Highly soluble Rebaudioside D

Information

  • Patent Grant
  • 9029426
  • Patent Number
    9,029,426
  • Date Filed
    Monday, December 12, 2011
    13 years ago
  • Date Issued
    Tuesday, May 12, 2015
    9 years ago
Abstract
The invention relates to a process for producing highly soluble compositions containing purified steviol glycosides from Stevia rebaudiana Bertoni plant extract, more particularly Rebaudioside D. Obtained highly soluble compositions are useful as non-caloric sweeteners or in combination with sugar or high intensity sweeteners in edible and chewable compositions such as beverages, confectionaries, bakery products, chewing gums and the like.
Description
FIELD OF THE INVENTION

The invention relates to a process for producing highly soluble compositions containing purified steviol glycosides from Stevia rebaudiana Bertoni plant extract, more particularly Rebaudioside D.


BACKGROUND OF THE INVENTION

High intensity sweeteners possess a sweetness level many times exceeding that of sucrose. They are essentially non-caloric and used widely in manufacturing of diet and reduced calorie food. Although natural caloric sweeteners such as sucrose, fructose, and glucose provide the most desirable taste to consumers, they possess high calorie values. High intensity sweeteners do not affect the blood glucose level and provide little or no nutritive value.



Stevia rebaudiana Bertoni is a perennial shrub of the Asteraceae (Compositae) family native to certain regions of South America. The leaves of the plant contain from 10 to 20% of diterpene glycosides, which are around 150 to 450 times sweeter than sugar. The leaves have been traditionally used for hundreds of years in Paraguay and Brazil to sweeten local teas and medicines.


At present there are more than 230 Stevia species with significant sweetening properties. The plant has been successfully grown under a wide range of conditions from its native subtropics to the cold northern latitudes.


The extract of Stevia rebaudiana plant contains a mixture of different sweet diterpene glycosides, which have a single base—steviol—and differ by the presence of carbohydrate residues at positions C13 and C19. These glycosides accumulate in Stevia leaves and compose approximately 10%-20% of the total dry weight. Typically, on a dry weight basis, the four major glycosides found in the leaves of Stevia are Dulcoside A (0.3%), Rebaudioside C (0.6-1.0%), Rebaudioside A (3.8%) and Stevioside (9.1%). Other glycosides identified in Stevia extract include Rebaudioside B, C, D, E, and F, Steviolbioside and Rubusoside. Among steviol glycosides only Stevioside and Rebaudioside A are available on a commercial scale.


Steviol glycosides have zero calories and can be used wherever sugar is used. They are ideal for diabetic and low calorie diets. In addition, the sweet steviol glycosides possess functional and sensory properties superior to those of many high potency or high intensity sweeteners.


Rebaudioside D (CAS No: 63279-13-0), as shown in FIG. 1, is one of the sweet glycosides found in Stevia rebaudiana. Studies show that highly purified forms of Rebaudioside D possess a very desirable taste profile, almost lacking the bitterness and lingering licorice aftertaste typical for other Steviol glycosides.


These properties multiply the significance of Rebaudioside D and attract great interest for methods of preparation of highly purified forms of Rebaudioside D. However, highly purified steviol glycosides possess relatively low water solubility. For example Rebaudioside A thermodynamic equilibrium solubility at room temperature is only 0.8%.


On the other hand, it is well known that Rebaudioside A exhibits so called polymorphism (Zell T. M., Padden B. E., Grant D. J. W., Schroeder S. A., Wachholder K. L., Prakash I., Munsona E. J. (2000) Investigation of Polymorphism in Aspartame and Neotame Using Solid-State NMR Spectroscopy, Tetrahedron, 56, 6603-6616). Rebaudioside A amorphous, anhydrous and solvate forms differ significantly from each other in terms of solubility, which is one of the main criteria for the commercial viability of a sweetener. In this regard, as shown in Table 1, the hydrate form of Rebaudioside A displays the lowest solubility (Prakash I., DuBois G. E., Clos J. F., Wilkens K. L., Fosdick L. E. (2008) Development of rebiana, a natural, non-caloric sweetener, Food Chem. Toxicol., 46, S75-S82). It was shown that Rebaudioside A may transform from one polymorph form to another at certain conditions (U.S. patent application Ser. No. 11/556,049).









TABLE 1







Properties of Rebaudioside A forms (U.S.


patent application Ser. No. 11/556,049)









Polymorph Forms












Form 1
Form 2
Form 3
Form 4



Hydrate
Anhydrous
Solvate
Amorphous















Rate of
Very low
Intermediate
High (>30%
High (>35%


dissolution in
(<0.2% in 60
(<30% in 5
in 5
in 5


H2O at 25° C.
minutes)
minutes)
minutes)
minutes)


Alcohol
<0.5%
<1%
1-3%
<0.05%


content


Moisture
  >5%
<1%
 <3%
6.74%


content









Rebaudioside D possesses even lower water solubility compared to Rebaudioside A. In room temperature it can be dissolved only at 0.05%. When heat is applied, one can make up to 0.5% solution, but upon cooling to room temperature, Rebaudioside D will quickly crystallize back out from the solution. Considering high sweetness intensity of Rebaudioside D, even 0.05% solubility can be sufficient for many applications.


Many food production processes use highly concentrated ingredient mixes prior to producing final forms of food products. In that case, higher concentrations of dissolved Rebaudioside D will be required. It has to be noted that using the heat for dissolution of Rebaudioside D may not be possible in many compositions which contain heat sensitive components. Also maintaining high temperature of mixture for prolonged time to prevent premature crystallization of Rebaudioside D can cause thermal degradation of mixture components or undesirable changes of organoleptic properties.


Therefore there is a need for developing highly soluble forms or compositions of Rebaudioside D which can provide stable solutions with minimal or no heat treatment.


Furthermore, considering the similar chemical structures of Rebaudioside D and other steviol glycosides, as well as other terpene glycosides, the developed approaches may be used in the case of other glycosides as well.


SUMMARY OF THE INVENTION

The invention relates to a process for producing highly soluble compositions containing purified steviol glycosides from Stevia rebaudiana Bertoni plant extract, more particularly Rebaudioside D.


Hereinafter the term “steviol glycoside(s)” will mean Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, Stevioside, Steviolbioside, Dulcoside A, Rubusoside, or other glycoside of steviol and combinations thereof.


Hereinafter, unless specified otherwise the solubility of material is determined in RO (reverse osmosis) water at room temperature. Where the solubility is expressed as “%” it to be understood as number of grams of material soluble in 100 grams of solvent.


Hereinafter the term “highly purified” will mean purity level of at least 95% (w/w) on anhydrous basis.


Hereinafter the term “low purity” will mean purity level of less than 95% (w/w) on anhydrous basis.


Hereinafter the term “TSG content” will mean Total Steviol Glycosides content, and it will be calculated as sum of all steviol glycosides' content including Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, Stevioside, Steviolbioside, Dulcoside A and Rubusoside.


Hereinafter the terms “Reb A, B, C, D, E, F” refer to Rebaudiosides A, B, C, D, E, F, respectively.


Hereinafter the term “Reb D” refers to Rebaudioside D (CAS No. 63279-13-0).


Hereinafter the term “crystalline Rebaudioside D” will refer to any form of highly purified Rebaudioside D obtained by crystallization from an aqueous or aqueous alcoholic solution containing Rebaudioside D and further separating the Rebaudioside D crystals and drying them by any means known to the art.


Hereinafter the term “amorphous Rebaudioside D” will refer to any form of highly purified Rebaudioside D obtained by spray drying or freeze drying of aqueous or aqueous alcoholic solution containing Rebaudioside D.


Hereinafter the terms “non-steviol glycoside fraction” or “non-glycoside fraction” will mean materials predominantly comprising compounds, other than steviol glycosides, which are present in the water extracts of Stevia rebaudiana leaves or commercially available stevia extracts at more than 0.0001% (w/w) on dry basis. Not limiting examples of such compounds include typical plant materials, such as pigments and saccharides, phenolic compounds, volatile oil components, sterols, triterpenes, flavonoids, coumarins, non-glycosidic diterpenes (sterebins) spathulenol, decanoic acid, 8,11,14-ecosatrienoic acid, 2-methyloctadecane, pentacosane, octacosane, stigmasterol, bsitosterol, a- and b-amyrine, lupeol, b-amyrin acetate, and pentacyclic triterpene or combinations thereof. The materials designated as “non-steviol glycoside fraction” or “non-glycoside fraction” and prepared in some embodiments of present invention may also contain small residual amounts of steviol glycosides.


Hereinafter the term “polyol” refers to a compound that contains more than one hydroxyl group. A polyol may contain 2 to 7 hydroxyl groups. Non-limiting examples of polyols include erythritol, maltitol, mannitol, sorbitol, lactitol, xylitol, inositol, isomalt, propylene glycol, glycerol (glycerine), threitol, galactitol, reduced isomalto-oligosaccharides, reduced xylo-oligosaccharides, reduced gentio-oligosaccharides, reduced maltose syrup, reduced glucose syrup or combinations thereof.


Hereinafter the term “molasses” refers to sugarcane molasses such as first molasses, second molasses, US grade “A”, “B”, “C”, and substandard blackstrap molasses, as well as beet sugar molasses, boil-back molasses, high-test molasses, refiners' molasses, sweet sorghum syrup. Non-limiting examples of typical constituents of molasses are sucrose, glucose, fructose, starch, gums, pentosans, hexitols, myoinositols, mannitol, aminoacids, wax, sterols, phosphatides, aconitic, citric, malic, oxalic, glycolic, succinic, fumaric acids, melanoidins or mixtures thereof.


Hereinafter the term “caramel” refers to class I (INS No: 150a), Class II (INS No: 150b) class III (INS No: 150c), and class IV (INS No: 150d) caramel colors or mixtures thereof.


In one embodiment of the invention, crystalline Reb D was dissolved in a water ethanol mixture and spray dried to obtain amorphous form of Reb D with improved solubility.


In another embodiment, crystalline or amorphous Reb D is combined with a polyol at a ratio of 1:100 to 100:1 (w/w) to obtain a composition with improved RebD solubility.


In yet another embodiment, the combination of crystalline Reb D and polyol at a ratio of 1:100 to 100:1 (w/w) is dissolved in water or aqueous alcohol and spray dried to provide a composition with improved Reb D solubility.


In another embodiment, the combination of amorphous Reb D and polyol at a ratio of 1:100 to 100:1 (w/w) is granulated by means of roll compact granulator. The granulated material made in accordance with the present invention advantageously yields a product with favorable characteristics such as Reb D solubility and particle size distribution.


In another embodiment, steviol glycosides are separated from Stevia rebaudiana leaves' water extract to obtain the non-glycoside fraction of Stevia. Any separation technique known to the art, such as chromatographic separation, crystallization from water or aqueous alcohol, adsorption on specific resins, membrane separation, or supercritical fluid extraction may be employed.


In another embodiment, amorphous or crystalline Reb D is combined with a non-glycoside fraction of stevia at a ratio of 1:100 to 100:1 (w/w) to obtain a composition with improved RebD solubility.


In yet another embodiment the combination of crystalline Reb D and non-glycoside fraction of stevia at a ratio of 1:100 to 100:1 (w/w) is dissolved in water or aqueous alcohol and spray dried to provide a composition with improved Reb D solubility.


In another embodiment, amorphous or crystalline Reb D is combined with molasses or caramel at a ratio of 1:100 to 100:1 (w/w) to obtain a composition with improved RebD solubility.


In yet another embodiment, the combination of crystalline Reb D and molasses or caramel at a ratio of 1:100 to 100:1 (w/w) is dissolved in water or aqueous alcohol and spray dried to provide a composition with improved Reb D solubility.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 shows the chemical structure of Rebaudioside D (CAS No: 63279-13-0).





DETAILED DESCRIPTION OF THE INVENTION

The invention is aimed to provide Rebaudioside D forms or compositions containing Rebaudioside D with improved solubility in water.


In one embodiment, highly purified crystalline Rebaudioside D, which has a solubility of 0.05%, was dissolved in aqueous alcohol at a concentration of 0.5 to 50%, preferably 5-25%, more preferably 10-20%. The alcohol content used in aqueous alcohol is 0.1-100% (vol/vol), preferably 20-70% (vol/vol), more preferably 30-50% (vol/vol). The alcohol is selected from the group consisting of alkanols, more particularly methanol, ethanol, n-propanol, 2-propanol, 1-butanol, 2-butanol or combinations thereof. To dissolve the Reb D, the solution is heated to 30-100° C., preferably 50-100° C., more preferably 60-100° C. To prevent premature crystallization, the solution is maintained at 20-80° C., preferably 30-70° C., more preferably 50-60° C. The solution is fed to a spray drier to obtain a powder of highly purified amorphous Reb D with a solubility of 0.2%.


In another embodiment highly purified amorphous or crystalline Rebaudioside D is combined with a polyol at a ratio of 1:1 to 1:100 (wt/wt), preferably 1:1 to 1:30 (wt/wt), more preferably 1:1 to 1:10. The polyol is selected from group consisting of erythritol, maltitol, mannitol, sorbitol, lactitol, xylitol, inositol, isomalt, propylene glycol, glycerol (glycerine), threitol, galactitol, reduced isomalto-oligosaccharides, reduced xylo-oligosaccharides, reduced gentio-oligosaccharides, reduced maltose syrup, reduced glucose syrup or combinations thereof. Preferably, the polyol is selected from group consisting of erythritol, maltitol, mannitol, sorbitol, lactitol, xylitol, inositol, and isomalt, and more preferably, erythritol, maltitol, sorbitol, and isomalt. When the prepared compositions containing crystalline Reb D are dissolved in water at room temperature the solubility of Reb D is 0.1-2.0%. For compositions with amorphous RebD the solubility under the same conditions is 0.3-2.0%.


In another embodiment, the combination of amorphous Reb D and polyol at a ratio of 1:1 to 1:100 (w/w), preferably 1:1 to 1:30 (w/w), more preferably 1:1 to 1:10, is granulated by means of any equipment known to art suitable for granulation of fine powder into granules, preferably by means of a roll compact granulator. The roll speed was between about 5-20 rpm, preferably between about 7-10 rpm, and more preferably about 9 rpm. The roll pressure was between about 20-80 bar, preferably between about 40-50 bar, and more preferably about 45 bar. The granulator rotors were rotating at a rate of between about 50-2000 rpm, preferably between about 100-200 rpm, and more preferably at about 150 rpm. The granulators were equipped with screens which sizes were between about 0.5-6.0 mm, preferably between about 1-4 mm, and more preferably about 3.1 mm for the pre-granulator and about 1.6 mm for the fine granulator. When the prepared compositions are dissolved in water, the solubility of Reb D is 0.1-2.5%.


In another embodiment, the non-glycosidic fraction of stevia is combined with crystalline Rebaudioside D, at a ratio of 1:1 to 1:100 (wt/wt), preferably 1:2 to 1:20 (wt/wt), more preferably 1:3 to 1:10. The mixture is dissolved in aqueous alcohol at a concentration of 0.5 to 50%, preferably 5-25%, more preferably 10-20%. The alcohol content in used aqueous alcohol is 0.1-100% (vol/vol), preferably 20-70% (vol/vol), more preferably 30-50% (vol/vol). The alcohol is selected from the group consisting of alkanols, more particularly methanol, ethanol, n-propanol, 2-propanol, 1-butanol, and 2-butanol. To dissolve the Reb D, the solution is heated to 30-100° C., preferably 50-100° C., more preferably 60-100° C. To prevent premature crystallization, the solution is maintained at 20-80° C., preferably 30-70° C., more preferably 50-60° C. The solution is fed to a spray drier to obtain a powder of highly soluble Reb D composition. When the prepared compositions are dissolved in water at room temperature the solubility of Reb D is 0.3-5.0%, or 0.1-2.5%.


In another embodiment, molasses are combined with crystalline Rebaudioside D, at a ratio of 1:1 to 1:100 (w/w), preferably 1:2 to 1:20 (w/w), more preferably 1:3 to 1:10. The mixture is dissolved in aqueous alcohol at a concentration of 0.5 to 50%, preferably 5-25%, more preferably 10-20%. The alcohol content in used aqueous alcohol is 0.1-100% (vol/vol), preferably 20-70% (vol/vol), more preferably 30-50% (vol/vol). The alcohol is selected from the group consisting of alkanols, more particularly methanol, ethanol, n-propanol, 2-propanol, 1-butanol, 2-butanol. The molasses are selected from the group comprising of US grade “A”, “B” and “C” molasses as well as substandard molasses, preferably grade “A” molasses. To dissolve the Reb D the solution is heated to 30-100° C., preferably 50-100° C., more preferably 60-100° C. To prevent premature crystallization the solution is maintained at 20-80° C., preferably 30-70° C., more preferably 50-60° C. The solution is fed to a spray drier to obtain a powder of highly soluble Reb D composition. When the prepared compositions are dissolved in water, the solubility of Reb D is 0.1-3.5%.


In another embodiment, caramel is combined with crystalline Rebaudioside D, at a ratio of 1:1 to 1:100 (w/w), preferably 1:2 to 1:20 (w/w), more preferably 1:3 to 1:10. The mixture is dissolved in aqueous alcohol at a concentration of 0.5 to 50%, preferably 5-25%, more preferably 10-20%. The alcohol content in used aqueous alcohol is 0.1-100% (vol/vol), preferably 20-70% (vol/vol), more preferably 30-50% (vol/vol). The alcohol is selected from the group consisting of alkanols, more particularly methanol, ethanol, n-propanol, 2-propanol, 1-butanol, 2-butanol. The caramel is selected from the group comprising of class I, class II, class III and class IV caramel colors, preferably, class I caramel. To dissolve the Reb D the solution is heated to 30-100° C., preferably 50-100° C., more preferably 60-100° C. To prevent premature crystallization the solution is maintained at 20-80° C., preferably 30-70° C., more preferably 50-60° C. The solution is fed to a spray drier to obtain a powder of highly soluble Reb D composition. When the prepared compositions are dissolved in water, the solubility of Reb D is 0.3-3.5%.


The following examples illustrate preferred embodiments of the invention. It will be understood that the invention is not limited to the materials, proportions, conditions and procedures set forth in the examples, which are only illustrative.


EXAMPLE 1
Preparation of Amorphous Rebaudioside D

100 g of crystalline Rebaudioside D, produced by PureCircle Sdn Bhd, with 98.1% purity (on anhydrous basis) was dissolved in 500 mL aqueous ethanol, containing 50% (vol.) ethanol. The solution was maintained at 50° C. and dried using a YC-015 laboratory spray drier (Shanghai Pilotech Instrument & Equipment Co. Ltd., China) operating at 175° C. inlet and 100° C. outlet temperatures. The obtained amorphous powder was compared with crystalline material for solubility.









TABLE 2







Solubility of Rebaudioside D










Solubility, % (in water)










Temperature
Crystalline
Amorphous












20° C.
0.05
0.1


 50° C.*
0.2
0.5


100° C.*
0.5
1.1





*Solutions obtained at 50° C. and 100° C. crystallized after cooling down to room temperature (20° C.).






EXAMPLE 2
Preparation of Non-Glycosidic Stevia Fraction

500 g of commercial stevia extract, containing Rebaudioside A 41.2%, Stevioside 30.6%, Rebaudioside C 9.9%, Rebaudioside F 2.3%, Dulcoside A 0.5%, Rubusoside 0.6%, Rebaudioside D 1.5%, Steviolbioside 0.2% and Rebaudioside B 0.1% were dissolved in 9.5 liter of RO water and passed through a column packed with 10 liter Amberlite XAD7HP resin. The column was washed with 10 volumes of RO water. The collected water fractions were evaporated under vacuum at 55° C. and spray dried to yield 45 g powder with 9.8% TSG including 7.8% Rebaudioside D, 2.0% Rebaudioside A and non-detectable amounts of other steviol glycosides.


EXAMPLE 3
Preparation of Rebaudioside D Soluble Composition

10 g of crystalline Rebaudioside D, produced by PureCircle Sdn Bhd, with 98.1% purity (on anhydrous basis) was mixed with different amounts of erythritol (Prima Inter-Chem Sdn Bhd, Malaysia). The obtained blends were tested for solubility, and solution stability to crystallization, during storage at room temperature.









TABLE 3







Solubility of Rebaudioside D blends











Blend ratio, wt/wt
Solubility*, % (RebD in water)












RebD/Erythritol
20° C.
100° C.**















2:1
0.06
0.09



1:1
0.08
0.2



1:5
0.2
0.5



1:10
0.4
1.0



1:15
0.8
1.3



1:20
1.5
2.0







*Solubility is calculated for RebD % content in solution



**The material was dissolved at 100° C. and cooled down to room temperature (20° C.). The reported concentrations are stable (do not crystallize) for 24 hrs storage in room temperature.






EXAMPLE 4
Preparation of Rebaudioside D Soluble Composition

10 g of amorphous Rebaudioside D prepared according to EXAMPLE 1, was mixed with different amounts of erythritol (Prima Inter-Chem Sdn Bhd, Malaysia). The obtained blends were tested for solubility, and solution stability to crystallization, during storage at room temperature.









TABLE 4







Solubility of Rebaudioside D blends











Blend ratio, wt/wt
Solubility*, % (RebD in water)












RebD/Erythritol
20° C.
100° C.**















2:1
0.08
0.09



1:1
0.16
0.2



1:5
0.4
0.5



1:10
0.9
1.0



1:15
1.0
1.3



1:20
1.1
2.0







*Solubility is calculated for RebD % content in solution



**The material was dissolved at 100° C. and cooled down to room temperature (20° C.). The reported concentrations are stable (do not crystallize) for 24 hrs storage in room temperature.






EXAMPLE 5
Preparation of Rebaudioside D Soluble Composition

10 g of crystalline Rebaudioside D, produced by PureCircle Sdn Bhd, with 98.1% purity (on anhydrous basis) was mixed with different amounts of erythritol (Prima Inter-Chem Sdn Bhd, Malaysia). The obtained blends were dissolved in 5 volumes of aqueous ethanol, containing 50% (vol.) ethanol. The solution was maintained at 50° C. and dried using a YC-015 laboratory spray drier (Shanghai Pilotech Instrument & Equipment Co. Ltd., China) operating at 175° C. inlet and 100° C. outlet temperatures. The obtained amorphous powder was tested for solubility, and solution stability to crystallization, during storage at room temperature.









TABLE 5







Solubility of Rebaudioside D blends











Blend ratio, wt/wt
Solubility*, % (RebD in water)












RebD/Erythritol
20° C.
100° C.**















2:1
0.16
0.2



1:1
0.3
0.4



1:5
0.6
0.7



1:10
1.2
1.4



1:15
1.5
1.8



1:20
1.8
2.5







*Solubility is calculated for RebD % content in solution



**The material was dissolved at 100° C. and cooled down to room temperature (20° C.). The reported concentrations are stable (do not crystallize) for 24 hrs storage in room temperature.






EXAMPLE 6
Preparation of Rebaudioside D Soluble Composition

10 g of crystalline Rebaudioside D, produced by PureCircle Sdn Bhd, with 98.1% purity (on anhydrous basis) was mixed with different amounts of stevia non-glycosidic fraction prepared according to EXAMPLE 2. The obtained blends were tested for solubility, and solution stability to crystallization, during storage at room temperature.









TABLE 6







Solubility of Rebaudioside D blends











Blend ratio, wt/wt
Solubility*, % (RebD in water)












RebD/Non-glyc. fraction
20° C.
100° C.**















1:2
0.07
2.1



1:1
0.06
1.5



2:1
0.06
1.3



3:1
0.06
0.8



4:1
0.06
0.3



5:1
0.05
0.15







*Solubility is calculated for RebD % content in solution



**The material was dissolved at 100° C. and cooled down to room temperature (20° C.). The reported concentrations are stable (do not crystallize) for 24 hrs storage in room temperature.






EXAMPLE 7
Preparation of Rebaudioside D Soluble Composition

10 g of amorphous Rebaudioside D, prepared according to EXAMPLE 1, was mixed with different amounts of stevia non-glycosidic fraction, prepared according to EXAMPLE 2. The obtained blends were tested for solubility, and solution stability to crystallization, during storage at room temperature.









TABLE 7







Solubility of Rebaudioside D blends











Blend ratio, wt/wt
Solubility*, % (RebD in water)












RebD/Non-glyc. fraction
20° C.
100° C.**















1:2
0.1
2.1



1:1
0.09
1.5



2:1
0.08
1.3



3:1
0.06
0.8



4:1
0.06
0.3



5:1
0.05
0.15







*Solubility is calculated for RebD % content in solution



**The material was dissolved at 100° C. and cooled down to room temperature (20° C.). The reported concentrations are stable (do not crystallize) for 24 hrs storage in room temperature.






EXAMPLE 8
Preparation of Rebaudioside D Soluble Composition

10 g of crystalline Rebaudioside D was mixed with different amounts of stevia non-glycosidic fraction, prepared according to EXAMPLE 2. The obtained blends were dissolved in 5 volumes of aqueous ethanol, containing 50% (vol.) ethanol. The solution was maintained at 50° C. and dried using a YC-015 laboratory spray drier (Shanghai Pilotech Instrument & Equipment Co. Ltd., China) operating at 175° C. inlet and 100° C. outlet temperatures. The obtained amorphous powder was tested for solubility, and solution stability to crystallization, during storage at room temperature.









TABLE 8







Solubility of Rebaudioside D blends











Blend ratio, wt/wt
Solubility*, % (RebD in water)












RebD/Non-glyc. fraction
20° C.
100° C.**















1:2
0.4
2.5



1:1
0.3
2.1



2:1
0.2
1.8



3:1
0.1
1.4



4:1
0.08
0.9



5:1
0.06
0.4







*Solubility is calculated for RebD % content in solution



**The material was dissolved at 100° C. and cooled down to room temperature (20° C.). The reported concentrations are stable (do not crystallize) for 24 hrs storage in room temperature






EXAMPLE 9
Preparation of Rebaudioside D Soluble Composition

10 g of crystalline Rebaudioside D, produced by PureCircle Sdn Bhd, was mixed with different amounts of molasses (Chee Lam Trading, Malaysia). The obtained blends were dissolved in 5 volumes of aqueous ethanol, containing 50% (vol.) ethanol. The solution was maintained at 50° C. and dried using a YC-015 laboratory spray drier (Shanghai Pilotech Instrument & Equipment Co. Ltd., China) operating at 175° C. inlet and 100° C. outlet temperatures. The obtained amorphous powder was tested for solubility, and solution stability to crystallization, during storage at room temperature.









TABLE 9







Solubility of Rebaudioside D blends











Blend ratio, w/w
Solubility*, % (RebD in water)












RebD/Molasses
20° C.
100° C.**















1:2
0.5
3.5



1:1
0.3
2.6



2:1
0.2
2.1



3:1
0.1
1.6



4:1
0.09
1.2



5:1
0.08
0.5







*Solubility is calculated for RebD % content in solution



**The material was dissolved at 100° C. and cooled down to room temperature (20° C.). The reported concentrations are stable (do not crystallize) for 24 hrs storage in room temperature






EXAMPLE 10
Preparation of Granulated Rebaudioside D Soluble Composition

1 kg of amorphous Rebaudioside D prepared according to EXAMPLE 1, was mixed with different amounts of erythritol (Prima Inter-Chem Sdn Bhd, Malaysia). The obtained blends were transferred to an Alexanderwerk WP 50N/75 roller compactor. The compactor was operating at 9 rpm and 45 bar pressure. The compacted mass was fed to a pre-granulator and a fine granulator with rotors at rotating at 150 rpm. The screen size for the pre-granulator was 3.1 mm and for the fine granulator was 1.6 mm. The “overs” (particles that are too large) and “fines” (particles that are too small) were separated by top screen having a screen size of US Mesh 10 and bottom screen of US Mesh 40. The % ratio of “overs”:“product”:“fines” was 0.9%:78.2%:20.9% respectively. The obtained products were tested for solubility, and solution stability to crystallization, during storage at room temperature.









TABLE 10







Solubility of Rebaudioside D blends











Blend ratio, w/w
Solubility*, % (RebD in water)












RebD/Erythritol
20° C.
100° C.**















2:1
0.09
0.1



1:1
0.17
0.2



1:5
0.4
0.6



1:10
0.9
1.2



1:15
1.0
1.8



1:20
1.5
2.5







*Solubility is calculated for RebD % content in solution



**The material was dissolved at 100° C. and cooled down to room temperature (20° C.). The reported concentrations are stable (do not crystallize) for 24 hrs storage in room temperature






While the foregoing has described one or more embodiments of the present invention, it will be understood by those skilled in the art that various changes and modifications may be made and equivalents may be substituted for elements or compositions thereof without departing from the true scope of the invention. Therefore, it is intended that this invention not be limited to a particular embodiment disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims
  • 1. A method of preparing a highly soluble Rebaudioside D composition, comprising the steps of: a. providing a first composition comprising Rebaudioside D;b. providing a second composition comprising at least one component selected from the group consisting of: a non-glycosidic fraction of Stevia; molasses; and caramel color;c. dissolving the first and second compositions in a solvent selected from the group consisting of water or aqueous alcohol to make a solution; andd. spray drying the solution to obtain the highly soluble Rebaudioside D composition, wherein said Rebaudioside D composition has a water solubility of at least about 0.05% at 20°C.
  • 2. The method of claim 1 wherein the second composition comprises a non-glycosidic fraction of Stevia at a ratio (wt/wt) of the non-glycosidic fraction of Stevia to the first composition of about 1:100 to about 100:1, preferably about 1:2 to about 1:20, more preferably about 1:3 to about 1:10.
  • 3. The method of claim 2 wherein the non-glycosidic fraction of Stevia is prepared by a process comprising the steps of: providing a stevia extract;dissolving the stevia extract in water or aqueous alcohol to form a stevia extract solution;passing the stevia extract solution through a chromatographic system packed with macroporous adsorbent resin capable of adsorbing steviol glycosides;collecting an effluent from the chromatographic system; anddrying the effluent to obtain the non-glycosidic fraction of Stevia.
  • 4. The method of claim 3, wherein the stevia extract contains about 10-95%, preferably about 30-90%, and more preferably about 40-85% total steviol glycosides.
  • 5. The method of claim 3, wherein the water or aqueous alcohol ratio to dissolved stevia extract solids (vol/wt) is about 1:1 to about 200:1, preferably about 5:1 to about 100:1, more preferably about 10:1 to about 50:1.
  • 6. The method of claim 3 wherein the amount of stevia extract exceeds an adsorption capacity of the adsorbent in the chromatographic system by about 1-10 times, preferably by about 1-5 times, and more preferably by about 1-1.5 times.
  • 7. The method of claim 3, wherein the chromatographic system comprises about 1-20 consecutively connected columns, preferably about 1-10 columns, and more preferably about 1-6 columns.
  • 8. The method of claim 1, wherein the second composition comprises molasses at a ratio (w/w) of molasses to the first composition of about 1:100 to about 100:1, preferably about 1:2 to about 1:20 and more preferably about 1:3 to about 1:10.
  • 9. The method of claim 8, wherein the molasses is selected from the group consisting of: sugarcane molasses such as first molasses, second molasses, US grade “A”, “B”, “C”, and substandard blackstrap molasses; beet sugar molasses; boil-back molasses; high-test molasses; refiners' molasses; sweet sorghum syrup; and a combination thereof.
  • 10. The method of claim 1, wherein the second composition comprises caramel at a ratio (w/w) of caramel to the first composition of about 1:100 to about 100:1, preferably about 1:2 to about 1:20, and more preferably about 1:3 to about 1:10.
  • 11. The method of claim 10, wherein the caramel is selected from the group consisting of Class I (INS No: 150a), Class II (INS No: 150b), Class III (INS No: 150c), and Class IV (INS No: 150d) caramel colors and combinations thereof.
  • 12. The method of claim 1, wherein the drying step comprises spray drying the solution in a spray drier operating at an inlet temperature of about 150-200° C. and an outlet temperature of about 80-120° C.
PRIOR APPLICATION INFORMATION

This application is entitled to the earlier filing dates of, and claims the benefit of priority to, U.S. Provisional Application No. 61/422,403, filed on Dec. 13, 2010, and U.S. Provisional Application No. 61/424,798, filed on Dec. 20, 2010, the contents of which are incorporated by reference herein in their entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2011/064343 12/12/2011 WO 00 6/12/2013
Publishing Document Publishing Date Country Kind
WO2012/082587 6/21/2012 WO A
US Referenced Citations (102)
Number Name Date Kind
3723410 Persinos Mar 1973 A
4082858 Morita et al. Apr 1978 A
4171430 Matsushita et al. Oct 1979 A
4219571 Miyake Aug 1980 A
4361697 Dobberstein et al. Nov 1982 A
4454290 Dubois Jun 1984 A
4590160 Nishihashi et al. May 1986 A
4599403 Kumar Jul 1986 A
4612942 Dobberstein et al. Sep 1986 A
4657638 le Grand et al. Apr 1987 A
4892938 Giovanetto Jan 1990 A
4917916 Hirao et al. Apr 1990 A
5112610 Kienle May 1992 A
5576042 Fuisz Nov 1996 A
5779805 Morano Jul 1998 A
5962678 Payzant et al. Oct 1999 A
5972120 Kutowy et al. Oct 1999 A
6031157 Morita et al. Feb 2000 A
6080561 Morita et al. Jun 2000 A
6204377 Nishimoto et al. Mar 2001 B1
6228996 Zhou et al. May 2001 B1
6706304 Ishida et al. Mar 2004 B1
7807206 Magomet et al. Oct 2010 B2
7838044 Abelyan et al. Nov 2010 B2
7862845 Magomet et al. Jan 2011 B2
8257948 Markosyan Sep 2012 B1
20020132320 Wang et al. Sep 2002 A1
20030161876 Hansson et al. Aug 2003 A1
20030236399 Zheng et al. Dec 2003 A1
20060083838 Jackson et al. Apr 2006 A1
20060134292 Abelyan et al. Jun 2006 A1
20060142555 Jonnala et al. Jun 2006 A1
20070082102 Magomet et al. Apr 2007 A1
20070082103 Magomet et al. Apr 2007 A1
20070116800 Prakash May 2007 A1
20070116819 Prakash May 2007 A1
20070116820 Prakash May 2007 A1
20070116821 Prakash May 2007 A1
20070116822 Prakash May 2007 A1
20070116823 Prakash May 2007 A1
20070116824 Prakash May 2007 A1
20070116825 Prakash May 2007 A1
20070116826 Prakash May 2007 A1
20070116827 Prakash May 2007 A1
20070116828 Prakash May 2007 A1
20070116829 Prakash May 2007 A1
20070116830 Prakash May 2007 A1
20070116831 Prakash May 2007 A1
20070116832 Prakash May 2007 A1
20070116833 Prakash May 2007 A1
20070116834 Prakash May 2007 A1
20070116835 Prakash May 2007 A1
20070116836 Prakash May 2007 A1
20070116837 Prakash May 2007 A1
20070116838 Prakash May 2007 A1
20070116839 Prakash May 2007 A1
20070116840 Prakash May 2007 A1
20070116841 Prakash May 2007 A1
20070128311 Prakash Jun 2007 A1
20070134390 Prakash Jun 2007 A1
20070134391 Prakash Jun 2007 A1
20070224321 Prakash Sep 2007 A1
20070292582 Prakash et al. Dec 2007 A1
20080064063 Brandle et al. Mar 2008 A1
20080102497 Wong et al. May 2008 A1
20080107775 Prakash May 2008 A1
20080107776 Prakash May 2008 A1
20080107787 Prakash May 2008 A1
20080108710 Prakash May 2008 A1
20080111269 Politi et al. May 2008 A1
20080226797 Lee et al. Sep 2008 A1
20080292764 Prakash et al. Nov 2008 A1
20080292765 Prakash Nov 2008 A1
20080292775 Prakash Nov 2008 A1
20080300402 Yang et al. Dec 2008 A1
20090017185 Catani Jan 2009 A1
20090053378 Prakash Feb 2009 A1
20090074935 Lee Mar 2009 A1
20090079935 Harris et al. Mar 2009 A1
20090142817 Norman et al. Jun 2009 A1
20090226590 Fouache et al. Sep 2009 A1
20100055752 Kumar Mar 2010 A1
20100056472 Duan et al. Mar 2010 A1
20100099857 Evans et al. Apr 2010 A1
20100112153 Abelyan et al. May 2010 A1
20100120710 Watanabe et al. May 2010 A1
20100137569 Prakash et al. Jun 2010 A1
20100189861 Abelyan et al. Jul 2010 A1
20100227034 Purkayastha et al. Sep 2010 A1
20100255171 Purkayastha et al. Oct 2010 A1
20100278993 Prakash et al. Nov 2010 A1
20100316782 Shi et al. Dec 2010 A1
20110030457 Valery et al. Feb 2011 A1
20110033525 Lui Feb 2011 A1
20110092684 Abelyan et al. Apr 2011 A1
20110104353 Lee May 2011 A1
20110111115 Shi et al. May 2011 A1
20110124587 Jackson et al. May 2011 A1
20110160311 Prakash et al. Jun 2011 A1
20110189360 Yoo et al. Aug 2011 A1
20110195169 Markosyan et al. Aug 2011 A1
20120164678 Stephanopoulos et al. Jun 2012 A1
Foreign Referenced Citations (72)
Number Date Country
P10701736 Jul 2008 BR
1049666 Mar 1991 CN
1100727 Mar 1995 CN
1112565 Nov 1995 CN
1192447 Sep 1998 CN
1238341 Dec 1999 CN
1349997 May 2002 CN
101200480 Jun 2008 CN
52005800 Jan 1977 JP
52083731 Jul 1977 JP
52100500 Aug 1977 JP
52136200 Nov 1977 JP
54030199 Mar 1979 JP
54132599 Oct 1979 JP
55039731 Mar 1980 JP
55081567 Jun 1980 JP
55092400 Jul 1980 JP
55120770 Sep 1980 JP
55138372 Oct 1980 JP
55159770 Dec 1980 JP
55162953 Dec 1980 JP
56099768 Aug 1981 JP
56109568 Aug 1981 JP
56121453 Sep 1981 JP
56121454 Sep 1981 JP
56121455 Sep 1981 JP
56160962 Dec 1981 JP
57002656 Jan 1982 JP
57005663 Jan 1982 JP
57046998 Mar 1982 JP
57075992 May 1982 JP
57086264 May 1982 JP
58020170 Feb 1983 JP
58028246 Feb 1983 JP
58028247 Feb 1983 JP
58212759 Dec 1983 JP
58212760 Dec 1983 JP
59045848 Mar 1984 JP
62166861 Jul 1987 JP
63173531 Jul 1988 JP
1131191 May 1989 JP
3262458 Nov 1991 JP
6007108 Jan 1994 JP
6192283 Jul 1994 JP
7143860 Jun 1995 JP
7177862 Jul 1995 JP
8000214 Jan 1996 JP
9107913 Apr 1997 JP
2000236842 Sep 2000 JP
2002262822 Sep 2002 JP
2010516764 May 2010 JP
20070067199 Jun 2007 KR
20080071605 Aug 2008 KR
20090021386 Mar 2009 KR
2111969 May 1998 RU
2123267 Dec 1998 RU
2156083 Sep 2000 RU
2167544 May 2001 RU
2198548 Feb 2003 RU
2005089483 Sep 2005 WO
2006072878 Jul 2006 WO
2006072879 Jul 2006 WO
WO 2007061795 May 2007 WO
2008091547 Jul 2008 WO
2009108680 Sep 2009 WO
WO2010057024 May 2010 WO
2010118218 Oct 2010 WO
2011059954 May 2011 WO
2011153378 Dec 2011 WO
2012082493 Jun 2012 WO
2012082677 Jun 2012 WO
2013022989 Feb 2013 WO
Non-Patent Literature Citations (63)
Entry
a-Glucosyltransferase Treated Stevia, Japan's Specifications and Standards for Food Additives, VIII edition, 2009, p. 257.
Ahmed, et al., “Use of p-Bromophenacyl Bromide to Enhance Ultraviolet Detection of Water-Soluble Organic Acids (Steviolbioside and Rebaudioside B) in High-Performance Liquid Chromatographic Analysis”, Journal of Chromatography, vol. 192, 1980, 387-393.
Chang, S. S. et al., “Stability Studies of Stevioside and Rebaudioside A in Carbonated Beverages”, Journal of Agricultural and Food Chemistry, vol. 31, 1983, 409-412.
Chen, et al., “Enrichment and separation of rebaudioside A from stevia glycosides by a novel adsorbent with pyridyl group”, Science in China, vol. 42, No. 3 1999 , 277-282.
Chen, et al., “Selectivity of polymer adsorbent in adsorptive separations of stevia diterpene glycisides”, Science in China, vol. 41, No. 4 1998 , 436-441.
Chen, et al., “Studies on the adsorptive selectivity of the polar resin with carbonyl group on rebaudioside A”, Acta Polymeric Scnica, No. 4 1999 , 398-403.
Crammer, et al., “Sweet glycosides from the Stevia plant”, Chemistry in Britain, Oct. 1986, 915-916, 918.
Darise et al., “Enzymic Transglucosylation of Rubusoside and the Structure-Sweetness Relationship of Steviol Bisglycosides,” Agric. Biol. Chem. vol. 48(10), 1984, 2483-2488.
Dubois et al., “Diterpenoid Sweeteners. Synthesis and Sensory Evaluation of Stevioside Analogues with Improved Organoleptic Properties,” J. Med. Chem. vol. 28, (1985) 93-98.
Fuh, , “Purification of steviosides by membrane and ion exchange process”, Journal of Food Science, vol. 55, No. 5 1990 , 1454-1457.
Fukunaga et al., “Enzymic Transglucosylation Products of Stevioside: Separation and Sweetness-evaluation,” Agric. Biol. Chem. vol. 53(6) (1989) 1603-1607.
Fullas et al., “Separation of natural product sweetening agents using overpressured layer chromatography,” Journal of Chromatography vol. 464 (1989) 213-219.
Hale, et al., “Amylase of Bacillus macerans”, Cereal Chemistry, vol. 28, No. 1, Jan. 1951, 49-58.
International Search Report and Written Opinion of PCT/US2010/055960.
International Search Report and Written Opinion of PCT/US2011/028028.
International Search Report and Written Opinion of PCT/US2011/033734.
International Search Report and Written Opinion of PCT/US2011/033737.
International Search Report and Written Opinion of PCT/US2011/033912.
International Search Report and Written Opinion of PCT/US2011/035173.
International Search Report and Written Opinion of PCT/US2011/036063, mailed Aug. 5, 2011.
International Search Report and Written Opinion of PCT/US2011/047498, mailed Dec. 22, 2011.
International Search Report and Written Opinion of PCT/US2011/047499, mailed Dec. 22, 2011.
International Search Report and Written Opinion of PCT/US2011/064343.
International Search Report and Written Opinion of PCT/US2012/024585.
International Search Report and Written Opinion of PCT/US2012/024722.
International Search Report and Written Opinion of PCT/US2012/030210.
International Search Report and Written Opinion of PCT/US2012/043294.
International Search Report and Written Opinion of PCT/US2012/051163.
International Search Report and Written Opinion of PCT/US2012/052659.
International Search Report and Written Opinion of PCT/US2012/052665.
International Search Report and Written Opinion of PCT/US2013/030439.
Jaitak, et al., “An Efficient Microwave-assisted Extraction Process of Stevioside and Rebaudioside-A from Stevia rebaudiana (Bertoni)”, Phytochem. Anal. vol. 20 2009 , 240-245.
Kennelly, “Sweet and non-sweet constituents of Stevia rebaudiana”, Stevia: The genus Stevia, Taylor & Francis, 2002, 68-85.
Kinghorn, “Overview”, Stevia: The genus Stevia, Taylor & Francis, 2002, 1-17.
Kitahata, S. et al., “Production of Rubusoside Derivatives by Transgalactosylation of Various b-Galactosidases”, Agric. Biol. Chem., vol. 53, No. 11 1989 , 2923-2928.
Kobayashi, et al., “Dulcoside A and B, New diterpene glycosides from Stevia rebaudiana”, Phytochemistry, vol. 16 1977 , 1405-1408.
Kochikyan, et al., “Combined Enzymatic Modification of Stevioside and Rebaudioside A”, Applied Biochemistry and Microbiology, vol. 42, No. 1, 2006, 31-37.
Kohda, et al., “New sweet diterpene glucosides from Stevia rebaudiana”, Phytochemistry, vol. 15 1976 , 981-983.
Kovylyaeva, et al., “Glycosides from Stevia rebaudiana”, Chemistry of Natural Compounds, vol. 43, No. 1 2007 , 81-85.
Liu, et al., “Study of stevioside preparation by membrane separation process”, Desalination, vol. 83 1991 , 375-382.
Lobov, S. V. et al., “Enzymic Production of Sweet Stevioside Derivatives: Transglucosylation of Glucosidases”, Agric. Biol. Chem., vol. 55, No. 12 1991 , 2959-2965.
Montovaneli, et al., “The effect of temperature and flow rate on the clarification of the aqueous Stevia-extract in fixed-bed column with zeolites”, Brazilian Journal of Chemical Engineering, vol. 21, No. 3 2004 , 449-458.
Moraes, et al., “Clarification of Stevia rebaudiana (Bert.) Bertoni extract adsorption in modified zeolites”, Acta Scientiarum, vol. 23, No. 6 2001 , 1375-1380.
Ohta et al., “Characterization of Novel Steviol Glycosides from Leaves of Stevia rebaudiana Morita,” J. Appl. Glycosi., vol. 57, 199-209, 2010.
Ohtani et al. “Chapter 7. Methods to improve the taste of the sweet principles of Stevia rebaudiana.” The Genus Stevia, edited by A. Douglas Kinghorn, CRC Press 2001, Taylor and Francis, London and New York, pp. 138-159.
Phillips, K. C. , “Stevia: steps in developing a new sweetener”, in T.H. Grenby, Editor, Developments in Sweeteners-3, Elsevier 1987 , 1-43.
Pol, et al., “Comparison of two different solvents employed for pressurised fluid extraction of stevioside from Stevia rebaudiana: methanol versus water”, Anal Bioanal Chem vol. 388 2007 , 1847-1857.
Prakash et al., “Development of rebiana, a natural, non-caloric sweetener,” Jul. 1, 2008, Food and Chemical Toxology, vol. 46, Is. 7, Sup. 1, p. S75-S82.
Richman et al., “Fuctional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana,” The Plant Journal, vol. 41 (2005) 56-67.
Sakamoto et al., “Application of 13C NMR Spectroscopy to Chemistry of Natural Glycosides: Rebaudioside-C, a New Sweet Diterpene Glycoside of Stevia rebaudiana”, Chem. Pharm. Bull., vol. 25, 1977, 844-846.
Shi, et al., “Synthesis of bifunctional polymeric adsorbent and its application in purification of Stevia glycosides”, Reactive & Functional Polymers, vol. 50 2002, 107-116.
Shibata et al., “Glucosylation of Steviol and Steviol-Glucosides in Extracts from Stevia rebaudiana Bertoni,” Plant Physiol. vol. 95, (1991) 152-156.
Starratt, et al., “Rebaudioside F, a diterpene glycoside from Stevia rebaudiana”, Phytochemistry, vol. 59 2002 , 367-370.
Sweet Green Fields, LLC, “Notice to the U.S. Food and Drug Administration (FDA) that the use of Rebiana (Rebaudiosid A) derived from Stevia rebaudiana, as a Food Ingredient is Generally Recognized as Safe (GRAS),” Jan. 15, 2009, http:/www.accessdata.fda.gov/scripts/fcn/gras—notices/grn000282.pdf (obtained from the WEB on May 8, 2012) entire document esp. p. 22, Table 1.
Tanaka, O. , “Improvement of taste of natural sweeteners”, Pure & Appl. Chem., vol. 69, No. 4 1997 , 675-683.
Teo, et al., “Validation of green-solvent extraction combined with chromatographic chemical fingerprint to evaluate quality of Stevia rebaudiana Bertoni”, J. Sep. Sci, vol. 32 2009 , 613-622.
United Nations' Food and Agriculture Organization/Joint Expert Committee on Food Additives (2010) Steviol Glycosides, Compendium of Food Additive Specifications, FAO JECFA Monographs 10, 17-21.
van der Maarel et al., “Properties and applications of starch-converting enzymes of the a-amylase family,” Journal of Biotechnology, vol. 94 (2002) 137-155.
Vasquez, Stimulation of the Gerbil's Gustatory Receptors by Some Potently Sweet Terpenoids, J. Agric. Food Chem., vol. 41, 1305-1310, 1993.
Yamamoto, K. et al., “Effective Production of Glycosyl-steviosides by a-1,6 Transglucosylation of Dextrin Dextranase”, Biosci. Biotech. Biochem. vol. 58, No. 9 1994 , 1657-1661.
Yoda, et al., “Supercritical fluid extraction from Stevia rebaudiana Bertoni using CO2 and CO2+ water: extraction kinetics and identification of extracted components”, Journal of Food Engineering, vol. 57 2003 , 125-134.
Zell, et al., “Investigation of Polymorphism in Aspartame and Neotame Using Solid-State NMR Spectroscopy”, Tetrahedron, vol. 56, 2000, 6603-6616.
Zhang, et al., “Membrane-based separation scheme for processing sweetener from Stevia leaves”, Food Research International, vol. 33 2000 , 617-620.
Related Publications (1)
Number Date Country
20130274351 A1 Oct 2013 US
Provisional Applications (2)
Number Date Country
61422403 Dec 2010 US
61424798 Dec 2010 US