Claims
- 1. A highway guardrail comprising an elongated metal beam, said beam deining a longitudinal direction and a beam width measured transverse to the logitudinal direction, said beam comprising two edges extending along the longitudinal direction and at least one ridge extending substantially parallel to the longitudinal direction and located substantially inwardly of the edges, each ridge comprising a peak that forms a ridge line extending substantially parallel to the longitudinal direction throughout a length along the longitudinal direction that is substantially greater than said beam width, said beam having a rigidity adapted to deflect an automobile that has left a roadway and comprising a set of weakened regions extending at least partially across the beam, said weakened regions oriented obliquely to the longitudinal direction to form an elongated fold region at which the beam tends to buckle when subjected to a sufficiently large column load, said folding region providing a preferred direction of folding for the guardrail in an axial impact, said fold region oriented obliquely to thee longitudinal direction and operative to reduce any tendency of a rearward portion of the guardrail to move upwardly as the guardrail buckles.
- 2. The invention of claim 1 wherein the weakened regions are operative to cause a portion of the beam positioned rearwardly of the fold region to move downwardly when the beam collapses in an axial impact.
- 3. The invention of claim 1 wherein the weakened regions comprise at least one opening in the beam.
- 4. The invention of claim 1 wherein the weakened regions comprise at least one thinned region in the beam.
- 5. The invention of claim 1 wherein the weakened regions comprise at least one dented region in the beam.
- 6. The invention of claim 1 wherein the beam forms two parallel ridges.
- 7. A highway barrier comprising the guardrail of claim 1 wherein said guardrail is oriented in the highway barrier such that a first portion of the beam is situated forward of a second portion of the beam in an anticipated direction of an axial impact, wherein the fold region is between the first and second portions of the beam, and wherein the fold region is oriented to reduce any tendency of the fold region to lift when the beam folds along the fold region in the axial impact.
- 8. The highway barrier of claim 7 wherein the highway barrier comprises a forward section, and wherein the forward section comprises the guardrail of claim 1.
- 9. The invention of claim 1 wherein the fold region is oriented at an angle of about 30.degree. with respect to the longitudinal direction.
- 10. The invention of claim 1 wherein the fold region is oriented at an angle greater than about 10.degree. with respect to the longitudinal direction.
- 11. The invention of claim 1 wherein the fold region is oriented at an angle greater than about 20.degree. with respect to the longitudinal direction.
- 12. The invention of claim 1 wherein the fold region is oriented at an angle greater than about 30.degree. with respect to the longitudinal direction.
- 13. The invention of claim 1 wherein the beam preferentially tends to buckle at the elongated fold region when subjected to a sufficiently large column head.
- 14. A highway guardrail comprising an elongated metal beam, said beam defining a longitudinal direction and a beam width measured tansverse to the longitudinal direction, said beam comprising two edges extending along the longitudinal direction and at least one ridge extending substantially parallel to the longitudinal direction and located substantially inwardly of the edges, each ridge omprising a peak that forms a ridge line extneding substantially parallel to the longitudinal direction throughout a length along the longitudinal direction that is substantially greater than said beam width, said beam having a rigidity adapted to deflect an automobile that has left a roadway and comprising a set of weakened regions extending at least partially across the beam, said weakened regions oriented obliquely to the longitudinal direction to form an elongated fold region at which the beam is predisposed to buckle when subjected to a sufficiently large column load, said folding region providing a preferred direction of folding for the guardrail in an axial impact, said fold region oriented obliquely to the longitudinal direction and operative to reduce any tendency of a rearward portion of the guardrail to move upwardly as the guardrail buckles.
- 15. A highway guardrail comprising an elongated metal beam, said beam defining a longitudinal direction and a beam width measured tansverse to the longitudinal direction, said beam comrising two edges extending along the longitudinal direction and at least one ridge extending substantially parallel to the longitudinal direction and located substantially inwardly of the edges, each ridge comprising a peak that forms a ridge line extending substantially parallel to the longitudinal direction throughout a length along the longitudinal direction that is substantially greater than said beam width, said beam having a rigidity adapted to deflect an automobile that has left a roadway and comprising means for reducing any tendency of a rearward portion of the guardrail to move upwardly as the guardrail buckles, said means comprising a set of weakened regions extending at least partially across the beam, said weakened regions oriented obliquely to the longitudinal direction to form an elongated fold region oriented obliquely to the longitudinal direction, at which fold region the beam tends to buckle when subjected to a sufficiently large column load, said folding region providing a preferred direction of folding for the guardrail in an axial impact.
- 16. A highway guardrail comprising an elongated metal beam, said beam defining a longitudinal direction and a beam width measured transverse to the longitudinal direction, said beam comprising two edges extending along the longitudinal direction and at least one ridge extending substantially parallel to the longitudinal direction and located substantially inwardly of the edges, each ridge comprising a peak that forms a ridge line extending substantially parallel to the longitudinal direction throughout a length along the longitudinal direction that is substantially greater than said beam width, said beam having a rigidity adapted to deflect an automobile that has left a roadway and comprising means for reducing any tendency of a rearward portion of the guardrail to move upwardly as the guardrail buckles, said means comprising at least two sets of weakened regions, each set extending at least partially across the beam, said weakened regions in each set oriented obliquely to the longitudinal direction to form a plurality of elongated fold regions oriented obliquely to the longitudinal direction, at which fold regions the beam preferentially tends to buckle when subjected to a sufficiently large column load, said folding regions providing preferred directions of folding for the guardrail in an axial impact, said fold regions oriented obliquely to the longitudinal direction.
- 17. A highway guardrail comprising an elongated metal beam, said beam defining a longitudinal direction and a beam width measured transverse to the longitudinal direction, said beam comprising two edges extending along the longitudinal direction and at least one ridge extending substantially parallel to the longitudinal direction and located substantially inwardly of the edges, each ridge comprising a peak that forms a ridge line extending substantially parallel to the longitudinal direction throughout a length along the longitudinal direction that is substantially greater than said beam width, said beam having a rigidity adapted to deflect an automobile that has left a roadway and comprising a set of weakened regions extending at least partially across the beam, said weakened regions oriented obliquely to the longitudinal direction to form an elongated fold region at which the beam tends to buckle when subjected to a sufficiently large column load, wherein the beam comprises a segment extending along the longitudinal dimension and comprising the fold region, and wherein the weakened regions in the segment are spatially concentrated in the fold region.
- 18. A highway guardrail comprising an elongated metal beam, said beam defining a longitudinal direction and a beam width measured tansverse to the longitudinal direction, said beam comprising two edges extending along the longitudinal direction and at least one ridge extending substantially parallel to the longitudinal direction and located substantially inwardly of the edges, each ridge comprising a peak that forms a ridge line extending substantially parallel to the longitudinal direction throughout a length along the longitudinal direction that is substantially greater than said beam width, said beam having a rigidity adapted to deflect an automobile that has left a roadway and comprising at least two sets of weakened regions, each set extending at least partially across the beam, said weakened regions in each set oriented obliquely to the longitudinal direction to form a plurality of elongated fold regions at which the beam tends to buckle when subjected to a sufficiently large column load, wherein the beam comprises a segment extending along the longitudinal dimension and comprising the fold regions, and wherein the weakened regions in the segment are spatially concentrated in the fold regions.
- 19. The invention of claim 1, 14, 15, 16, 17 or 18, wherein the beam is substantially constant in section transverse to the longitudinal direction throughout the length.
- 20. The invention of claim 1, 14, 15, 16, 17 or 18, wherein the at least one ridge comprises at least two parallel ridges, and wherein a cross-section of the beam at any point along the length passses through the peaks of said at least two parallel ridges.
- 21. The invention of claim 1, 14, 15, 16, 17 or 18, wherein each ridge is formed as an integral aspect of the beam.
Parent Case Info
This application is a division application Ser. No. 09/990,468, filed Dec. 15, 1997.
US Referenced Citations (11)
Foreign Referenced Citations (4)
Number |
Date |
Country |
2 282 504 |
Mar 1976 |
FRX |
2607841 |
Jun 1988 |
FRX |
89 06721 |
Jul 1989 |
WOX |
96 20311 |
Jul 1996 |
WOX |
Non-Patent Literature Citations (1)
Entry |
European Search Report. |
Divisions (1)
|
Number |
Date |
Country |
Parent |
990468 |
Dec 1997 |
|