Subject matter disclosed herein generally relates to technology for hinges, for example, hinge assemblies for computing devices.
Various types of computing devices, display devices, computing and display devices, etc. exist where, for example, one device may cooperate with another device or component of an assembly or system. As an example, consider a display in a display housing that cooperates with a keyboard in a keyboard housing, which may, for example, allow for input of information via the display in addition to, or as an alternative to, input of information via the keyboard. In such an example, the keyboard housing and the display housing may connect via a hinge, for example, that allows for pivoting of the housings to achieve a back-to-back orientation of the keyboard housing and the display housing. In such an orientation, the display may be used on one side as a tablet (e.g., consider a scenario where the display is a touchscreen display) while the keyboard faces outwardly from the opposing side. Various technologies and techniques described herein pertain to devices, components, assemblies, etc. that include a keyboard in a keyboard housing.
An apparatus can include a processor; memory accessible by the processor; a first housing that includes a front side and a back side; a second housing that includes a front side and a back side; and a hinge assembly operatively coupled to the second housing where the hinge assembly includes a set of axles, a set of gears and a latch pivotable via meshed rotation of the gears about an axis defined by one of the axles where, in a latched state, the latch operatively couples the first housing to the hinge assembly. Various other apparatuses, systems, methods, etc., are also disclosed.
Features and advantages of the described implementations can be more readily understood by reference to the following description taken in conjunction with examples of the accompanying drawings.
The following description includes the best mode presently contemplated for practicing the described implementations. This description is not to be taken in a limiting sense, but rather is made merely for the purpose of describing general principles of various implementations. The scope of invention should be ascertained with reference to issued claims.
As an example, a system may include a display in a display housing that cooperates with a keyboard in a keyboard housing, which may, for example, allow for input of information via the display in addition to, or as an alternative to, input of information via the keyboard. In such an example, the keyboard housing and the display housing may connect via a hinge assembly (e.g., or hinge assemblies) that, for example, allows for pivoting of the housings, for example, to achieve a folded orientation of the keyboard housing and the display housing. As an example, where a display faces outwardly in a folded orientation, the display of the system may be used as a tablet (e.g., consider a scenario where the display is a touchscreen display).
As an example, a system can include multiple housings where at least one of the housings is a display housing. As an example, a system can include two display housings coupled via one or more hinge assemblies where the display housings may be pivotable to a planar orientation and pivotable to a folded orientation, which may be one of a back-to-back, a front-to-back or a front-to-front orientation. As an example, a system can include a plurality of housings where one or more of the housings may be display housings and, for example, where one or more of the housings may be input component housings such as, for example, keyboard housings, touchscreen display housings, etc. In such an example, hinge assemblies can be included, which may optionally allow for decoupling and recoupling of one or more of the housings.
As an example, the system 100, the system 180 and/or the system 190 may include one or more processors 112, memory 114 (e.g., one or more memory devices), one or more network interfaces 116, and one or more power cells 118. Such components may be, for example, housed with the keyboard housing 120, the display housing 140, the keyboard housing 120 and the display housing 140, the housing 182, the housing 184, the housing 182 and the housing 184, one or more of the housings 192, 194 and 196, etc.
As shown in the example of
As shown in the example of
As to the orientation 103, it may correspond to a display orientation for viewing the display 144 where the keyboard 124 faces downward and the system 100 is supported by the keyboard housing 120 (e.g., by a rim about the keyboard 124, the frontal surface 122, etc.). As to the orientation 105, it may correspond to a “tent” orientation where the display 144 faces outwardly for viewing on one side of the tent and the keyboard 124 of the keyboard housing 120 faces outwardly on the other side of the tent.
The orientation 107 may be a tablet orientation where the angle Φ is about 360 degrees such that a normal outward vector N1 of the keyboard 124 of the keyboard housing 120 and a normal outward vector N2 of the display 144 of the display housing 140 are oriented in oppositely pointing directions, pointing away from each other; whereas, in contrast, for a closed orientation of the system 100 (e.g., where the angle Φ is about 0 degrees), the vectors N1 and N2 would be pointing toward each other.
The orientation 109 may be a planar orientation where the angle Φ is about 180 degrees such that a normal outward vector N1 of the keyboard 124 of the keyboard housing 120 and a normal outward vector N2 of the display 144 of the display housing 140 are oriented in approximately the same pointing directions.
As shown in
In the example of
As mentioned, a latch portion of the hinge assembly 230 can be substantially centered along an axial lengthwise dimension, which may correspond to an edge dimension of the housing 220 and an edge dimension of the housing 240. For example, the housing 240 can include a single receptacle that can receive the latch portion of the hinge assembly 230 in multiple orientations of the housing 240 with respect to the housing 220. As an example, the housing 220 can include a single receptacle that can receive another latch portion of the hinge assembly 230. As an example, the hinge assembly 230 may be oriented in various orientations and receive via one latch portion one housing and receive via another latch portion, another housing.
As an example, a hinge assembly may include multiple latch portions. For example, consider a two axle hinge assembly with two latch portions or a three axle hinge assembly with three latch portions where, for example, in the two foregoing examples, at least one housing may be operatively coupled to a latch portion.
As an example, a housing may include a receptacle along one edge and an receptacle along another edge. In such an example, the housing may be oriented such that either receptacle can receive a latch portion of a hinge assembly.
As to the method 250, it includes an operation block 252 for operating a coupled system in a first orientation, a decouple block 254 for decoupling a housing of the system from another housing of the system and an operation block 256 for operating the system in a second orientation that differs from the first orientation. For example, the method 250 may be performed with respect to the system 200 where the system 200 can be operated in two different orientations, which may be a notebook orientation and a tablet orientation.
As an example, the hinge assembly 230 can include one or more components 270, which may be covered at least in part by a cover 280. As an example, the cover 280 may be at least in part translatable to cover the one or more components 270.
In the example of
As an example, a component may be a battery cell (e.g., a lithium ion cell, etc.), a stylus, a heat pipe, an antenna, a cooling vent, etc. As an example, a system may allow for interchangeable components. For example, a system may include two slots where the two slots can receive a same type of component or can receive different types of components. As an example, a system can include two slots where one or both slots can receive a battery, where one or both slots can receive a stylus, where one or both slots can receive a heat pipe, where one or both slots can receive an antenna, where one or both slots can receive a cooling vent, etc.
As an example, the cover 280 may cover at least a set of gears. For example, a hinge assembly can include two sets of gears where one set of gears may be covered by one cover and where the other set of gears may be covered by another cover. In such an example, one or both of the covers may be removable. As an example, a system may include one or more slots that extend axially away from one set of gears (e.g., in a first direction) and may include one or more slots that extend axially away from another set of gears (e.g., in a second, opposing direction). As an example, such slots may be empty or occupied by one or more components. As an example, fewer than all slots may be occupied by a component or components.
As an example, a component may be an accessory. As an example, a component may be electrically coupled to circuitry in a housing or housings. As an example, an accessory may be passive. For example, consider a cooling vent that is shaped to direct flow of air into and/or out of one or more housings (e.g., as may be driven by a fan or fans, etc.).
As an example, circuitry may be included to operatively couple one or more components associated with a hinge assembly to one or more components of a housing or housings. For example, wires or other types of conductors may run along or through the axle 520-1 and extend to a portion of the latch 560-1 with one or more contacts 563-1 and a housing 620 (e.g., with a keyboard, etc.) or a housing 640 (e.g., with a display, etc.) can include an edge 622 with a receptacle 660 where one or more contacts 663 may mate with the one or more contacts 563-1. As an example, the contacts 663 may be located symmetrically and/or asymmetrically with respect to a housing. For example, as the housing may be oriented to two or more orientations, pairs of asymmetric contacts may be included and/or symmetric contacts may be included where symmetric contacts can make connections in a plurality of orientations of a housing. As an example, one or more edges of a housing may include a receptacle that can receive a latch of a hinge assembly (see, e.g., the configuration 402 of
In the example of
As an example, an assembly can include an intermediate gear or intermediate gears. For example, the gear 740-3 may be considered to be an intermediate gear. As an example, a hinge assembly may include one or more intermediate gears that may be sized with respect to a pair of gears, for example, to minimize size of the hinge assembly, for example, by offsetting of one or more intermediate gear(s) from a centered position, it is possible to achieve a result that shortens a distance between centers of the two main gears. In such an example, an intermediate gear or intermediate gears allows for assemblies of different thicknesses of housings to possibly implement a standard pair of main gears (e.g., where adjustments occur via sizing, positioning, etc. of one or more intermediate gears). As an example, a three gear set may include an intermediate gear offset from centers of the other two gears.
As an example, a housing can include a slot that receives the latch 800 and include recesses that receive the prongs 850-1 and 850-2 such that the latch 800 is operatively coupled to the housing. To release the latch for decoupling of the housing from the latch 800, a user may apply force to the raised portion 815 of the slider 810 to translate the slider 810 where the applied force is sufficient to overcome friction and force of the springs 845-1 and 845-2 such that the prongs 850-1 and 850-2 are drawn inwardly, each a respective distance, to release the latch 800 from a housing.
As shown in
As shown in the example of
As an example, coupler 1270 can include one or more compression mechanisms that can apply force, for example, to one or more springs (e.g., to the spring 1282 and 1284). For example, consider the bolt or screw 1276 and the nuts 1277 and 1278.
As an example, the springs 1282 and 1284 may bias respective cam components 1283 and 1285 that may interact with features of the component 1272 or one or more of the gears 1220 and 1240.
In the example assembly 1200, the gears 1220 and 1240 include helical lobes that are different handed. In such an example, the gears 1220 and 1240 rotate in different directions. For example, where the gear 1220 rotates in a clockwise direction, the gear 1240 rotates in a counter-clockwise direction and vice versa. Thus, given a clamshell arrangement of two housing coupled via the assembly 1200, the gears 1220 and 1240 may rotate to orient the housings in a front side to front side orientation and in a back side to back side orientation. As an example, the assembly 1200 may be included as part of a hinge assembly of a system.
As an example, a gear may include an involute profile or a non-involute profile. An involute profile can include teeth that are involutes, for example, of a circle or an ellipse. The involute of a circle may be defined by a spiraling curve traced by the end of an imaginary taut string unwinding itself from that stationary circle called the base circle.
As an example, a hinge assembly can include two elliptical gears, one that may be operatively coupled to a first housing (e.g., a base) and one that may be operatively coupled to a second housing (e.g., top). In such an example, the major axis of the ellipse can be equal in length to the thickness of the first housing while the minor axis of the ellipse can be equal to the second housing thickness, for example, where the first housing may be thicker than the second housing. In such an assembly, a link can connect the gears (e.g., via axles, etc.) where the gears maintain a constant distance (e.g., equal to the sum of the lengths of the major semi-axis and minor semi-axis). In such an example, the hinge assembly can help to ensure smooth rolling and engagement without separation. As an example, gears may be of an elliptical or other shape (e.g., with two dimensions that correspond to two housing thicknesses) and assembled orthogonal to each other (e.g., as defined by the two dimensions). In such an example, coordinated motion may be achieved as one housing is rotated relative to another housing. Such motion may be synchronous motion. As an example, motion may be about 360 degrees, for example, for a back side to back side orientation and a front side to front side orientation of two housings.
As an example, the gears 1620 and 1640 can rotate about respective axles 1625 and 1645 that may be coupled via a coupler (e.g., as part of a hinge assembly, etc.). The gears 1620 and 1640 may be elliptical or circular and include teeth. In the example of
As an example, an assembly can include spur gears with spacer and/or side plates. Such an approach may act to reduce risk of finger pinch as the plates, which may be on either side of a spur gear can help prevent a finger from entering a gear contact region. In such an example, an outer perimeter of a plate may match that of a gear teeth outer perimeter, for example, so sliding an assembly, on a delicate desk surface, may be smooth rather than risking a spur gear gouging/marring the surface (e.g., in absence of the plates).
As shown in
As shown in
In the assembly 1700, the gears 1720 and 1740 rotate about respective axles 1725 and 1745 that are coupled via a coupler 1770 (e.g., as part of a hinge assembly, etc.). For example, the coupler 1770 may be disposed at an end of the gears 1720 and 1740 and receive the axles 1725 and 1745 such that the axles 1725 and 1745 remain a certain distance apart and such that the housings 1702 and 1704 remain coupled during rotation. As an example, a coupler may be proximate to a region through which one or more cables may pass, for example, from one housing to another housing. As an example, an assembly may include more than one coupler. For example, the assembly 1700 may include the coupler 1770 on one side of the gears 1720 and 1740 and another coupler on another side of the gears 1720 and 1740. As an example, a coupler may be positioned between gears, for example, as a spacer between portions of a gear of a first housing and between portions of a gear of a second housing. As an example, the gears 1720 and 1740 may be elliptical, circular or of another shape and include teeth. For example, as shown in
As shown in an enlarged view, a gear may be defined with respect to a reference frame. For example, using the visible end of the housings 1702 and 1704 as a reference, the gear 1720 includes two portions, one including a counter-clockwise helix (CCW) and the other including a clockwise helix (CW) while the gear 1740 includes two portions, one including a clockwise helix (CW) and the other including a counter-clockwise helix (CCW). Thus, as illustrated in the example of
As an example, a gear or gears may include multiple portions with helix orientations that may differ (e.g., or be the same). As shown, a corresponding gear or gears may include multiple portions with helix orientations that can mesh with such a gear or gears. As an example, gears may include portions that act to “balance” various forces (e.g., torque, etc.). In such an example, smoother movement may be achieved for movement of a housing with respect to another housing or simultaneous movement of two housings. As an example, a gear with a clockwise portion and a counter-clockwise portion that meshes with another gear with a clockwise portion and a counter-clockwise portion may act to provide for a no-slip condition.
As an example, a hinge assembly can include worm gears. As an example, a worm gear may be perceived, aesthetically, as being different than a spur gear. For example, helical teeth of a worm gear may be perceived as being smoother than the teeth of a spur gear. As an example, a worm gear may be fashion in a more “streamlined” manner. As an example, a worm gear may, when compared to a spur gear, have a less of an industrial look to a user.
As shown in
In the example of
As an example, an assembly may include a portion of the gear 1720 and a portion of the gear 1740. For example, consider a clockwise portion of the gear 1720 and a counter-clockwise portion of the gear 1740 or vice versa. As an example, a gap may exist between portions of a gear. As an example, a gear may include multiple clockwise portions and/or multiple counter-clockwise portions. For example, consider a gear such as the gear 1720 with multiple clockwise portions or with multiple counter-clockwise portions or, for example, the gear 1740 with multiple clockwise portions or with multiple counter-clockwise portions. As to a gap, the example of
As mentioned, portions of a gear can include a clockwise portion and a counter-clockwise portion, a clockwise portion and a clockwise portion and/or a counter-clockwise portion and a counter-clockwise portion. As an example, each portion may be of approximately the same axial length (e.g., along an axle axis). As an example, axial lengths of portions may differ. As an example, number of teeth or segments may differ. As an example, number of grooves may differ. As an example, an assembly may include more than one type of gear.
As an example, an assembly can include spacers and worm, face gear “paradoxical” gears with elliptical shapes. In such an example, the assembly may include a first housing and a second housing with different thicknesses. In such an example, worm gears may mesh (e.g., optionally via synchronized motion). As an example, worm gears may include relatively smooth profiles, which may, for example, reduce risk of finger pinch, marring/gouging a surface (e.g., a desk surface), catching clothing (e.g., grabbing a stocking from device placed on a leg or legs), etc. As an example, a left hand elliptic worm with an adjacent right hand elliptical worm in combination (e.g., optionally with a spacer between) may allow for synchronous opening/closing and enforcement of a no-slip condition. As an example, multiple gearing pairs may act to balance (e.g., share) torque load during movement of one housing with respect to another or movement of housings (e.g., synchronously). As an example, a hinge assembly may include gears whereby the gears provide for synchronous movement of latches (e.g., latch portions). In such an example, where housings are operatively coupled to the latches, the housings may be moved synchronously.
As an example, an apparatus can include a processor; memory accessible by the processor; a first housing that includes a front side and a back side; a second housing that includes a front side and a back side; and a hinge assembly operatively coupled to the second housing where the hinge assembly includes a set of axles, a set of gears and a latch pivotable via meshed rotation of the gears about an axis defined by one of the axles where, in a latched state, the latch operatively couples the first housing to the hinge assembly. In such an example, the apparatus can include a hinge assembly housing that covers at least a portion of the set of gears. As an example, such an apparatus can include a battery where, for example, the hinge assembly housing covers at least a portion of the battery where the battery can be shaped such that it includes a longitudinal axis that is substantially parallel to the axis defined by one of the axles.
As an example, a hinge assembly may define an intermediate space between two housings. For example, consider an edge of a first housing that includes a receptacle for receipt of a first latch of a hinge assembly and an edge of a second housing that includes a receptacle for receipt of a second latch of the hinge assembly. In such an example, the edges may be spaced apart by a distance determined at least in part by two axles of the hinge assembly. As an example, an intermediate space or intermediate spaces may provide for inclusion of one or more components. As an example, a component may be a passive component and/or an active component. For example, a passive component may direct flow of air to and/or from an air mover such as a fan; or, for example, a passive component may be a heat sink, optionally with fins or other structural features that can help to dissipate heat energy generated by circuitry operating in a first and/or a second housing that can pivot about a hinge assembly. As an example, an active component may include circuitry that can be operatively coupled to circuitry in a first and/or a second housing that can pivot about a hinge assembly. As an example, an active component may be a battery, memory, a processor, a speaker, a port, an antenna, etc. In such an example, a first and/or a second housing can include one or more interfaces. As an example, a housing can include symmetric interfaces that allow for mounting the housing to a latch of a hinge assembly in one of two orientations.
As an example, a battery can be a component that includes a longitudinal axis that is substantially parallel to an axis defined by one of a plurality of axles of a hinge assembly. In such an example, the battery can include a length along the longitudinal axis that is greater than a cross-sectional dimension of the battery in a plane where the longitudinal axis is substantially normal to the plane.
As an example, an apparatus can include a first housing that includes a display or displays (e.g., multiple displays on a single side and/or displays on opposing sides). As an example, a latched state may be a first latched state where a first housing includes a display that is a front side display that is pivotable about an axle of a hinge assembly to face a front side of a second housing. As an example, a latched state may be a second latched state where first housing includes a display that is a front side display that is pivotable about an axle of a hinge assembly to face a back side of a second housing.
As an example, a hinge assembly can include a first set of gears and a second set of gears and, for example, optionally one or more additional set of gears.
As an example, a hinge assembly can include a first set of axles and a second set of axles and, for example, optionally one or more additional set of axles.
As an example, a hinge assembly can include a set of axles that is a first set of axles and a set of gears that is a first set of gears and, for example, a second set of axles and a second set of gears.
As an example, a latch can include a rotating hub operatively coupled to translating prongs, for example, where a first housing includes a socket (e.g., a receptacle) that receives portions of the translating prongs.
As an example, a hinge assembly can include a first latch that, in a latched state, operatively couples a first housing to the hinge assembly, and a second latch that, in a latched state, operatively couples a second housing to the hinge assembly. In such an example, the hinge assembly can be separable from the first and second housings via the first latch being in an unlatched state and the second latch being in an unlatched state.
As an example, a first housing can include a display and a second housing can include a keyboard.
As an example, a hinge assembly can include gears that include teeth. As an example, a hinge assembly can include gears that include helical gears, for example, where the helical gears can include a clockwise helix gear and a counter-clockwise helix gear. As an example, a hinge assembly can include gears that include lobes.
As an example, an apparatus can include a tablet housing and a base housing where a hinge assembly allows for snap/detach/reattach in one or more angular orientations. As an example, when attached, synchronization may exist between circuitry of the tablet housing and circuitry of the base housing. As an example, a positive snap-action may be utilized to attach and/or detach with positive retention force. As an example, a hinge assembly can include latch portions that include relatively small prongs (e.g., protrusions, ears, etc.), which may not detract substantially from appearance (e.g., aesthetics). As some examples, consider that two housing, a housing and a hinge assembly, more than two housings, a combination of housings and hinge assemblies, etc. may be operatively coupled. In such examples, coupling may be electronically via wire and/or wirelessly. In such example, coupling may be for purposes of air flow.
As an example, at least a portion of hinge assembly may be covered, for example, by a hinge assembly housing, a cover, etc. As an example, a hinge assembly can include one or more components that may be covered by a cover that also covers at least a portion of one or more gears. As an example, a housing may be a stand, include one or more batteries, include one or more storage devices, include a charger, include a heat spreader plate, etc. As an example, a hinge assembly may provide for inclusion of one or more components that can provide one or more functions as to operation of circuitry of a housing or housings.
As an example, an apparatus may be a two-in-one (e.g., ultra portable, convertible) apparatus. As an example, an apparatus can include a hinge assembly that allows for a multi-mode laptop, for example, to provide for a clamshell (e.g., with approximately 360 degree rotation) and, for example, stand, tent and tablet modes. As an example, an apparatus may offer a laptop mode and a detachable tablet (e.g., and/or keyboard) mode. As an example, an apparatus can include a hinge assembly that can utilize a plurality of housings in various modes, which may correspond, at least in part, to orientations of one or more housings with respect to one or more hinge assemblies.
The term “circuit” or “circuitry” is used in the summary, description, and/or claims. As is well known in the art, the term “circuitry” includes all levels of available integration, e.g., from discrete logic circuits to the highest level of circuit integration such as VLSI, and includes programmable logic components programmed to perform the functions of an embodiment as well as general-purpose or special-purpose processors programmed with instructions to perform those functions. Such circuitry may optionally rely on one or more computer-readable media that includes computer-executable instructions. As described herein, a computer-readable medium may be a storage device (e.g., a memory chip, a memory card, a storage disk, etc.) and referred to as a computer-readable storage medium.
While various examples of circuits or circuitry have been discussed,
As shown in
In the example of
The core and memory control group 1920 include one or more processors 1922 (e.g., single core or multi-core) and a memory controller hub 1926 that exchange information via a front side bus (FSB) 1924. As described herein, various components of the core and memory control group 1920 may be integrated onto a single processor die, for example, to make a chip that supplants the conventional “northbridge” style architecture.
The memory controller hub 1926 interfaces with memory 1940. For example, the memory controller hub 1926 may provide support for DDR SDRAM memory (e.g., DDR, DDR2, DDR3, etc.). In general, the memory 1940 is a type of random-access memory (RAM). It is often referred to as “system memory”.
The memory controller hub 1926 further includes a low-voltage differential signaling interface (LVDS) 1932. The LVDS 1932 may be a so-called LVDS Display Interface (LDI) for support of a display device 1992 (e.g., a CRT, a flat panel, a projector, etc.). A block 1938 includes some examples of technologies that may be supported via the LVDS interface 1932 (e.g., serial digital video, HDMI/DVI, display port). The memory controller hub 1926 also includes one or more PCI-express interfaces (PCI-E) 1934, for example, for support of discrete graphics 1936. Discrete graphics using a PCI-E interface has become an alternative approach to an accelerated graphics port (AGP). For example, the memory controller hub 1926 may include a 16-lane (x16) PCI-E port for an external PCI-E-based graphics card. A system may include AGP or PCI-E for support of graphics. As described herein, a display may be a sensor display (e.g., configured for receipt of input using a stylus, a finger, etc.). As described herein, a sensor display may rely on resistive sensing, optical sensing, or other type of sensing.
The I/O hub controller 1950 includes a variety of interfaces. The example of
The interfaces of the I/O hub controller 1950 provide for communication with various devices, networks, etc. For example, the SATA interface 1951 provides for reading, writing or reading and writing information on one or more drives 1980 such as HDDs, SDDs or a combination thereof. The I/O hub controller 1950 may also include an advanced host controller interface (AHCI) to support one or more drives 1980. The PCI-E interface 1952 allows for wireless connections 1982 to devices, networks, etc. The USB interface 1953 provides for input devices 1984 such as keyboards (KB), one or more optical sensors, mice and various other devices (e.g., microphones, cameras, phones, storage, media players, etc.). On or more other types of sensors may optionally rely on the USB interface 1953 or another interface (e.g., I2C, etc.). As to microphones, the system 1900 of
In the example of
The system 1900, upon power on, may be configured to execute boot code 1990 for the BIOS 1968, as stored within the SPI Flash 1966, and thereafter processes data under the control of one or more operating systems and application software (e.g., stored in system memory 1940). An operating system may be stored in any of a variety of locations and accessed, for example, according to instructions of the BIOS 1968. Again, as described herein, a satellite, a base, a server or other machine may include fewer or more features than shown in the system 1900 of
Although examples of methods, devices, systems, etc., have been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as examples of forms of implementing the claimed methods, devices, systems, etc.