The present teachings relate to various embodiments of an ink composition, and a polymeric thin film formed on a substrate, such as, but not limited by, an OLED device substrate. Various embodiments of the ink composition can be printed using an industrial inkjet printing system that can be housed in a gas enclosure, which gas enclosure defines an interior that has a controlled environment maintained as an inert and substantially low-particle process environment.
Interest in the potential of organic light-emitting diode (OLED) display technology has been driven by OLED display technology attributes that include demonstration of display panels that have highly saturated colors, are high-contrast, ultrathin, fast-responding, and energy efficient. Additionally, a variety of substrate materials, including flexible polymeric materials, can be used in the fabrication of OLED display technology. Though the demonstration of displays for small screen applications, primarily for cell phones, has served to emphasize the potential of the technology, challenges remain in scaling high volume manufacturing across a range of substrate formats in high yield.
With respect to scaling of formats, a Gen 5.5 substrate has dimensions of about 130 cm×150 cm and can yield about eight 26″ flat panel displays. In comparison, larger format substrates can include using Gen 7.5 and Gen 8.5 mother glass substrate sizes. A Gen 7.5 mother glass has dimensions of about 195 cm×225 cm, and can be cut into eight 42″ or six 47″ flat panel displays per substrate. The mother glass used in Gen 8.5 is approximately 220 cm×250 cm, and can be cut to six 55″ or eight 46″ flat panel displays per substrate. One indication of the challenges that remain in scaling of OLED display manufacturing to larger formats is that the high-volume manufacture of OLED displays in high yield on substrates larger than Gen 5.5 substrates has proven to be substantially challenging.
In principle, an OLED device may be manufactured by the printing of various organic thin films, as well as other materials, on a substrate using an OLED printing system. In addition to the printing of various layers of an OLED stack into a plurality of discrete pixel locations, patterned area printing using an industrial inkjet system can be done. For example, during fabrication of an OLED device, inkjet printing of various encapsulation layers can be done.
Ink compositions having spreading properties that render then suitable for printed OLED applications are provided. Also provided are processes for forming polymeric thin film layers on OLED device substrates using the ink compositions.
Some embodiments of the ink compositions comprise: 30-50 wt. % of a polyethylene glycol dimethacrylate monomer, a polyethylene glycol diacrylate monomer, or a combination thereof, wherein the polyethylene glycol dimethacrylate monomer and the polyethylene glycol diacrylate monomer have number average molecular weights in the range from about 230 g/mole to about 430 g/mole; 4-10 wt. % of a multifunctional acrylate crosslinking agent, a multifunctional methacrylate crosslinking agent, or a combination thereof; and 40-60 wt. % of a spreading modifier comprising an alkoxylated aliphatic diacrylate monomer, an alkoxylated aliphatic dimethacrylate monomer, or a combination thereof, and having a viscosity in the range from about 14 cps to about 18 cps at 22° C. and a surface tension in the range from about 35 dynes/cm to about 39 dynes/cm at 22° C.
In some such embodiments, the spreading modifier has a viscosity in the range from about 14 cps to about 16 cps at 22° C. and a surface tension in the range from about 35 dynes/cm to about 38 dynes/cm at 22° C.
In some such embodiments, the ink compositions are characterized in that a drop of the ink composition inkjet printed onto a silicon substrate at a temperature of 23° C. has a spreading rate of at least 0.5 μm/sec, including at least 0.65 μm/sec, as measured by the increase in the drop diameter in the period between 40 seconds post-printing and 180 seconds post-printing.
In some such embodiments, the multifunctional acrylate crosslinking agent, multifunctional methacrylate crosslinking agent, or a combination thereof comprises pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, or a combination thereof.
In some such embodiments, the ink compositions further comprise 0.1 wt. % to 10 wt. % of crosslinking photoinitiator. The photoinitiator may be 2,4,6-trimethylbenzoyl-diphenylphosphine oxide. Such initiators are available from BASF and sold under the tradenames Irgacure® TPO and Irgacure® TPO-L. Other suitable initiators include alpha ketone initiators, including alpha aminoketones and alpha hydroxyketones. Such initiators are available from BASF and sold under the tradenames Irgacure® 907 and Irgacure® 184. The crosslinking photoinitiator may be present, for example, in an amount in the range from about 3 wt. % to about 6 wt. % of the ink composition. This includes embodiments in which the crosslinking photoinitiator is present in an amount in the range from about 3.75 wt. % to about 4.25 wt. % of the ink composition.
In some such embodiments, the ink composition comprises 40-50 wt. % of the polyethylene glycol dimethacrylate monomer, wherein the polyethylene glycol dimethacrylate monomer has a number average molecular weight of about 330 g/mole, and 40-50 wt. % of the spreading modifier.
Other embodiments of the ink compositions comprise: 50-75 wt. % of a polyethylene glycol dimethacrylate monomer, a polyethylene glycol diacrylate monomer, or a combination thereof, wherein the polyethylene glycol dimethacrylate monomer and the polyethylene glycol diacrylate monomer have number average molecular weights in the range from about 230 g/mole to about 430 g/mole; 4-10 wt. % of a multifunctional acrylate crosslinking agent, a multifunctional methacrylate crosslinking agent, or a combination thereof; and 15-40 wt. % of a spreading modifier comprising an alkoxylated aliphatic diacrylate monomer, an alkoxylated aliphatic dimethacrylate monomer, or a combination thereof, and having a viscosity in the range from about 14 cps to about 18 cps at 22° C. and a surface tension in the range from about 35 dynes/cm to about 39 dynes/cm at 22° C.
In some such embodiments, the spreading modifier has a viscosity in the range from about 14 cps to about 16 cps at 22° C. and a surface tension in the range from about 35 dynes/cm to about 38 dynes/cm at 22° C.
In some such embodiments, the ink compositions are characterized in that a drop of the ink composition inkjet printed onto a silicon substrate at a temperature of 23° C. has a spreading rate of at least 0.1 μm/sec, as measured by the increase in the drop diameter in the period between 40 seconds post-printing and 180 seconds post-printing. This includes embodiments of the ink compositions characterized in that a drop of the ink composition inkjet printed onto a silicon substrate at a temperature of 23° C. has a spreading rate of at least 0.14 μm/sec, a spreading rate of at least 0.30 μm/sec, or a spreading rate of at least 0.40 μm/sec, as measured by the increase in the drop diameter in the period between 40 seconds post-printing and 180 seconds post-printing.
In some such embodiments, the multifunctional acrylate crosslinking agent, multifunctional methacrylate crosslinking agent, or a combination thereof comprises pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, or a combination thereof.
In some such embodiments, the ink compositions further comprise 0.1 wt. % to 10 wt. % of crosslinking photoinitiator. The photoinitiator may be 2,4,6-trimethylbenzoyl-diphenylphosphine oxide. Such initiators are available from BASF and sold under the tradenames Irgacure® TPO and Irgacure® TPO-L. Other suitable initiators include alpha ketone initiators, including alpha aminoketones and alpha hydroxyketones. Such initiators are available from BASF and sold under the tradenames Irgacure® 907 and Irgacure® 184. The crosslinking photoinitiator may be present, for example, in an amount in the range from about 3 wt. % to about 6 wt. % of the ink composition. This includes embodiments in which the crosslinking photoinitiator is present in an amount in the range from about 3.75 wt. % to about 4.25 wt. % of the ink composition.
In some such embodiments, the compositions comprise 55-70 wt. % of the polyethylene glycol dimethacrylate monomer, wherein the polyethylene glycol dimethacrylate monomer has a number average molecular weight of about 330 g/mole, and 20-35 wt. % of the spreading modifier.
Some embodiments of the processes of forming a polymeric thin film layer on a substrate, comprise: providing an inert processing environment; providing an OLED device substrate having an inorganic thin film formed thereupon; providing an ink composition of a type described herein; printing a layer of the ink composition over a defined area of the substrate including the inorganic thin film, and curing the layer of printed ink, wherein an organic polymeric thin film is formed over the inorganic thin film.
In some such processes, the cured layer of printed ink has a thickness of no greater than 2 μm, including thicknesses of no greater than 1 μm.
In some such processes, printing the layer of the ink composition over a defined area of the substrate comprises inkjet printing a plurality of drops of the ink composition onto the substrate, whereby the ink drops spread on the substrate and coalesce to form the layer of the ink composition.
In some such processes, the multifunctional acrylate crosslinking agent, multifunctional methacrylate crosslinking agent, or a combination thereof comprises pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, or a combination thereof.
Some such processes further comprise, before the step of providing an OLED device substrate: providing an industrial printing system housed within the interior of a gas enclosure, wherein the industrial printing system comprises: a printhead assembly comprising at least one printhead; a substrate support system for supporting the substrate; a motion system for the precise positioning of the substrate relative to the printhead assembly; and a UV curing module, wherein printing the layer of the ink composition over a defined area of the substrate comprises printing the layer of the ink composition over a defined area of the substrate using the printhead assembly. The inert process environment may be provided using, for example, an inert gas selected from nitrogen, any of the noble gases, and combinations thereof.
A better understanding of the features and advantages of the present disclosure will be obtained by reference to the accompanying drawings, which are intended to illustrate, not limit, the present teachings.
The present teachings relate to various embodiments of an ink composition, which once printed and cured forms a polymeric thin film on a substrate, such as, but not limited by, an OLED device substrate. Various embodiments of the ink composition can be printed using an industrial inkjet printing system that can be housed in a gas enclosure, which gas enclosure defines an interior that has a controlled environment maintained as an inert and substantially low-particle process environment. Patterned printing of an organic thin film on a substrate, for example, but not limited by, an OLED device substrate, in such a controlled environment can ensure a high-volume, high yield process for a variety of OLED devices.
It is contemplated that a wide variety of ink formulations can be printed within the inert, substantially low-particle environment of various embodiments of a gas enclosure system of the present teachings. During the manufacture of an OLED display, an OLED pixel can be formed to include an OLED film stack, which can emit light of a specific peak wavelength when a voltage is applied. An OLED film stack structure between an anode and a cathode can include a hole injection layer (HIL), a hole transport layer (HTL), an emissive layer (EL), an electron transport layer (ETL) and an electron injection layer (EIL). In some embodiments of an OLED film stack structure, an electron transport layer (ETL) can be combined with an electron injection layer (EIL) to form an ETL/EIL layer. According to the present teachings, various ink formulations for an EL for various color pixel EL films of an OLED film stack can be printed using inkjet printing. Additionally, for example, but not limited by, the HIL, HTL, EML, and ETL/EIL layers can have ink formulations that can be printed using inkjet printing.
As will be discussed in more detail subsequently herein, it is further contemplated that an organic encapsulation layer can be printed on an OLED panel using inkjet printing. An encapsulation ink can comprise a polymer or polymer component, for example, but not limited by, various polyethylene glycol monomer materials, an acrylate, such as a mono- or multidentate acrylate, a methacrylate, such as a mono- or multidentate methacrylate, or other material, as well as copolymers and mixtures thereof, which can be cured using thermal processing (e.g. bake), UV exposure, and combinations thereof. As used herein polymer and copolymer can include any form of a polymer component that can be formulated into an ink and cured on a substrate to form an organic encapsulation layer. Such polymeric components can include polymers and copolymers, as well as precursors thereof, for example, but not limited by, monomers, oligomers, and resins. According to the present teachings, inkjet printing can provide several advantages. First, a range of vacuum processing operations can be eliminated because such inkjet-based fabrication can be performed at atmospheric pressure. Additionally, during an inkjet printing process, an organic encapsulation layer can be localized to cover portions of an OLED substrate over and proximal to an active region, to effectively encapsulate an active region, including lateral edges of the active region. The targeted patterning using inkjet printing results in eliminating material waste, as well as eliminating additional processing typically required to achieve patterning of an organic layer.
Various embodiments of an organic thin layer ink composition of the present teachings can be printed on, for example, but not limited by, an optoelectronic device, such as a wide number of OLED devices, to form an organic encapsulation layer. According to various embodiments of compositions and methods, once cured, the resulting polymeric thin film can provide a fluid barrier, as well as providing planarization of a previously fabricated inorganic encapsulation layer, and additionally providing flexibility desired from an organic encapsulation layer. The fluid barriers can prevent or reduce the permeation of, for example, water and/or oxygen into the OLED devices.
As depicted in the schematic section view of
Respective layers included in an OLED device, such as in the active region 54, can be on the order of tens or hundreds of nanometers (nm) thick, or less. Additional organic layers that are not active in the optoelectronic action of the OLED device can be included, and such layers can be on the order of microns thick, or less. An anode electrode or a cathode electrode can be coupled to or can include electrode portion 56 that is laterally offset along the substrate 52 from the active region 54. As will be discussed in more detail herein, the active region 54 of the device 50 can include materials that degrade in the presence of prolonged exposure to various reactive species gaseous species, such as, but not limited by, water, oxygen, as well as various solvent vapors from device processing. Such degradation can impact stability and reliability.
As depicted in
Various embodiments of the present ink compositions can be inkjet printed into thin films that are continuous and have well-defined edges, yet have thicknesses of no greater than about 3 μm on such substrates as glass, silicon, and/or silicon nitride. This includes embodiments of the ink compositions that can be printed into continuous thin films having well-defined edges and thicknesses of no greater than about 2 μm, and further includes embodiments of the ink compositions that can be printed into continuous thin films having well-defined edges and thicknesses of no greater than about 1 μm. This is significant because, while highly spreading inks may be good candidates for thin film formation, their highly spreading nature typically results in an uncontrolled, non-uniform spread that provides thin films printed therefrom with poor edge definition. At least partially for this reasons, wetting agents that are used to increase the spreading of an ink composition are generally present in limited amounts as minor components or additives in an ink composition. The present ink compositions overcome this challenge by using alkoxylated aliphatic di(meth)acrylate monomers as controlled spreading modifiers in polyethylene glycol di(meth)acrylate-based ink compositions. When the spreading modifiers are present at high concentrations in the ink compositions, drops of the ink compositions inkjet printed onto a substrate are able to spread and merge into a continuous ultrathin film. Notably, the drop spreading occurs in a controlled fashion so that the edges of the printed ultrathin films are well-defined. As a result, the ink compositions are suited for use in printing organic layers for OLED applications, including organic planarization layers that serve to planarize and mechanically protect an active region or that provide a portion of an encapsulation stack that collectively serves to suppress or inhibit moisture or gas permeation into an active region.
The organic thin layer ink compositions comprise one or more polyethylene glycol di(meth)acrylate monomers, a multifunctional crosslinking agent, and a spreading modifier comprising one or more alkoxylated aliphatic di(meth)acrylate monomers. As used herein, the phrase “(meth)acrylate monomer” indicates that the recited monomer may be an acrylate or a methacrylate. Some embodiments of the ink compositions further include crosslinking photoinitiators.
Without wishing or intending to be bound to any particular theory of any inventions disclosed herein, it is believed that the polyethylene glycol di(meth)acrylate monomers have a tendency to act as pinning agents that limit the spreading ability of ink compositions on a variety of substrate materials found in OLED devices, including glass substrates, silicon substrates, and silicon nitride substrates, and that the spreading modifiers comprising alkoxylated aliphatic di(meth)acrylate monomers, if present at sufficiently high concentrations, are able to reduce this pinning effect without causing uncontrolled ink drop spreading. This is the case even though the spreading modifiers are present at high concentrations significantly higher than the concentrations of wetting agents typically used in acrylate-based inkjet inks for OLED applications. This is consistent with the observation, discussed in greater detail below, that at relatively low concentrations, (e.g., between about 2 wt. % and about 10 wt. %) increasing the spreading modifier concentration makes little difference in the spreading behavior of the ink compositions, but beyond the threshold concentrations of about 15 wt. %, 30 wt. %, and most dramatically 40 wt. % there are marked up-ticks in the spreadability of the ink compositions.
Some embodiments of the ink compositions comprise about 30 wt. % to about 50 wt. % polyethylene glycol di(meth)acrylate monomer. This includes ink compositions that comprise about 40 wt. % to about 50 wt. % polyethylene glycol di(meth)acrylate monomer, and further includes ink compositions that comprise about 45 wt. % to about 50 wt. % polyethylene glycol di(meth)acrylate monomer. These embodiments of the ink compositions comprise about 40 wt. % to about 60 wt. % of the spreading modifier. This includes ink compositions that comprise about 40 wt. % to about 50 wt. % of the spreading modifier and further includes ink compositions that comprise about 40 wt. % to about 45 wt. % of the spreading modifier. The ink compositions can also be characterized by their weight ratios. Thus, some embodiments of the ink compositions have a polyethylene glycol di(meth)acrylate monomer to spreading modifier weight ratio in the range from about 1:2 to 5:4. This includes ink compositions that have a polyethylene glycol di(meth)acrylate monomer to spreading modifier weight ratio in the range from about 4:5 to 5:4, and also includes ink compositions that that have a polyethylene glycol di(meth)acrylate monomer to spreading modifier weight ratio in the range from about 1:1 to 5:4.
It has been found that within the above recited weight percent ranges and weight ratios, drops of the ink compositions inkjet printed on inorganic substrates commonly employed in OLEDs, including OLED barrier layers, have an unexpectedly high drop spreading rate. The drop spreading rate can be measured as the increase in the diameter of an inkjet printed drop in the early stages of drop spreading. For example, the drop spreading rate can be measured as the increase in the diameter of a drop in the time period from 40 seconds after it is printed onto a substrate (40 seconds post-printing) to 180 seconds after it is printed onto the substrate (180 seconds post-printing) at a printing temperature of 23° C. By way of illustration, some embodiments of the ink compositions have a spreading rate, as measured by the increase in their drop diameter between 40 seconds and 180 seconds post-inkjet printing on a silicon substrate at 23° C., of at least 0.5 μm/s. This includes embodiments of the ink compositions that have a spreading rate, as measured by the increase in their drop diameter between 40 seconds and 180 seconds post-inkjet printing on a silicon substrate at 23° C., of at least 0.65 μm/s, further includes embodiments of the ink compositions that have a spreading rate, as measured by the increase in their drop diameter between 40 seconds and 180 seconds post-inkjet printing on a silicon substrate at 23° C., of at least 0.7 μm/s, and still further includes embodiments of the ink compositions that have a spreading rate, as measured by the increase in their drop diameter between 40 seconds and 180 seconds post-inkjet printing on a silicon substrate at 23° C., of at least 0.8 μm/s. These high spreading rates make it possible for the printed drops to spread and merge into continuous ultrathin films that have an average thickness of no greater than about 1 μm (although, the ink compositions can also be used to print thicker films). Yet, because the spreading is controlled, the films retain well defined edges and uniform thicknesses.
Other embodiments of the ink compositions provide spreading rates that are still unusually fast, but somewhat lower. These ink compositions are suited for applications where an ultrathin film is not required or desired. For example, these lower spreading ink compositions can provide continuous inkjet printed films on a silicon substrate, wherein the films have thicknesses in the range from about 2 μm to about 4 μm and well defined edges. This includes ink compositions that provide continuous inkjet printed films on a silicon substrate, wherein the films have thicknesses in the range from about 2 μm to about 3 μm and well defined edges. These ink compositions comprise about 50 wt. % to about 75 wt. % of the polyethylene glycol di(meth)acrylate monomer. This includes ink compositions that comprise about 55 wt. % to about 70 wt. % polyethylene glycol di(meth)acrylate monomer, and further includes ink compositions that comprise about 55 wt. % to about 60 wt. % polyethylene glycol di(meth)acrylate monomer. The ink compositions comprise about 15 wt. % to about 40 wt. % of the spreading modifier. This includes ink compositions that comprise about 20 wt. % to about 35 wt. % of the spreading modifier and further includes ink compositions that comprise about 30 wt. % to about 35 wt. % of the spreading modifier. The ink compositions can also be characterized by their weight ratios. Thus, some embodiments of the ink compositions have a polyethylene glycol di(meth)acrylate monomer to spreading modifier weight ratio in the range from about 5:4 to about 5:1. This includes ink compositions that have a polyethylene glycol di(meth)acrylate monomer to spreading modifier weight ratio in the range from about 11:7 to about 7:2, and also includes ink compositions that that have a polyethylene glycol di(meth)acrylate monomer to spreading modifier weight ratio in the range from about 11:7 to about 2:1.
By way of illustration, some embodiments of these somewhat less rapidly spreading ink compositions have a spreading rate, as measured by the increase in their drop diameter between 40 seconds and 180 seconds post-inkjet printing on a silicon substrate at 23° C., of at least 0.1 μm/s. This includes embodiments of the ink compositions that have a spreading rate, as measured by the increase in their drop diameter between 40 seconds and 180 seconds post-inkjet printing on a silicon substrate at 23° C., of at least 0.14 μm/s, further includes embodiments of the ink compositions that have a spreading rate, as measured by the increase in their drop diameter between 40 seconds and 180 seconds post-inkjet printing on a silicon substrate at 23° C., of at least 0.2 μm/s, and still further includes embodiments of the ink compositions that have a spreading rate, as measured by the increase in their drop diameter between 40 seconds and 180 seconds post-inkjet printing on a silicon substrate at 23° C., of at least 0.3 μm/s. These high spreading rates make it possible for the printed drops to spread and merge into continuous ultrathin films that have an average thickness of no greater than about 3 μm (although, the ink compositions can also be used to print thicker films). Yet, because the spreading is controlled, the films retain well defined edges and uniform coverage and thicknesses.
According to the present teachings, various compositions of an organic thin layer ink composition can include a polyethylene glycol dimethacrylate and/or a polyethylene glycol diacrylate having a number average molecular weight in the range from about 230 gm/mole to about 440 gm/mole as the polyethylene glycol di(meth)acrylate monomer. For example, the organic thin layer ink can include polyethylene glycol 200 dimethacrylate and/or polyethylene glycol 200 diacrylate, having a number average molecular weight of about 330 gm/mole and having the generalized structure as shown below:
where n is on average 4 and R is independently selected from H and methyl groups.
The spreading modifier, which is used to tune the spreading characteristics of various embodiments of the organic thin layer ink compositions, comprises an alkoxylated aliphatic diacrylate, an alkoxylated aliphatic dimethacrylate, or a combination thereof. The formula for an alkoxylated aliphatic diacrylate can be represented as follows:
where n can be between 3 to 12. The formula for an alkoxylated aliphatic dimethacrylate can be represented as follows:
where n can be between 3 to 12. The alkoxylated aliphatic diacrylate spreading modifiers desirably have a viscosity in the range from about 10 cps to about 20 cps at 22° C., including about 14 cps to about 18 cps at 22° C., and a surface tension in the range from about 35 dynes/cm to 39 dynes/cm at 22° C. This includes embodiments of the spreading modifiers having viscosities in the range from about 14 cps to about 16 cps at 22° C. and a surface tension in the range from about 35 dynes/cm to 38 dynes/cm at 22° C. Methods for measuring viscosities and surface tensions are well known and include the use of commercially available rheometers (e.g., a DV-I Prime Brookfield rheometer) and tensiometers (e.g., a SITA bubble pressure tensiometer).
Various alkoxylated aliphatic diacrylate materials are commercially available. For example, alkoxylated aliphatic di(meth)acrylate materials can be provided by Sartomer Corporation. Candidate Sartomer products include Sartomer product number SR-238B, which is 1,6 hexanediol diacrylate with a surface tension of about 35 dynes/cm at 22° C., as well as Sartomer product number SR-9209A, which is described as a proprietary alkoxylated aliphatic diacrylate and has a surface tension of about 35 dynes/cm at 22° C. and a viscosity of about 15 cps at 22° C. For various embodiments of the organic thin layer ink compositions, the aliphatic portion of an alkoxylated aliphatic di(meth)acrylate component can be between 3 to 12 repeating methylene units. For various embodiments of the organic thin layer ink compositions, the aliphatic portion of an alkoxylated aliphatic di(meth)acrylate component can be between 4 to 6 repeating methylene units.
The use of the (meth)acrylate based spreading modifiers may be advantageous because they are generally compatible with the polyethylene glycol di(meth)acrylate monomers and the (meth)acrylate based multifunctional crosslinking agents of the ink compositions. As such, their use will not cause the precipitation of the other acrylate or methacrylate based components from solution. In addition, the acrylate and methacrylate based spreading modifiers can participate in the crosslinking of the polyethylene glycol di(meth)acrylate. That is, the spreading modifier(s) can be incorporated into the polymer through similar chemistry, so as not to remain as contaminants after UV curing.
The multifunctional (meth)acrylate crosslinking agents desirably have at least three reactive (meth)acrylate groups. Thus, the multifunctional (meth)acrylate crosslinking agents can be, for example, tri(meth)acrylates, tetra(meth)acrylates and/or higher functionality (meth)acrylates. Pentaerythritol tetraacrylate or pentaerythritol tetramethacrylate, di(trimethylolpropane) tetraacrylate and di(trimethylolpropane) tetramethacrylate are examples of multifunctional (meth)acrylates that can be used as a primary cross-linking agent. The term ‘primary’ is used here to indicate that other components of the ink compositions may also participate in crosslinking, although that is not their main functional purpose. For various embodiments of an organic thin layer ink composition, multifunctional (meth)acrylate crosslinking agents can comprise between about 4 to about 10 wt. % of an ink composition. A generalized structure for pentaerythritol tetraacrylate or pentaerythritol tetramethacrylate is shown below.
where R is independently selected from H and methyl groups.
A generalized structure for di(trimethylolpropane) tetraacrylate or di(trimethylolpropane) tetramethacrylate is shown below.
where R′ is independently selected from H and methyl groups.
Regarding initiation of the polymerization process, various embodiments of the organic thin layer ink compositions of the present teachings can utilize numerous types of photoinitiators for initiating the polymerization process. In various embodiments the photoinitiators are present in amounts in the range from about 0.1 wt. % to about 10 wt. %, for example, from about 0.1 wt. % to about 8 wt. %. This includes embodiments in which the photoinitiators are present in amounts in the range from about 1 wt. % to about 6 wt. %, further includes embodiments in which the photoinitiators are present in amounts in the range from about 3 wt. % to about 6 wt. %, and still further includes embodiments in which the photoinitiators are present in amounts in the range from about 3.75 wt. % to about 4.25 wt. %. However, amounts outside of these ranges can also be used. The photoinitiator may be a Type I or a Type II photoinitiator. Type I photoinitiators undergo radiation-induced cleavage to generate two free radicals, one of which is reactive and initiates polymerization. Type II photoinitiators undergo a radiation-induced conversion into an excited triplet state. The molecules in the excited triplet state then react with molecules in the ground state to produce polymerization initiating radicals.
The specific photoinitiators used for a given ink composition are desirably selected such that they are activated at wavelengths that are not damaging to the OLED materials. For this reason, various embodiments of the ink compositions include photoinitiators that have a primary absorbance with a peak in the range from about 368 nm to about 420 nm. The light source used to activate the photoinitiators and induce the curing of the ink compositions is desirably selected such that the absorbance range of the photoinitiator matches or overlaps with the output of the light source, whereby absorption of the light creates free radicals that initiate polymerization. Suitable light sources may include mercury arc lamps and UV light emitting diodes.
An acylphosphine oxide photoinitiator can be used, though it is to be understood that a wide variety of photoinitiators can be used. For example, but not limited by, photoinitiators from the α-hydroxyketone, phenylglyoxylate, and α-aminoketone classes of photoinitiators can also be considered. For initiating a free-radical based polymerization, various classes of photoinitiators can have an absorption profile of between about 200 nm to about 400 nm. For various embodiments of the ink compositions and methods of printing disclosed herein, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) and 2,4,6-trimethylbenzoyl-diphenyl phosphinate have desirable properties. For various embodiments of the ink compositions and printing methods of the present teaching, an acylphosphine oxide photoinitiator can be about 0.1-5 wt. % of a formulation. Examples of acylphosphine photoinitiators include Irgacure® TPO (also previously available under the tradename Lucirin® TPO) initiators for UV curing sold under the tradenames Irgacure® TPO, a type I hemolytic initiator which; with absorption @ 380 nm; Irgacure® TPO-L, a type I photoinitiator that absorbs at 380 nm; and Irgacure® 819 with absorption at 370 nm. By way of illustration, a light source emitting at a nominal wavelength in the range from 350 nm to 395 nm at a radiant energy density of up to 1.5 J/cm2 could be used to cure an ink composition comprising a TPO photoinitiator. Using the appropriate energy sources, high levels of curing can be achieved. For example, some embodiments of the cured films have a degree of curing of 90% or greater, as measured by Fourier Transform Infrared (FTIR) spectroscopy.
The appropriate amount of photoinitiator to include in a given ink composition will depend on the nature of the selected photoinitiator, crosslinking agent and spreading modifier. However, the amount of photoinitiator is desirably selected to minimize the volume change that takes place from the time the ink composition is printed to the time the ink composition is cured into a solid film. An accurate test for measuring the volume change of ink compositions that takes place during the curing and that allows for the precise determination of the appropriate amount of photoinitiator to be included in a given ink composition in order to minimize that volume change can be carried out as follows. A known volume of an ink composition is carefully dispensed into the bottom of a container with a known volume marking (for example, a volumetric flask). The ink composition in the container is then exposed to a radiation source that induces crosslinking and cures the ink composition into a solid film. A volume of deionized (DI) water corresponding to the volume indicated by the volume marking on the container is then dispensed into the container with the cured film. The portion of the DI water above the volume marking is then extracted from the container and weighed to determine the volume of the cured film. By way of illustration, the test can be carried out in a laboratory as follows. Place a 5 mL glass volumetric flask into a glove box, along with a UV-curable ink composition, and a hand-held ultraviolet (UV) lamp. Using an Eppendorf pipette and an appropriate tip, carefully dispense 500 μL of the ink composition into the volumetric flask without touching the tip to the side walls, such that all of the ink composition is dispensed into the bottom of flask. Place the volumetric flask over the UV lamp and turn on the lamp to an appropriate wavelength setting (e.g., 365 nm) for a time sufficient to fully cure the ink composition (e.g., about 180 seconds). Note: the operator should be wearing UV protective glasses. After the ink composition has cured into a solid film, turn off the lamp and place a stopper on flask. Take the stoppered flask with the cured film out of the glove box. Place the flask on a weighing balance, without the glass stopper, and measure its tare weight. Using a Pasteur pipette, carefully dispense (avoiding the side walls) precisely 5 grams of DI water into the volumetric flask. Then remove the flask from the balance, place an empty dry vial on the balance and measure its tare weight. Using a fresh dry Pasteur pipette carefully extract the portion of DI water from volumetric flask that is above the 5 mL mark. At the endpoint of the extraction, the low point of the meniscus of the water must be aligned with the 5 mL mark, as determined by visual inspection. Transfer the full amount of the extracted DI water into the empty vial and measure its weight (w1). The percent volume change (e.g., volume reduction) resulting from the curing of the dispensed ink composition can be calculated using the following equation:
Volume change %=100−((w1 grams/0.5 grams)×100).
Generally, for ink compositions useful for inkjet printing applications, the surface tension, viscosity and wetting properties of the ink compositions should be tailored to allow the compositions to be dispensed through an inkjet printing nozzle without drying onto or clogging the nozzle at the temperature used for printing (e.g., room temperature; ˜22° C.). Once formulated, various embodiments of the organic thin layer ink compositions can have a viscosity of between about 10 cps and about 25 cps (including, for example, between about 17 cps and about 21 cps) at 22° C. and a surface tension of between about 32 dynes/cm and about 45 dynes/cm (including, for example, between about 38 dynes/cm and about 41 dynes/cm) at 22° C. As jetting temperatures can be between about 22° C. to about 40° C., over such a temperature range, various embodiments of organic thin layer ink formulations can have a viscosity of between about 7-25 cps (including, for example, between about 9 cps and about 19 cps) and a surface tension of between about 30 dynes/cm and about 45 dynes/cm in the temperature range of the printhead.
Given that the initiation of polymerization can be induced by light, inks can be prepared to prevent exposure to light. With respect to preparation of organic thin layer ink compositions of the present teachings, in order to ensure the stability of various compositions, the compositions can be prepared in a dark or very dimly lit room or in a facility in which the lighting is controlled to exclude wavelengths that would induce polymerization. Such wavelengths generally include those below about 500 nm. For example, for the preparation of an embodiment of an organic thin film ink formulation, in a fashion that protects the direct exposure to light, the lid of a clean amber vial (for example, Falcons, VWR trace clean) can be removed and then can be placed on a balance; and tared. First, a desired amount of a photoinitiator can be weighed into the vial. Then, after the addition of the spreading modifier component, the polyethylene di(meth)acrylate can be weighed into the vial. Next, the crosslinking agent can be weighed into the vial. (The preceding description lays out one protocol for sequentially incorporating the various components into an ink composition. Other protocols can be used.) Regarding mixing to provide uniform concentration of components, a Teflon® coated magnetic stir bar can be inserted into the vial and the cap of vial secured. The solution can then be stirred, for example, for 30 minutes at temperatures in the range from room temperature to 50° C. and 600-1000 rpm. Thereafter, the ink composition can be filtered, for example, through a 0.1 μm or 0.45 μm PTFE syringe filter or vacuum or pressure filter, followed by sonication for 30 minutes at ambient temperature. The ink composition is then ready for use and should be stored away from light, for example, in a compressed dry air glove box. Various embodiments of an organic thin film ink preparation as described can have a viscosity of between about 17 cps and about 19 cps at 22° C. and a surface tension of between about 37 dynes/cm and about 41 dynes/cm at 22° C.
Once the ink compositions are prepared, they can be dehydrated by mixing in the presence of molecular sieve beads for a period of a day or more and then stored under a dry, inert atmosphere, such as a compressed dry air atmosphere. The ink composition should be stored in amber light or in the dark in order to avoid or minimize premature polymerization. For example, the ink composition can be stored in an amber vial. Drying and storage in a dry, inert atmosphere can keep the water content of the ink compositions below about 400 ppm (including, for example, below about 200 ppm), which is desirable for ink jet printing, until the compositions are ready for use. In order to reduce the water content of the ink compositions, a dehydration process can be carried out, wherein molecular sieve beads (e.g., 3 Angstrom; 10% w/w) are added to the composition and the composition is placed on a roller to provide gentle agitation for a period of time (e.g., 5 days), after which the ink composition can be filtered and transferred into a dry atmosphere, such as a compressed dry air atmosphere, and aliquoted into amber vials, followed by capping the vials, to provide a dry air headspace in the vials. The same procedure can be used to produce the same results with a compressed dry air headspace. The ink compositions, particularly those stored under a dry air atmosphere at room temperature (22° C.), can be stable for long periods of time, as determined by the lack of precipitation or separation under visual inspection and the stabilities in their room temperature viscosities and surface tensions.
The ink compositions can be printed using a printing system, such as that described in U.S. Pat. No. 8,714,719, which is incorporated herein in its entirety. The films can be cured in an inert nitrogen environment using UV radiation. The cured films display high transparency, as well as uniform thickness. By way of illustration, some embodiments of cured films can have a film thickness variation of 5% or lower. Film thickness uniformity can be measured using a profilometer tool, such as a Veeco Dektak Profilometer tool. To carry out a thickness measurement, a scratch can be made on the film using, for example, a sharp needle on a substrate. Then the substrate can be placed on the tool to measure the height of the scratch well, which represents the thickness of the film printed on the substrate. Some embodiments of the cured films made with the present ink compositions can have a transmission of 90% or greater at wavelengths of 550 nm and above. This includes cured films having a transmission of 99% or greater, and 99.5% or greater, at wavelengths of 550 nm and above.
The ink compositions are designed to be applied by inkjet printing and are, therefore, characterized by jettability, wherein a jettable ink composition displays constant, or substantially constant, drop velocities, drop volumes and drop trajectories over time when jetted continuously through the nozzle of a printhead. In addition, the ink compositions are desirably characterized by good latency properties, where latency refers to the time that nozzles can be left uncovered and idle before there is a significant reduction in performance, for instance a reduction in drop velocity or volume and/or a change in trajectory that will noticeably affect the image quality.
Tables 1-13 show the formulations for various ink compositions comprising polyethylene glycol di(meth)acrylates and alkoxylated aliphatic di(meth)acrylate monomers. The formulations of Tables 1-5 are provided for purposes of comparison. The formulations of Tables 6-13 represent ink compositions characterized by high spreading rates, wherein the formulations of Tables 11-13 represent the highest spreading ink compositions that are well suited for printing continuous ultrathin inkjet printed films.
Comparative Ink Composition 1 had a viscosity of 18.2 cps and a surface tension of 39.6 dynes/cm at a temperature in the range from 23° C. to 25° C.
Comparative Ink Composition 2 had a viscosity of 18.8 cps and a surface tension of 40.1 dynes/cm at a temperature in the range from 23° C. to 25° C.
Comparative Ink Composition 3 had a viscosity of 19 cps and a surface tension of 40.4 dynes/cm at a temperature in the range from 23° C. to 25° C.
Comparative Ink Composition 4 had a viscosity of 18.9 cps and a surface tension of 39.7 dynes/cm at a temperature in the range from 23° C. to 25° C.
Comparative Ink Composition 5 had a viscosity of 19.3 cps and a surface tension of 39.7 dynes/cm at a temperature in the range from 23° C. to 25° C.
Ink Composition 6 had a viscosity of 19.3 cps and a surface tension of 39.7 dynes/cm at a temperature in the range from 23° C. to 25° C.
Ink Composition 7 had a viscosity of 19.3 cps and a surface tension of 39.6 dynes/cm at a temperature in the range from 23° C. to 25° C.
Ink Composition 8 had a viscosity of 19.4 cps and a surface tension of 39.5 dynes/cm at a temperature in the range from 23° C. to 25° C.
Ink Composition 9 had a viscosity of 19.2 cps and a surface tension of 39.5 dynes/cm at a temperature in the range from 23° C. to 25° C.
Ink Composition 10 had a viscosity of 19.2 cps and a surface tension of 38.8 dynes/cm at a temperature in the range from 23° C. to 25° C.
Ink Composition 11 had a viscosity of 19.3 cps and a surface tension of 39.1 dynes/cm at a temperature in the range from 23° C. to 25° C.
Ink Composition 12 had a viscosity of 19.3 cps and a surface tension of 38.7 dynes/cm at a temperature in the range from 23° C. to 25° C.
Ink Composition 13 had a viscosity of 18.7 cps and a surface tension of 38.7 dynes/cm at a temperature in the range from 23° C. to 25° C.
The spreading rate for drops of each ink composition was measured by inkjet printing a drop of ink onto the surface of a silicon wafer at a temperature of approximately 23° C. For each test, 10 grams of each ink composition was prepared and 2 grams injected into the print cartridge of a Dimatix DMP 2831 printer. Drops of the ink compositions were then printed onto the surface of a silicon substrate at a firing velocity of approximately 6 m/s. The silicon substrate was a 1″ Si wafer that had undergone cleaning using an Ultra T cleaning system, followed by baking at 225° C. and exposure to ultraviolet ozone (UVO) for 15 minutes. The Ultra T cleaning is a precision cleaning technology available from the Ultra T Equipment Company, Inc., Fremont, Ca. The Ultra T cleaning system removed all types of particulates from the Si wafer using a high-pressure de-ionized water spray.
Beginning at 40 seconds post-printing, pictures were taken of the ink drops as they spread on the silicon at regular time intervals and the diameters of the printed drops were measured from the pictures. Multiple tests were conducted for each ink composition. The results are presented in Table 14. The drop diameter for each of the ink compositions at 40 seconds post-printing is shown in
As illustrated in
Beyond a spreading modifier concentration of 10 wt. % (i.e., at a polyethylene glycol di(meth)acrylate monomer to spreading modifier weight ratio of about 8:1 or higher), however, increasing the spreading modifier content of the inks composition resulted in multiple, stepped increases in the drop spreading rates of the ink compositions. Thus, in striking contrast to the Comparative Ink Compositions, the most highly spreading ink compositions in Table 14 (Compositions 11-13), which has a polyethylene glycol di(meth)acrylate monomer to spreading modifier weight ratio of about 1.5:1 or lower, undergo a dramatic increase in their drop sizes and spreading rates with an increase in spreading modifier concentration. For example, by increasing the concentration of the spreading modifier four fold, from 10 wt. % (Comparative Example 5) to 40 wt. % (Composition 11), the drop size at 40 seconds more than doubled and the spreading rate increased by more than an order of magnitude. As shown in
The effect of spreading modifier concentration on drop size is shown in the graphs of
Notably, the thin films printed from Ink Compositions 6-13 are continuous and have good edge acuity despite their high spreading modifier concentrations, demonstrating that the alkoxylated aliphatic di(meth)acrylate monomers are able to provide controlled spreading when used in combination with polyethylene glycol di(meth)acrylates.
In order to test the ability of the ink compositions to print continuous thin films, films of Comparative Ink Composition 2, Ink Composition 9, Ink Composition 10, and Ink Composition 11 having target thicknesses in the range from 1 μm to 8 μm were printed onto a silicon substrate and a bare glass (Corning Eagle) substrate and cured. The films were printed using the Dimatix DMP 2831 printer over an area of one cm2 and cured under an ultraviolet (UV; 395 nm) LED. The degree of film curing as a function of UV dosage for thin films of Comparative Ink Composition 2 and Ink Composition 11 are shown in
After curing, the continuity of the films was observed visually and their thicknesses measured via profilometry. The results are presented in Table 15. The glass was cleaned using the Ultra T cleaning system described above.
As shown in the table above, Ink Composition 11 was able to provide a continuous inkjet printed film having a thickness of under 1 μm on the silicon and glass substrates and Ink Compositions 9 and 11 were able to provide continuous inkjet printed films having thicknesses as low as 2 μm on the silicon and as low as 1 μm on the glass. A 40 wt. % spreading modifier ink composition was also able to print a continuous thin film having a thickness of 1 μm on a silicon nitride substrate.
The film thicknesses cited herein refer to the average thickness of the cured films measured from edge-to-edge. By way of illustration, the film profile for a thin film having an average thickness of less than 1 μm is shown in
The continuous thin films had substantially linear, well defined edges around their perimeters, rather than the irregularly shaped edges that are characteristic of uncontrolled spreading. Examples of well defined edges are shown in
As previously discussed herein, manufacture of various OLED devices on a variety of substrates can be done in an inert, substantially particle-free environment to ensure high-yield manufacturing.
For clearer perspective regarding substrate sizes that can be used in manufacturing of various OLED devises, generations of mother glass substrate sizes have been undergoing evolution for flat panel displays fabricated by other-than OLED printing since about the early 1990's. The first generation of mother glass substrates, designated as Gen 1, is approximately 30 cm×40 cm, and therefore could produce a 15″ panel. Around the mid-1990's, the existing technology for producing flat panel displays had evolved to a mother glass substrate size of Gen 3.5, which has dimensions of about 60 cm×72 cm. In comparison, a Gen 5.5 substrate has dimensions of about 130 cm×150 cm.
As generations have advanced, mother glass sizes for Gen 7.5 and Gen 8.5 are in production for other-than OLED printing fabrication processes. A Gen 7.5 mother glass has dimensions of about 195 cm×225 cm, and can be cut into eight 42″ or six 47″ flat panels per substrate. The mother glass used in Gen 8.5 is approximately 220×250 cm, and can be cut to six 55″ or eight 46″ flat panels per substrate. The promise of OLED flat panel display for qualities such as truer color, higher contrast, thinness, flexibility, transparency, and energy efficiency have been realized, at the same time that OLED manufacturing is practically limited to G 3.5 and smaller. Currently, OLED printing is believed to be the optimal manufacturing technology to break this limitation and enable OLED panel manufacturing for not only mother glass sizes of Gen 3.5 and smaller, but at the largest mother glass sizes, such as Gen 5.5, Gen 7.5, and Gen 8.5. One of the features of OLED panel display technology includes that a variety of substrate materials can be used, for example, but not limited by, a variety of glass substrate materials, as well as a variety of polymeric substrate materials. In that regard, sizes recited from the terminology arising from the use of glass-based substrates can be applied to substrates of any material suitable for use in OLED printing.
Table 20 below relates generation substrate designation to sizes as often can be found in various sources relating to generation substrates for various OLED devices. Table 9 below summarizes aspect ratios and areas for some known generation-sized substrates as currently available in various sources relating to generation-sized substrates. It should be understood that variation of aspect ratio and hence size may be seen from manufacturer to manufacturer. Additionally, It should be the information provided in Table 9 can be subject to change, given the evolution of the industry. In that regard, updated conversion factors for a specific generation-sized substrate, as well as area in square meters can be obtained any of a variety of generation-sized substrates.
Manufacturing tools that in principle can allow for the printing of a variety of substrate sizes that includes large-format substrate sizes, can require substantially large facilities for housing such OLED manufacturing tools. Accordingly, maintaining an entire large facility under an inert atmosphere presents engineering challenges, such as continual purification of a large volume of an inert gas. Various embodiments of a gas enclosure system can have a circulation and filtration system internal a gas enclosure assembly in conjunction with a gas purification system external a gas enclosure that together can provide continuous circulation of a substantially low-particulate inert gas having substantially low levels of reactive species throughout a gas enclosure system. According to the present teachings, an inert gas may be any gas that does not adversely alter a product being fabricated under a defined set of conditions. Some commonly used non-limiting examples of an inert gas for the processing of various embodiments of an OLED device can include nitrogen, any of the noble gases, and any combination thereof. Systems and methods of the present teachings can provide a large facility that is essentially hermetically sealed to prevent contamination of various reactive atmospheric gases, such as water vapor and oxygen, as well as organic solvent vapors generated from various printing processes. According to the present teachings, an OLED printing facility would maintain levels for each species of various reactive species, including various reactive atmospheric gases, such as water vapor and oxygen, as well as organic solvent vapors at 100 ppm or lower, for example, at 10 ppm or lower, at 1.0 ppm or lower, or at 0.1 ppm or lower.
The need for printing an OLED panel in a facility in which the levels of each of a reactive species should be maintained at targeted low levels can be illustrated in reviewing the information summarized in Table 21. The data summarized on Table 21 resulted from the testing of each of a test coupon comprising organic thin film compositions for each of red, green, and blue, fabricated in a large-pixel, spin-coated device format. Such test coupons are substantially easier to fabricate and test for the purpose of rapid evaluation of various formulations and processes. Though test coupon testing should not be confused with lifetime testing of a printed panel, it can be indicative of the impact of various formulations and processes on lifetime. The results shown in the table below represent variation in the process step in the fabrication of test coupons in which only the spin-coating environment varied for test coupons fabricated in a nitrogen environment where reactive species were less than 1 ppm compared to test coupons similarly fabricated but in air instead of a nitrogen environment.
It is evident through the inspection of the data in Table 21, shown below, for test coupons fabricated under different processing environments, particularly in the case of red and blue, that printing in an environment that effectively reduces exposure of organic thin film compositions to reactive species may have a substantial impact on the stability of various ELs, and hence on lifetime. The lifetime specification is of particular significance for OLED panel technology, as this correlates directly to display product longevity; a product specification for all panel technologies, which has been challenging for OLED panel technology to meet. In order to provide panels meeting requisite lifetime specifications, levels of each of a reactive species, such as water vapor, oxygen, as well as organic solvent vapors, can be maintained at 100 ppm or lower, for example, at 10 ppm or lower, at 1.0 ppm or lower, or at 0.1 ppm or lower with various embodiments of a gas enclosure system of the present teachings.
In addition to providing an inert environment, maintaining a substantially low-particle environment for OLED printing is of particular importance, as even very small particles can lead to a visible defect on an OLED panel. Particle control in a gas enclosure system can present significant challenges not presented for processes that can be done, for example, in atmospheric conditions under open air, high flow laminar flow filtration hoods.
For example, of a manufacturing facility can require a substantial length of various service bundles that can be operatively connected from various systems and assemblies to provide optical, electrical, mechanical, and fluidic connections required to operate, for example, but not limited by, a printing system. Such service bundles used in the operation of a printing system and located proximal to a substrate positioned for printing can be an ongoing source of particulate matter. Additionally, components used in a printing system, such as fans or linear motion systems that use friction bearing, can be particle generating components. Various embodiments of a gas circulation and filtration system of the present teachings can be used in conjunction with particle control components to contain and exhaust particulate matter. Additionally, by using a variety of intrinsically low-particle generating pneumatically operated components, such as, but not limited by, substrate floatation tables, air bearings, and pneumatically operated robots, and the like, a low particle environment for various embodiments of a gas enclosure system can be maintained. Regarding maintaining a substantially low-particle environment, various embodiments of a gas circulation and filtration system can be designed to provide a low particle inert gas environment for airborne particulates meeting the standards of International Standards Organization Standard (ISO) 14644-1:1999, “Cleanrooms and associated controlled environments—Part 1: Classification of air cleanliness,” as specified by Class 1 through Class 5
As depicted in
In step 120, using various embodiments of organic thin layer inks according to the present teachings, a printing tool can be used to print an organic thin film layer over a target print area. In the art of processing, total average cycle time or TACT can be an expression of a unit of time for a particular process cycle. For various embodiments of systems and methods of the present teachings, for a step of printing an organic thin film ink, TACT can be between about 30 seconds to about 120 seconds. Subsequently, as indicated by step 130, the substrate can be transferred from a printing module of a printing tool to a curing module. With respect to a step of curing, as indicated by step 140, according to various embodiments of systems and methods of the present teachings, before curing is initiated, a step of allowing the printed organic thin film ink to reach a film layer of uniform thickness can be done. In various embodiments, such a leveling step can be considered a separate step. In various embodiments of systems and methods, leveling can be done in a dedicated chamber, for example, in a holding chamber, and then a substrate can be transferred to a curing chamber. For various embodiments of the present teachings, as will be discussed in more detail herein, a step of leveling can be done in the same chamber as the step of curing. According to various embodiments of systems and methods of the present teachings, TACT for a step of leveling can be between about 170 seconds to about 210 seconds, while TACT for a curing step according to some embodiments can be between about 15 seconds to 60 seconds, while for other embodiments can be between about 25 seconds to about 35 seconds. After curing step 140, a substrate can be transferred from a UV curing module to another processing chamber, such as an output loadlock chamber, as indicated by process step 150 of process 100.
In order to accomplish process 100 of
Various embodiments of a gas enclosure can be contoured around a printing system base, upon which a substrate support apparatus can be mounted. Further, a gas enclosure can be contoured around a bridge structure used for the X-axis movement of a carriage assembly. As a non-limiting example, various embodiments of a contoured gas enclosure according to the present teachings can have a gas enclosure volume of between about 6 m3 to about 95 m3 for housing various embodiments of a printing system capable of printing substrate sizes from Gen 3.5 to Gen 10. By way a further non-limiting example, various embodiments of a contoured gas enclosure according to the present teachings can have a gas enclosure volume of between about 15 m3 to about 30 m3 for housing various embodiments of a printing system capable of printing, for example, Gen 5.5 to Gen 8.5 substrate sizes. Such embodiments of a contoured gas enclosure can be between about 30% to about 70% savings in volume in comparison to a non-contoured enclosure having non-contoured dimensions for width, length and height.
Second module 4600 of
First load lock chamber 4450 and second load lock chamber 4650 can be affixably associated with first transfer chamber 4410 and second transfer chamber 4610, respectively or can be movable, such as on wheels or on a track assembly, so that they can be readily positioned for use proximal a chamber. According to the present teachings, a load lock chamber can be mounted to a support structure and can have at least two gates. For example first load lock chamber 4450 can be supported by first support structure 4454 and can have first gate 4452, as well as a second gate (not shown) that can allow fluid communication with first transfer module 4410. Similarly, second load lock chamber 4650 can be supported by second support structure 4654 and can have second gate 4652, as well as a first gate (not shown) that can allow fluid communication with second transfer module 4610.
According to the present teachings, a UV curing module can include one or more enclosed UV curing chambers such as first UV curing chamber 4661A, second UV curing chamber 4661B, and “Nth” UV curing chamber 4661N. For example, three regions can be included and in another example, other numbers of regions can be included. The regions can be oriented in a “stacked” configuration along a vertical axis of the system, such as shown illustratively in
In an illustrative example, such as after deposition of an organic layer on a substrate, a leveling operation can be performed. As was previously discussed herein, a duration of a leveling operation can generally be greater than a duration of an ultraviolet treatment operation. Accordingly, in one approach, respective holding regions or “buffer cells” can be used, such as in a stacked configuration with each region configured to house a substrate. In this approach, the leveling operation can proceed without restricting access or otherwise tying up a separate ultraviolet treatment region. However, multiple ultraviolet sources can be used, such including user lower-cost sources. In this manner, a throughput impact of idling an ultraviolet source need not preclude use of the same UV curing chamber (e.g., 4661A through 4661N) for both a holding operation (e.g., buffering or leveling), as well as for an ultraviolet treatment operation, because multiple regions can be configured to provide ultraviolet treatment. Such an approach can also provide redundancy of the ultraviolet sources such that processing can continue even if a particular ultraviolet source fails or is undergoing maintenance.
For example, first radiation source 4662A (e.g., an ultraviolet-emitting LED array) can provide ultraviolet emission, depicted as multiple arrows in
Regarding support of substrates, such as 2050A and 2050B of
Without being bound by theory, it is believed that such defects primarily result from localized variations in thermal conductivity that can create local gradients in the temperature of a substrate during, for example, a leveling operation. In an example, a specified temperature uniformity can be maintained in a local region of the substrate, for example, such that deviation in temperature adjacent to or within the local region is limited. For example, a significant temperature variation across the substrate can be tolerated but such variation can have a limited gradient such that the temperature does not vary significantly over a small distance along the substrate. In this manner, abrupt changes in visible characteristics of the finished display can be avoided and such gradual changes are less likely to be noticed or even detectable.
In one approach, regions outside the emitting or display region of the substrate can be used to support a substrate outside of active device areas of a substrate. However, because large portions of a substrate can include emitting regions or portions of the actual display region, it can be impractical to support the substrate only at the periphery of such regions because such support induces unacceptable mechanical forces or stresses elsewhere across a substrate, which may either distort or fracture a substrate. Additionally, the present inventors have also recognized that a correlation can exist between particle generation and a number of instances or locations of contact between other apparatuses and a substrate.
Accordingly, the present inventors have recognized that a substrate, such as substrates 2050A and 2050B of
Transfer module 4610 of
In the illustrative example of
The regions 4661A through 4661N can each include a valve or gate, such as to isolate the inert environment of each enclose region 4661A through 4661N from the transfer module 4610 or from each other. Accordingly, such as during maintenance, a particular region can have its inert environment isolated from the rest of the enclosed regions using a valve or gate.
An OLED inkjet printing system, such as OLED printing system 2000 of
An OLED inkjet printing system, such as OLED printing system 2000 of
A printhead assembly can include at least one inkjet head, with at least one orifice capable of ejecting drops of ink at a controlled rate, velocity, and size. The inkjet head is fed by an ink supply system which provides ink to the inkjet head. As shown in an expanded view of
The printing system 2000 of
According to the floatation schemes shown in
Elsewhere, as illustrated generally in
A porous medium can be used to establish a distributed pressurized gas cushion for floating conveyance or support of the substrate 2050 during one or more of printing, buffering, drying, or thermal treatment. For example, a porous medium “plate” such as coupled to or included as a portion of a conveyor can provide a “distributed” pressure to support the substrate 2050 in a manner similar to the use of individual gas ports. The use of a distributed pressurized gas cushion without using large gas port apertures can in some instances further improve uniformity and reduce or minimize the formation of mura or other visible defects, such as in those instances where the use of relatively large gas ports to create a gas cushion leads to non-uniformity, in spite of the use of a gas cushion.
A porous medium can be obtained such as from Nano TEM Co., Ltd. (Niigata, Japan), such as having physical dimensions specified to occupy an entirety of the substrate 2050, or specified regions of the substrate such as display regions or regions outside display regions. Such a porous medium can include a pore size specified to provide a desired pressurized gas flow over a specified area, while reducing or eliminating mura or other visible defect formation.
Printing requires relative motion between the printhead assembly and the substrate. This can be accomplished with a motion system, typically a gantry or split axis XYZ system. Either the printhead assembly can move over a stationary substrate (gantry style), or both the printhead and substrate can move, in the case of a split axis configuration. In another embodiment, a printhead assembly can be substantially stationary; for example, in the X and Y axes, and the substrate can move in the X and Y axes relative to the printheads, with Z axis motion provided either by a substrate support apparatus or by a Z-axis motion system associated with a printhead assembly. As the printheads move relative to the substrate, drops of ink are ejected at the correct time to be deposited in the desired location on a substrate. A substrate can be inserted and removed from the printer using a substrate loading and unloading system. Depending on the printer configuration, this can be accomplished with a mechanical conveyor, a substrate floatation table with a conveyance assembly, or a substrate transfer robot with end effector.
With respect to
In
According to various embodiments of a gas enclosure system of the present teachings, given the sheer number of printhead devices and printheads, first printhead management system 2701 and second printhead management system 2702 can be housed in an auxiliary enclosure, which can be isolated from a printing system enclosure during a printing process for performing various measurement and maintenance tasks with little or no interruption to the printing process. As can be seen in
For OLED printing system 2000 of
In reference to
Regarding motion systems supporting various carriage assemblies of the present teachings, such as printing system 2000 of
A camera assembly 2550 can include camera 2552, camera mount assembly 2554 and lens assembly 2556. Camera assembly 2550 can be mounted to motion system 2300B on Z-axis moving plate 2310B, via camera mount assembly 2556. Camera 2552 can be any image sensor device that converts an optical image into an electronic signal, such as by way of non-limiting example, a charge-coupled device (CCD), a complementary metal-oxide-semiconductor (CMOS) device or N-type metal-oxide-semiconductor (NMOS) device. Various image sensor devices can be configured as an array of sensors for an area scan camera, or a single row of sensors, for a line scan camera. Camera assembly 2550 can be connected to image processing system that can include, for example, a computer for storing, processing, and providing results. As previously discussed herein for printing system 2001 of
Various camera assemblies can utilize cameras having different capabilities. In various embodiments, camera assembly 2550 of
Gas purification loop 3130 can be in fluid communication gas enclosure 4510, and at least one thermal regulation system 3140. Additionally, various embodiments of gas enclosure system 500 can have pressurized inert gas recirculation system 3000, which can supply inert gas for operating various devices, such as a substrate floatation table for an OLED printing system. Various embodiments of a pressurized inert gas recirculation system 3000 can utilize a compressor, a blower and combinations of the two as sources for various embodiments of pressurized inert gas recirculation system 3000, as will be discussed in more detail subsequently herein. Additionally, gas enclosure system 500 can have a circulation and filtration system internal to gas enclosure system 500 (not shown).
As depicted in
Gas purification loop 3130 of
Any suitable gas purification system can be used for gas purification system 3134 of gas purification loop 3130 of
Any suitable gas filters or purifying devices can be included in the gas purification system 3134 of the present teachings. In some embodiments, a gas purification system can comprise two parallel purifying devices, such that one of the devices can be taken off line for maintenance and the other device can be used to continue system operation without interruption. In some embodiments, for example, the gas purification system can comprise one or more molecular sieves. In some embodiments, the gas purification system can comprise at least a first molecular sieve, and a second molecular sieve, such that, when one of the molecular sieves becomes saturated with impurities, or otherwise is deemed not to be operating efficiently enough, the system can switch to the other molecular sieve while regenerating the saturated or non-efficient molecular sieve. A control unit can be provided for determining the operational efficiency of each molecular sieve, for switching between operation of different molecular sieves, for regenerating one or more molecular sieves, or for a combination thereof. As previously discussed herein, molecular sieves may be regenerated and reused.
Thermal regulation system 3140 of
The present teachings are intended to be illustrative, and not restrictive. The Abstract is provided to comply with 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description as examples or embodiments, with each claim standing on its own as a separate embodiment, and it is contemplated that such embodiments can be combined with each other in various combinations or permutations. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.