1. Field of the Invention
The present invention relates to a hinge assembly, especially to a hinge assembly for an electronic device, which allows a part of the electronic device to slide and pivot.
2. Description of the Prior Arts
The horizontal type monitors having at least one display panel are widely used in service and sales industries, especially finance, banking, travel agents and even interior design and architecture. Some industries need more than one panel to simultaneously display the information. For example, stockbrokers show the entire stock list and more detailed information of specific, selected stocks. However, the additional panel increases the volume of the horizontal type monitor. Especially when the user only uses one panel, the unused panel still occupies a fixed room. Moreover, the horizontal type monitor having dual panels with the large volume is uneasy to be stowed and moved.
To overcome the shortcomings, the present invention provides a hinge assembly to mitigate or obviate the aforementioned problems.
The main objective of the present invention is to provide a hinge assembly to reduce the volume of an electronic device when the electronic device is not used. The hinge assembly has two tracks, a main bracket, at least one connecting bracket, at least one sliding hinge and at least one tilting hinge. The main bracket is mounted slidably between the tracks. The connecting bracket is mounted securely on the main bracket. The sliding hinge corresponds to and selectively holds the connecting bracket. The tilting hinge is connecting to the main bracket. With the related movement between the connecting bracket and the sliding hinge, the connecting bracket is selectively held or moved. Therefore, a moving bracket of a frame for an electronic device being attached to the tilting hinge is selectively pushed and held in a body of the frame or received in the body.
Other objectives, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
With reference to
With reference to
With reference to
With reference to
With further reference to
The base (41) has a distal end and a guiding protrusion (411). The guiding protrusion (411) is formed on the distal end of the base (41).
The stationary carrier (42) is mounted securely on the base (41) and has a distal end, a top surface, two sides, two guiding protrusions (421) and two inner grooves (422). The guiding protrusions (421) are formed on the top surface of the stationary carrier (42) near the distal end of the stationary carrier (42). The inner grooves (422) are formed through the stationary carrier (42), are respectively near the sides of the stationary carrier (42) and are opposite to each other. Each inner groove (422) has a straight part (423) and an inclined part (424). The straight part (423) is away from the distal end of the stationary carrier (42) and the inclined part (424) is near the distal end of the stationary carrier (42). The straight parts (423) of the inner grooves (422) are nearer than the inclined parts (424) of the inner grooves (422).
With further reference to
The rotating element (44) is mounted rotatably on the sliding carrier (43) by a pivot pin (441) being mounted through the rotating element (44) and the pivot hole (432) of the sliding carrier (43). The rotating element (44) has two indenting sides, two straight sides (442) and two concaves (443). The straight sides (442) are opposite to each other and are adjacent to the indenting sides. The concaves (443) are formed respectively in the indenting sides of the rotating element (44). Each concave (443) is V-shaped and comprises a lower point (446), two inclined edges (444) and two sharps (445). The inclined edges (444) are connected to each other at the lower point (446). The sharps (445) are respectively formed between the inclined edges (444) and the straight sides (442).
The resilient element (45) is mounted between the sliding carrier (43) and the stationary carrier (42) and may be a spring.
The cover (46) is attached securely to the base (41) and the stationary carrier (42), is mounted on the sliding carrier (43) and has a distal end, two sides, two outer grooves (461), an actuating hole (465), an inner wall and two protruding parts (466). The outer grooves (461) are formed through the cover (46) and respectively align with the inner grooves (422) of the stationary carrier (42). Each outer groove (461) has a straight part (462) and an inclined part (463). The straight part (462) of the outer groove (461) aligns with the straight part (423) of a corresponding inner groove (422). The inclined part (463) of the outer groove (461) aligns with the inclined part (424) of a corresponding inner groove (422). The actuating hole (465) is formed through the cover (46) and is mounted around the rotating element (44). The inner wall is formed around the actuating hole (465) and has two ends and two sides. The protruding parts (466) are respectively formed inwardly from the ends and the sides of the inner wall and selectively abuts the rotating element (44). Each protruding part (466) has a straight edge, a sharp (468) and an inclined edge (467). The straight edge of the protruding part (466) is parallel to the sides of the inner wall. A perpendicular distance between the straight edges of the protruding parts (466) is larger than a distance between the straight sides (442) of the rotating element (44) and is smaller than a perpendicular distance between the sharps (445) of the concaves (443) of the rotating element (44). The inclined edge (467) of the protruding part (466) is connected to the straight edge of the protruding part (466) at the sharp (468).
The sliding pins (464) are mounted between the cover (46) and the sliding carrier (43), are respectively mounted slidably through the inner and outer grooves (422, 461) and are respectively mounted slidably through the enlarged holes (431) of the sliding carrier (43).
With reference to
With reference to
With reference to
The body (60) has a distal end, a recess (61) and an opening (62). The recess (61) is formed inside the body (60) and has two sides. The opening (62) is formed through the distal end of the body (60) and communicates with the recess (61).
With further reference to
With further reference to
With reference to
With reference to
With reference to
The hinge assembly as described and the frame as described have numerous advantages. With the relative connection between the connecting bracket (30) and the sliding hinge (40), the connecting bracket (30) is selectively held in the sliding hinge (40) and slid out of the sliding hinge (40). Therefore, the moving bracket (70) is selectively fully received in and completely pulled out of the recess (61) of the body (60). Thus, when the additional display panel or the input device on the moving bracket (70) is not used, the moving bracket (70) is fully received in the recess (61) of the body (60) to hide and protect the additional display panel or the input device. Furthermore, when the moving bracket (70) is fully received in the recess (61) of the body (60), the main display panel on the body (60) overlaps the additional display panel or the input device on the moving bracket (70) to reduce the volume so the electronic device is easy to be stowed and moved.
Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and features of the invention, the disclosure is illustrative only. Changes may be made in the details, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
5040857 | Mandel et al. | Aug 1991 | A |
5535482 | Grabber | Jul 1996 | A |
7010833 | Duarte et al. | Mar 2006 | B2 |
7418766 | Nelson et al. | Sep 2008 | B2 |
7725988 | Kim et al. | Jun 2010 | B2 |
7823253 | Kao et al. | Nov 2010 | B2 |
20100000052 | Chung | Jan 2010 | A1 |
20100084951 | Bestle | Apr 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20100005625 A1 | Jan 2010 | US |