatible material including resorbable (PLA, PLGA, etc.), non-resorbable polymers (CFRP, PEEK, UHMWPE, PDS), metallics (SS, Ti-6Al-4V, CoCr, etc.), as well as materials that are designed to encourage bony regeneration (allograft, bone substitute-loaded polymers, growth factor-loaded polymers, ceramics, etc.). The materials for the upper and lower components are biocompatible and generally similar to those disclosed in the prior art. Examples of such materials are metal, PEEK and ceramic.
In preferred embodiments, each of the upper and lower components is manufactured from a material that possesses the desirable strength and stiffness characteristics for use as a fusion cage component.
These components of the present invention may be made from any non-resorbable material appropriate for human surgical implantation, including but not limited to, surgically appropriate metals, and non-metallic materials, such as carbon fiber composites, polymers and ceramics.
In some embodiments, the cage material is selected from the group consisting of PEEK, ceramic and metallic. The cage material is preferably selected from the group consisting of metal and composite (such as PEEK/carbon fiber).
If a metal is chosen as the material of construction for a component, then the metal is preferably selected from the group consisting of titanium, titanium alloys (such as Ti-6Al-4V), chrome alloys (such as CrCo or Cr—Co—Mo) and stainless steel.
If a polymer is chosen as a material of construction for a component, then the polymer is preferably selected from the group consisting of polyesters, (particularly aromatic esters such as polyalkylene terephthalates, polyamides; polyalkenes; poly(vinyl fluoride); PTFE; polyarylethyl ketone PAEK; polyphenylene and mixtures thereof.
If a ceramic is chosen as the material of construction for a component, then the ceramic is preferably selected from the group consisting of alumina, zirconia and mixtures thereof. It is preferred to select an alumina-zirconia ceramic, such as BIOLOX Delta™, available from CeramTec of Plochingen, Germany. Depending on the material chosen, a smooth surface coating may be provided thereon to improve performance and reduce particulate wear debris.
In some embodiments, the cage member comprises PEEK. In others, it is a ceramic.
In some embodiments, the first component consists essentially of a metallic material, preferably a titanium alloy or a chrome-cobalt alloy. In some embodiments, the second component consists essentially of the same metallic material as the first plate.
In some embodiments, the components are made of a stainless steel alloy, preferably BioDur® CCM Plus® Alloy available from Carpenter Specialty Alloys, Carpenter Technology Corporation of Wyomissing, Pa. In some embodiments, the outer surfaces of the components are coated with a sintered beadcoating, preferably Porocoat™, available from DePuy Orthopaedics of Warsaw, Ind.
In some embodiments, the components are made from a composite comprising carbon fiber. Composites comprising carbon fiber are advantageous in that they typically have a strength and stiffness that is superior to neat polymer materials such as a polyarylethyl ketone PAEK. In some embodiments, each component is made from a polymer composite such as a PEKK-carbon fiber composite.
Preferably, the composite comprising carbon fiber further comprises a polymer. Preferably, the polymer is a polyarylethyl ketone (PAEK). More preferably, the PAEK is selected from the group consisting of polyetherether ketone (PEEK), polyether ketone ketone (PEKK) and polyether ketone (PEK). In preferred embodiments, the PAEK is PEEK.
In some embodiments, the carbon fiber comprises between 1 vol % and 60 vol % (more preferably, between 10 vol % and 50 vol %) of the composite. In some embodiments, the polymer and carbon fibers are homogeneously mixed. In others, the material is a laminate. In some embodiments, the carbon fiber is present in a chopped state. Preferably, the chopped carbon fibers have a median length of between 1 mm and 12 mm, more preferably between 4.5 mm and 7.5 mm. In some embodiments, the carbon fiber is present as continuous strands.
In especially preferred embodiments, the composite comprises:
In some embodiments, the composite consists essentially of PAEK and carbon fiber. More preferably, the composite comprises 60-80 wt % PAEK and 20-40 wt % carbon fiber. Still more preferably the composite comprises 65-75 wt % PAEK and 25-35 wt % carbon fiber.
Although the present invention has been described with reference to its preferred embodiments, those skillful in the art will recognize changes that may be made in form and structure which do not depart from the spirit of the invention.
Alternatively, combinations of cage materials could be beneficial (i.e.,—a ceramic bottom half with a PEEK top half).
This divisional application claims priority from co-pending U.S. Ser. No. 11/768,636, entitled “Highly Lordosed Fusion Cage”, filed Jun. 26, 2007, by Hawkins et al., the specification of which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4349921 | Kuntz | Sep 1982 | A |
4863476 | Shepperd | Sep 1989 | A |
5059193 | Kuslich | Oct 1991 | A |
5290312 | Kojimoto et al. | Mar 1994 | A |
5344252 | Kakimoto | Sep 1994 | A |
5370697 | Baumgartner | Dec 1994 | A |
5390683 | Pisharodi | Feb 1995 | A |
5443514 | Steffee | Aug 1995 | A |
5522899 | Michelson | Jun 1996 | A |
5534029 | Shima | Jul 1996 | A |
5554191 | Lahille et al. | Sep 1996 | A |
5609635 | Michelson | Mar 1997 | A |
5653763 | Errico | Aug 1997 | A |
5658335 | Allen | Aug 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5697977 | Pisharodi | Dec 1997 | A |
5716415 | Steffee | Feb 1998 | A |
5772661 | Michelson | Jun 1998 | A |
5782832 | Larsen et al. | Jul 1998 | A |
5860973 | Michelson | Jan 1999 | A |
5865848 | Baker | Feb 1999 | A |
5888224 | Beckers et al. | Mar 1999 | A |
5893889 | Harrington | Apr 1999 | A |
5893890 | Pisharodi | Apr 1999 | A |
5980522 | Koros | Nov 1999 | A |
6039761 | Li | Mar 2000 | A |
6045579 | Hochshuler | Apr 2000 | A |
6102950 | Vaccaro | Aug 2000 | A |
6106557 | Robioneck et al. | Aug 2000 | A |
6117174 | Nolan | Sep 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6129763 | Chauvin et al. | Oct 2000 | A |
6146387 | Trott et al. | Nov 2000 | A |
6176882 | Biedermann et al. | Jan 2001 | B1 |
6179794 | Burras | Jan 2001 | B1 |
6179873 | Zientek | Jan 2001 | B1 |
6183517 | Suddaby | Feb 2001 | B1 |
6193757 | Foley et al. | Feb 2001 | B1 |
6296647 | Robioneck et al. | Oct 2001 | B1 |
6302914 | Michelson | Oct 2001 | B1 |
6332895 | Suddaby | Dec 2001 | B1 |
6368351 | Glenn | Apr 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6387130 | Stone | May 2002 | B1 |
6409766 | Brett | Jun 2002 | B1 |
6419705 | Erickson | Jul 2002 | B1 |
6419706 | Graf | Jul 2002 | B1 |
6436140 | Liu et al. | Aug 2002 | B1 |
6454806 | Cohen et al. | Sep 2002 | B1 |
6454807 | Jackson | Sep 2002 | B1 |
6488710 | Besselink | Dec 2002 | B2 |
6527804 | Gauchet et al. | Mar 2003 | B1 |
6558424 | Thalgott | May 2003 | B2 |
6562074 | Gerbec et al. | May 2003 | B2 |
6582468 | Gauchet | Jun 2003 | B1 |
6610094 | Husson | Aug 2003 | B2 |
6641614 | Wagner et al. | Nov 2003 | B1 |
6648917 | Gerbec et al. | Nov 2003 | B2 |
6676665 | Foley et al. | Jan 2004 | B2 |
6706070 | Wagner et al. | Mar 2004 | B1 |
6719796 | Cohen et al. | Apr 2004 | B2 |
6723126 | Berry | Apr 2004 | B1 |
6733532 | Gauchet et al. | May 2004 | B1 |
6743255 | Ferree | Jun 2004 | B2 |
6805714 | Sutcliffe | Oct 2004 | B2 |
6855167 | Shimp | Feb 2005 | B2 |
6863673 | Gerbec et al. | Mar 2005 | B2 |
6893464 | Kiester | May 2005 | B2 |
6953477 | Berry | Oct 2005 | B2 |
6955691 | Chae et al. | Oct 2005 | B2 |
6969404 | Ferree | Nov 2005 | B2 |
6969405 | Suddaby | Nov 2005 | B2 |
7018412 | Ferreira et al. | Mar 2006 | B2 |
7018416 | Hanson et al. | Mar 2006 | B2 |
7037339 | Houfburg et al. | May 2006 | B2 |
7083650 | Moskowitz et al. | Aug 2006 | B2 |
7094257 | Mujwid et al. | Aug 2006 | B2 |
7211112 | Baynham et | May 2007 | B2 |
7217293 | Branch | May 2007 | B2 |
7220280 | Kast et al. | May 2007 | B2 |
7223292 | Messerli et al. | May 2007 | B2 |
7226483 | Gerber et al. | Jun 2007 | B2 |
7235101 | Berry et al. | Jun 2007 | B2 |
7326248 | Michelson | Feb 2008 | B2 |
7503933 | Michelson | Mar 2009 | B2 |
7507241 | Levy et al. | Mar 2009 | B2 |
7517363 | Rogers et al. | Apr 2009 | B2 |
7569074 | Eisermann et al. | Aug 2009 | B2 |
7618458 | Biedermann et al. | Nov 2009 | B2 |
7621950 | Globerman et al. | Nov 2009 | B1 |
7621960 | Boyd et al. | Nov 2009 | B2 |
7691147 | Gutlin et al. | Apr 2010 | B2 |
7703727 | Selness | Apr 2010 | B2 |
7722612 | Sala et al. | May 2010 | B2 |
7722674 | Grotz | May 2010 | B1 |
7749270 | Peterman | Jul 2010 | B2 |
7771473 | Thramann | Aug 2010 | B2 |
7785368 | Schaller | Aug 2010 | B2 |
7789914 | Michelson | Sep 2010 | B2 |
7819921 | Grotz | Oct 2010 | B2 |
7824445 | Biro et al. | Nov 2010 | B2 |
7837734 | Zucherman et al. | Nov 2010 | B2 |
7846206 | Oglaza et al. | Dec 2010 | B2 |
7850733 | Baynham et al. | Dec 2010 | B2 |
7854766 | Moskowitz et al. | Dec 2010 | B2 |
7874980 | Sonnenschein et al. | Jan 2011 | B2 |
7879098 | Simmons, Jr. | Feb 2011 | B1 |
7887589 | Glenn et al. | Feb 2011 | B2 |
7909870 | Kraus | Mar 2011 | B2 |
7922729 | Michelson | Apr 2011 | B2 |
7951199 | Miller | May 2011 | B2 |
7985231 | Sankaran | Jul 2011 | B2 |
7993403 | Foley et al. | Aug 2011 | B2 |
8021424 | Beger et al. | Sep 2011 | B2 |
8021426 | Segal et al. | Sep 2011 | B2 |
8025697 | McClellan et al. | Sep 2011 | B2 |
8034109 | Zwirkoski | Oct 2011 | B2 |
8043381 | Hestad et al. | Oct 2011 | B2 |
8062375 | Glerum et al. | Nov 2011 | B2 |
8075621 | Michelson | Dec 2011 | B2 |
8177812 | Sankaran | May 2012 | B2 |
8192495 | Simpson et al. | Jun 2012 | B2 |
8221501 | Eisermann et al. | Jul 2012 | B2 |
8221502 | Branch | Jul 2012 | B2 |
8231681 | Castleman et al. | Jul 2012 | B2 |
8236058 | Fabian et al. | Aug 2012 | B2 |
8241358 | Butler et al. | Aug 2012 | B2 |
8257442 | Edie et al. | Sep 2012 | B2 |
8267939 | Cipoletti et al. | Sep 2012 | B2 |
8273128 | Oh et al. | Sep 2012 | B2 |
8287599 | McGuckin | Oct 2012 | B2 |
8303663 | Jimenez et al. | Nov 2012 | B2 |
8323345 | Sledge | Dec 2012 | B2 |
8328852 | Zehavi et al. | Dec 2012 | B2 |
8337559 | Hansell et al. | Dec 2012 | B2 |
8353961 | McClintock | Jan 2013 | B2 |
8382842 | Greenhalgh et al. | Feb 2013 | B2 |
8398713 | Weiman | Mar 2013 | B2 |
8403990 | Dryer et al. | Mar 2013 | B2 |
8409291 | Blackwell et al. | Apr 2013 | B2 |
8435298 | Weiman | May 2013 | B2 |
8454617 | Schaller | Jun 2013 | B2 |
8486148 | Butler et al. | Jul 2013 | B2 |
8491659 | Weiman | Jul 2013 | B2 |
8506635 | Palmatier et al. | Aug 2013 | B2 |
8518087 | Lopez et al. | Aug 2013 | B2 |
8518120 | Glerum et al. | Aug 2013 | B2 |
8551173 | Lechmann et al. | Oct 2013 | B2 |
8556979 | Glerum et al. | Oct 2013 | B2 |
8568481 | Olmos et al. | Oct 2013 | B2 |
8579977 | Fabian | Nov 2013 | B2 |
8579981 | Lim | Nov 2013 | B2 |
8591585 | McLaughlin et al. | Nov 2013 | B2 |
8628576 | Triplett et al. | Jan 2014 | B2 |
8628578 | Miller et al. | Jan 2014 | B2 |
8632595 | Weiman | Jan 2014 | B2 |
8663329 | Ernst | Mar 2014 | B2 |
8668740 | Rhoda et al. | Mar 2014 | B2 |
8679183 | Glerum et al. | Mar 2014 | B2 |
8685098 | Glerum et al. | Apr 2014 | B2 |
8696751 | Ashley et al. | Apr 2014 | B2 |
8709086 | Glerum et al. | Apr 2014 | B2 |
8715351 | Pinto | May 2014 | B1 |
8721723 | Hansell et al. | May 2014 | B2 |
8753398 | Gordon et al. | Jun 2014 | B2 |
8771360 | Jimenez et al. | Jul 2014 | B2 |
8778025 | Ragab et al. | Jul 2014 | B2 |
8795366 | Varela | Aug 2014 | B2 |
8828085 | Jensen | Sep 2014 | B1 |
8845731 | Weiman | Sep 2014 | B2 |
8845732 | Weiman | Sep 2014 | B2 |
8845734 | Weiman | Sep 2014 | B2 |
8852279 | Weiman | Oct 2014 | B2 |
8864833 | Glerum et al. | Oct 2014 | B2 |
8888853 | Glerum et al. | Nov 2014 | B2 |
8888854 | Glerum et al. | Nov 2014 | B2 |
8900307 | Hawkins et al. | Dec 2014 | B2 |
8936641 | Cain | Jan 2015 | B2 |
8940052 | Lechmann et al. | Jan 2015 | B2 |
9095446 | Landry et al. | Aug 2015 | B2 |
9095447 | Barreiro et al. | Aug 2015 | B2 |
20020068976 | Jackson | Jun 2002 | A1 |
20020068977 | Jackson | Jun 2002 | A1 |
20020128716 | Cohen et al. | Sep 2002 | A1 |
20020151976 | Foley et al. | Oct 2002 | A1 |
20020165612 | Gerber et al. | Nov 2002 | A1 |
20030004575 | Erickson | Jan 2003 | A1 |
20030004576 | Thalgott | Jan 2003 | A1 |
20030023305 | McKay | Jan 2003 | A1 |
20030040799 | Boyd et al. | Feb 2003 | A1 |
20030065396 | Michelson | Apr 2003 | A1 |
20030078667 | Manasas et al. | Apr 2003 | A1 |
20030130739 | Gerbec et al. | Jul 2003 | A1 |
20030135275 | Garcia | Jul 2003 | A1 |
20030139812 | Garcia et al. | Jul 2003 | A1 |
20030139813 | Messerli et al. | Jul 2003 | A1 |
20030233145 | Landry et al. | Dec 2003 | A1 |
20040030387 | Landry et al. | Feb 2004 | A1 |
20040064144 | Johnson et al. | Apr 2004 | A1 |
20040087947 | Lim | May 2004 | A1 |
20040088055 | Hanson et al. | May 2004 | A1 |
20040127991 | Ferree | Jul 2004 | A1 |
20040153065 | Lim | Aug 2004 | A1 |
20040153156 | Cohen et al. | Aug 2004 | A1 |
20040162618 | Mujwid et al. | Aug 2004 | A1 |
20040172133 | Gerber et al. | Sep 2004 | A1 |
20040186570 | Rapp | Sep 2004 | A1 |
20040186577 | Ferree | Sep 2004 | A1 |
20040230309 | DiMauro | Nov 2004 | A1 |
20050038515 | Kunzler | Feb 2005 | A1 |
20050113916 | Branch | May 2005 | A1 |
20050113917 | Chae et al. | May 2005 | A1 |
20050125062 | Biedermann et al. | Jun 2005 | A1 |
20050222681 | Richley et al. | Oct 2005 | A1 |
20050256576 | Moskowitz et al. | Nov 2005 | A1 |
20050261769 | Moskowitz et al. | Nov 2005 | A1 |
20050278026 | Gordon et al. | Dec 2005 | A1 |
20060058876 | McKinley | Mar 2006 | A1 |
20060100706 | Shadduck et al. | May 2006 | A1 |
20060122701 | Kiester | Jun 2006 | A1 |
20060122703 | Aebi et al. | Jun 2006 | A1 |
20060129244 | Ensign | Jun 2006 | A1 |
20060136062 | DiNello et al. | Jun 2006 | A1 |
20060142858 | Colleran et al. | Jun 2006 | A1 |
20060206207 | Dryer et al. | Sep 2006 | A1 |
20060235531 | Buettner | Oct 2006 | A1 |
20060253201 | McLuen | Nov 2006 | A1 |
20060265075 | Baumgartner et al. | Nov 2006 | A1 |
20060265077 | Zwirkoski | Nov 2006 | A1 |
20070010886 | Banick et al. | Jan 2007 | A1 |
20070055377 | Hanson et al. | Mar 2007 | A1 |
20070118222 | Lang | May 2007 | A1 |
20070149978 | Shezifi et al. | Jun 2007 | A1 |
20070173939 | Kim et al. | Jul 2007 | A1 |
20070191959 | Hartmann et al. | Aug 2007 | A1 |
20070198089 | Moskowitz et al. | Aug 2007 | A1 |
20070208423 | Messerli et al. | Sep 2007 | A1 |
20070219634 | Greenhalgh et al. | Sep 2007 | A1 |
20070233244 | Lopez et al. | Oct 2007 | A1 |
20070270968 | Baynham et al. | Nov 2007 | A1 |
20070276375 | Rapp | Nov 2007 | A1 |
20070299521 | Glenn | Dec 2007 | A1 |
20080009877 | Sankaran et al. | Jan 2008 | A1 |
20080015701 | Garcia et al. | Jan 2008 | A1 |
20080021556 | Edie | Jan 2008 | A1 |
20080021558 | Thramann | Jan 2008 | A1 |
20080027550 | Link et al. | Jan 2008 | A1 |
20080033440 | Moskowitz et al. | Feb 2008 | A1 |
20080058944 | Duplessis et al. | Mar 2008 | A1 |
20080065219 | Dye | Mar 2008 | A1 |
20080082173 | Delurio et al. | Apr 2008 | A1 |
20080140207 | Olmos | Jun 2008 | A1 |
20080147193 | Matthis et al. | Jun 2008 | A1 |
20080167657 | Greenhalgh | Jul 2008 | A1 |
20080177388 | Patterson et al. | Jul 2008 | A1 |
20080183204 | Greenhalgh et al. | Jul 2008 | A1 |
20080195209 | Garcia et al. | Aug 2008 | A1 |
20080243251 | Stad et al. | Oct 2008 | A1 |
20080243254 | Butler | Oct 2008 | A1 |
20080249622 | Gray | Oct 2008 | A1 |
20080281425 | Thalgott et al. | Nov 2008 | A1 |
20090030423 | Puno | Jan 2009 | A1 |
20090054991 | Biyani | Feb 2009 | A1 |
20090076610 | Afzal | Mar 2009 | A1 |
20090099568 | Lowry et al. | Apr 2009 | A1 |
20090112320 | Kraus | Apr 2009 | A1 |
20090112324 | Refai et al. | Apr 2009 | A1 |
20090222096 | Trieu | Sep 2009 | A1 |
20090222099 | Liu et al. | Sep 2009 | A1 |
20090234398 | Chirico et al. | Sep 2009 | A1 |
20090240335 | Arcenio et al. | Sep 2009 | A1 |
20090248159 | Aflatoon | Oct 2009 | A1 |
20090292361 | Lopez et al. | Nov 2009 | A1 |
20100016905 | Greenhalgh et al. | Jan 2010 | A1 |
20100179594 | Theofilos et al. | Jul 2010 | A1 |
20100234956 | Attia et al. | Sep 2010 | A1 |
20100262240 | Chavatte et al. | Oct 2010 | A1 |
20100286783 | Lechmann et al. | Nov 2010 | A1 |
20100324607 | Davis | Dec 2010 | A1 |
20110004308 | Marino et al. | Jan 2011 | A1 |
20110004310 | Michelson | Jan 2011 | A1 |
20110015747 | McManus et al. | Jan 2011 | A1 |
20110029082 | Hall | Feb 2011 | A1 |
20110035011 | Cain | Feb 2011 | A1 |
20110093074 | Glerum et al. | Apr 2011 | A1 |
20110130835 | Ashley et al. | Jun 2011 | A1 |
20110130838 | Morgenstern et al. | Jun 2011 | A1 |
20110144753 | Marchek et al. | Jun 2011 | A1 |
20110172716 | Glerum | Jul 2011 | A1 |
20110270261 | Mast et al. | Nov 2011 | A1 |
20110282453 | Greenhalgh et al. | Nov 2011 | A1 |
20110301711 | Palmatier et al. | Dec 2011 | A1 |
20110301712 | Palmatier et al. | Dec 2011 | A1 |
20120004726 | Greenhalgh et al. | Jan 2012 | A1 |
20120004732 | Goel et al. | Jan 2012 | A1 |
20120022654 | Farris et al. | Jan 2012 | A1 |
20120029636 | Ragab et al. | Feb 2012 | A1 |
20120071977 | Oglaza et al. | Mar 2012 | A1 |
20120071980 | Purcell et al. | Mar 2012 | A1 |
20120083889 | Purcell et al. | Apr 2012 | A1 |
20120123546 | Medina | May 2012 | A1 |
20120197403 | Merves | Aug 2012 | A1 |
20120226357 | Varela | Sep 2012 | A1 |
20120290097 | Cipoletti et al. | Nov 2012 | A1 |
20120310350 | Farris et al. | Dec 2012 | A1 |
20120310352 | DiMauro et al. | Dec 2012 | A1 |
20130030536 | Rhoda et al. | Jan 2013 | A1 |
20130085572 | Glerum et al. | Apr 2013 | A1 |
20130085574 | Sledge | Apr 2013 | A1 |
20130116791 | Theofilos | May 2013 | A1 |
20130123924 | Butler et al. | May 2013 | A1 |
20130123927 | Malandain | May 2013 | A1 |
20130138214 | Greenhalgh et al. | May 2013 | A1 |
20130144387 | Walker et al. | Jun 2013 | A1 |
20130144388 | Emery et al. | Jun 2013 | A1 |
20130158663 | Miller et al. | Jun 2013 | A1 |
20130158664 | Palmatier et al. | Jun 2013 | A1 |
20130158667 | Tabor et al. | Jun 2013 | A1 |
20130158668 | Nichols et al. | Jun 2013 | A1 |
20130158669 | Sungarian et al. | Jun 2013 | A1 |
20130173004 | Greenhalgh et al. | Jul 2013 | A1 |
20130190876 | Drochner et al. | Jul 2013 | A1 |
20130190877 | Medina | Jul 2013 | A1 |
20130204371 | McLuen et al. | Aug 2013 | A1 |
20130211525 | McLuen et al. | Aug 2013 | A1 |
20130211526 | Alheidt et al. | Aug 2013 | A1 |
20130310939 | Fabian et al. | Nov 2013 | A1 |
20140039622 | Glerum et al. | Feb 2014 | A1 |
20140046333 | Johnson et al. | Feb 2014 | A1 |
20140058513 | Gahman et al. | Feb 2014 | A1 |
20140067073 | Hauck | Mar 2014 | A1 |
20140114423 | Suedkamp et al. | Apr 2014 | A1 |
20140128977 | Glerum et al. | May 2014 | A1 |
20140135934 | Hansell et al. | May 2014 | A1 |
20140142706 | Hansell et al. | May 2014 | A1 |
20140163683 | Seifert et al. | Jun 2014 | A1 |
20140172106 | To et al. | Jun 2014 | A1 |
20140180421 | Glerum et al. | Jun 2014 | A1 |
20140249629 | Moskowitz et al. | Sep 2014 | A1 |
20140249630 | Weiman | Sep 2014 | A1 |
20140257484 | Flower et al. | Sep 2014 | A1 |
20140257486 | Alheidt | Sep 2014 | A1 |
20140303731 | Glerum et al. | Oct 2014 | A1 |
20140303732 | Rhoda et al. | Oct 2014 | A1 |
20140324171 | Glerum et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
101909548 | Dec 2010 | CN |
4012622 | Jul 1997 | DE |
202008001079 | Mar 2008 | DE |
1290985 | Mar 2003 | EP |
1532949 | May 2005 | EP |
1541096 | Jun 2005 | EP |
1683593 | Jul 2006 | EP |
1698305 | Aug 2007 | EP |
1843723 | Mar 2010 | EP |
2368529 | Sep 2011 | EP |
2237748 | Sep 2012 | EP |
2764851 | Aug 2014 | EP |
2874814 | Mar 2006 | FR |
2003-526457 | Sep 2003 | JP |
2006-516456 | Jul 2006 | JP |
2011-509766 | Mar 2011 | JP |
WO 9531158 | Nov 1995 | WO |
WO 9700054 | Jan 1997 | WO |
WO 0012033 | Mar 2000 | WO |
WO 0074605 | Dec 2000 | WO |
WO 0101895 | Jan 2001 | WO |
WO 2005112834 | Dec 2005 | WO |
WO 2006047587 | May 2006 | WO |
WO 2006058281 | Jun 2006 | WO |
WO 2006065419 | Jun 2006 | WO |
WO 2006081843 | Aug 2006 | WO |
WO 2007009107 | Jan 2007 | WO |
WO 2007028098 | Mar 2007 | WO |
WO 2007048012 | Apr 2007 | WO |
WO 2008044057 | Apr 2008 | WO |
WO 2009092102 | Jul 2009 | WO |
WO 2009064787 | Aug 2009 | WO |
WO 2009124269 | Oct 2009 | WO |
WO 2009143496 | Nov 2009 | WO |
WO 2010068725 | Jun 2010 | WO |
WO 2010148112 | Dec 2010 | WO |
WO 2011142761 | Nov 2011 | WO |
WO 2012009152 | Jan 2012 | WO |
WO 2012089317 | Jul 2012 | WO |
WO 2012135764 | Oct 2012 | WO |
WO 2013006669 | Jan 2013 | WO |
WO 2013023096 | Feb 2013 | WO |
WO 2013025876 | Feb 2013 | WO |
WO 2013043850 | Mar 2013 | WO |
WO 2013082184 | Jun 2013 | WO |
WO 2013158294 | Oct 2013 | WO |
WO 2013173767 | Nov 2013 | WO |
WO 2013184946 | Dec 2013 | WO |
WO 2014018098 | Jan 2014 | WO |
WO 2014026007 | Feb 2014 | WO |
WO 2014035962 | Mar 2014 | WO |
WO 2014088521 | Jun 2014 | WO |
WO 2014116891 | Jul 2014 | WO |
Entry |
---|
Gore, Technique of Cervical Interbody Fusion, Clinical Orthopaedics and Related Research, Sep. 1984, pp. 191-195, No. 188. |
Krbec, [Replacement of the vertebral body with an expansion implant (Synex)], Acta Chir Orthop Traumatol Cech, 2002, pp. 158-162, vol. 69(3). |
U.S. Appl. No. 61/675,975, filed Jul. 26, 2012, Lechmann et al. |
International Patent Application No. PCT/US2013/029014, International Search Report dated Jul. 1, 2013, 7 pages. |
Chiang, Biomechanical Comparison of Instrumented Posterior Lumbar Interbody Fusion with One or Two Cages by Finite Element Analysis, Spine, Sep. 2006, pp. E682-E689, vol. 31(19), Lippincott Williams & Wilkins, Inc. |
Folman, Posterior Lumbar Interbody Fusion for Degenerative Disc Disease Using a Minimally Invasive B-Twin Expandable Spinal Spacer, Journal of Spinal Disorders & Techniques, Oct. 2003, pp. 455-460, vol. 16(5). |
Hunt, Expanable cage placement via a posterolateral approach in lumbar spine reconstructions, Journal of Neurosurgery: Spine, Sep. 2006, pp. 271-274, vol. 5. |
Polikeit, The importance of the endplate for interbody cages in the lumbar spine, Eur Spine J, Dec. 2003, pp. 556-561, vol. 12. |
Shin, Posterior Lumbar Interbody Fusion via a Unilateral Approach, Yonsei Medical Journal, Jun. 2006, pp. 319-325, vol. 47(3). |
Number | Date | Country | |
---|---|---|---|
20150045894 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11768636 | Jun 2007 | US |
Child | 14514700 | US |