The emergence and popularity of computing has made computing devices a staple in today's marketplace. An example of such devices include notebook computers, or laptops, which generally employ a clamshell-type design consisting of two members connected together at a common end via one or more hinges, for example. In most cases, a first or display member is utilized to provide a viewable display to a user while a second or base member includes an area for user input (e.g., touchpad and keyboard). In addition, the viewable display may be a touchscreen (e.g., touchscreen laptop), allowing the user to interact directly with what is displayed by touching the screen with simple or multi-touch gestures. Other examples of popular computing devices include tablet computers and all-in-one (AIO) computers, which integrate internal components of the computer into the same case as the display. As an example, such devices may include a support member, or a kickstand, for supporting the devices at multiple viewing angles when they are operated in one of their various modes.
When a user operates a computing device in its various modes, it is desirable for the computing device to feel sturdy and rigid. For example, when the user operates a laptop by setting the display member at an appropriate viewing angle, it is not desirable for the display member to fall forwards or backwards as the user operates the laptop. Similarly, with respect to tablet computer or an AIO computer supported by a kickstand, it is desirable for the kickstand to be able to support such computing devices at multiple viewing angles when the computing devices are operated in one of their various modes.
Examples disclosed herein provide a hinge assembly for a computing device that allows the computing device to feel sturdy and rigid during operation. As will be further described, the hinge assembly includes a number of gears along parallel axes, that work together to provide a level of rigidity that is desirable by users. By utilizing the gears along the parallel axes, the width of the hinge assembly may be reduced, allowing the hinge assembly to be fitted in a narrow area of the computing device.
With reference to the figures,
As illustrated, the hinge assembly 110 includes a first gear 116 rotatably connected to the first bracket 112 along the axis of rotation 106. Moreover, the hinge assembly 110 includes a set of gears 118a-c that is synchronized to rotate with the first gear 116 when the first bracket 112 is to be moved along the axis of rotation 106, such as when the display member 102 is opened or closed. As will be further described, each gear from the set of gears 118a-c may be rotatably connected to different axes 120a-c, respectively, such that the set of gears 118a-c provides friction against the first gear 116 in order to provide a level of resistance to a torque provided when the first bracket 112 is to be moved along the axis of rotation 106. As illustrated, the axes 120a-c are parallel to the axis of rotation 106. Although three gears are illustrated in the set of gears 118a-c, any number of gears may be utilized. For example, the quantity of gears in the set of gears determines the magnitude of friction provided by the set of gears against the first gear 116. As a result, increasing the quantity of gears in the set of gears may increase the magnitude of the friction provided by the set of gears against the first gear 116.
As an example for providing friction against the first gear 116, for each gear from the set of gears 118a-c, a pivot point of the gear around a respective axis from the different axes 120a-c parallel to the axis of rotation 106 may have a frictional value to provide a level of resistance of the rotation of the gear around the respective axis. For example, referring to gear 118a from the set of gears, a pivot point of the gear 118a around axis 120a has a frictional value to provide a level of resistance of the rotation of the gear 118a around the axis 120a. Collectively, the frictional value from set of gears 118a-c may provide friction against the first gear 116 to provide a level of resistance to a torque provided when the first bracket 112 is to be moved along the axis of rotation 106 (e.g., when the display member 102 is opened or closed). As mentioned above, increasing the number of gears in the set of gears collectively increases the magnitude of the friction provided by the set of, gears against the first gear 118.
Referring to
As an example, the kickstand 304 may be a rectangular frame that flips out or pivots from a portion of a perimeter of the computing device 300 and makes contact with a surface in various positions for propping up the computing device 300 at the various vie in angles. As a result, the computing device 300 may be kept upright via the kickstand 304 without leaning the computing device 300 against another object or with the aid of a user. As illustrated, the kickstand 304 is rotatably connected to the computing device 300 around an axis of rotation 306, and joined with the computing device 300 via the use of hinge assemblies 310. As an example, the width or X dimension of the hinge assemblies 310 may be small enough to fit within a narrow enclosure within the computing device 300, for example, outside the surface area of the display surface 302.
As illustrated, the hinge assembly 310 includes a first gear 316 rotatably connected to the first bracket 312 along the axis of rotation 306. Moreover, the hinge assembly 310 includes a set of gears 318a-c that is synchronized to rotate with the first gear 316 when the second bracket 314 is to be moved along the axis of rotation 306, such as when the kickstand 304 is adjusted. As will be further described, each gear from the set of gears 318a-c may be rotatably connected to different axes 320a-c, respectively, such that the set of gears 318a-c provides friction against the first gear 316 in order to provide a level of resistance to a torque provided when the second bracket 314 is to be moved along the axis of rotation 306. As illustrated, the axes 320a-c are parallel to the axis of rotation 306. Although three gears are illustrated in the set of gears 318a-c, any number of gears may be utilized. For example, the quantity of gears in the set of gears determines the magnitude of friction provided by the set of gears against the first gear 316. As a result, increasing the quantity of gears in the set of gears may increase the magnitude of the friction provided by the set of gears against the first gear 316.
As an example for providing friction against the first gear 316, for each gear from the set of gears 318a-c, a pivot point of the gear around a respective axis from the different axes 320a-c parallel to the axis of rotation 306 may have a frictional value to provide a level of resistance of the rotation of the gear around the respective axis. For example, referring to gear 318a from the set of gears, a pivot point of the gear 318a around axis 320a has a frictional value to provide a level of resistance of the rotation of the gear 318a around the axis 320a. Collectively, the frictional value from set of gears 318a-c may provide friction against the first gear 316 to provide a level of resistance to a torque provided when the second bracket 314 is to be moved along the axis of rotation 306 (e.g., when the kickstand 304 is adjusted). As mentioned above, increasing the number of gears in the set of gears collectively increases the magnitude of the friction provided by the set of gears against the first gear 316.
Referring to
As illustrated, the hinge assembly 410 includes a first gear 416 rotatably connected to the first bracket 412 along the axis of rotation 306. Moreover, the hinge assembly 410 includes a set of gears 418a-b that is synchronized to route with the first gear 416 when the second bracket 414 is to be moved along the axis of rotation 306, such as when the kickstand 304 is adjusted. As illustrated, the first gear 416 may be disposed between gear 418a and gear 418b. As will be further described, each gear from the set of gears 418a-b may be rotatably connected to different axes 420a-b, respectively, such that the set of gears 418a-b provides friction against the first gear 416 in order to provide a level of resistance to a torque provided when the second bracket 414 is to be moved along the axis of rotation 306. As illustrated the axes 420a-b are parallel to the axis of rotation 306.
As an example for providing friction against the first gear 416, for each gear from the set of gears 418a-b, a pivot point of the gear around a respective axis from the different axes 420a-b parallel to the axis of rotation 306 may have a frictional value to provide a level of resistance of the rotation of the gear around the respective axis. For example, referring to gear 418a from the set of gears, a pivot point of the gear 418a around axis 420a has a frictional value to provide a level of resistance of the rotation of the gear 418a around the axis 420a. Collectively, the frictional value from set of gears 418a-b may provide friction against the first gear 416 to provide a level of resistance to a torque provided when the second bracket 414 is to be moved along the axis of rotation 306 (e.g., when the kickstand 304 is adjusted).
Referring to
It should be understood that examples described herein below may include various components and features. It should also be understood that, in the following description, numerous specific details are set forth to provide a thorough understanding of the examples. However, it should be understood that the examples may be practiced without limitations to these specific details. In some instances, well known methods and structures may not be described in detail to avoid unnecessarily obscuring the description of the examples. Also, the examples may be used in combination with each other.
Reference in the specification to “an example” or similar language means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example, but not necessarily in other examples. The various instances of the phrase “in one example” or similar phrases in various places in the specification are not necessarily all referring to the same example.
It should be understood that the previous description of the disclosed examples is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to these examples will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other examples without departing from the spirit or scope of the disclosure. Thus, the present disclosure is not intended to be limited to the examples shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/036586 | 6/19/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/204776 | 12/22/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5721669 | Becker | Feb 1998 | A |
6952861 | Ynosencio | Oct 2005 | B2 |
7311366 | Kim et al. | Dec 2007 | B2 |
7640044 | Won et al. | Dec 2009 | B2 |
7898801 | Wang | Mar 2011 | B2 |
8186781 | Coleman | May 2012 | B2 |
8231099 | Chen | Jul 2012 | B2 |
8250711 | Chen | Aug 2012 | B1 |
8411427 | Jeong | Apr 2013 | B2 |
8769772 | Griffin | Jul 2014 | B2 |
8833190 | Hsu | Sep 2014 | B2 |
8922995 | Su | Dec 2014 | B2 |
8938855 | Ahn et al. | Jan 2015 | B2 |
8971031 | Mok et al. | Mar 2015 | B2 |
9027205 | Ahn et al. | May 2015 | B2 |
9036347 | Kuo | May 2015 | B2 |
9329639 | Lee | May 2016 | B2 |
9436229 | Yoo | Sep 2016 | B2 |
9462719 | Wu | Oct 2016 | B2 |
9528308 | Cho | Dec 2016 | B2 |
9671830 | Chen | Jun 2017 | B2 |
9904315 | Zhang | Feb 2018 | B2 |
20020038493 | Ko | Apr 2002 | A1 |
20050122671 | Homer | Jun 2005 | A1 |
20090070961 | Chung et al. | Mar 2009 | A1 |
20100232100 | Fukuma | Sep 2010 | A1 |
20110000136 | Brun | Jan 2011 | A1 |
20120096678 | Zhang | Apr 2012 | A1 |
20120218691 | Minemura | Aug 2012 | A1 |
20120218699 | Leung | Aug 2012 | A1 |
20120314980 | Chen | Dec 2012 | A1 |
20130139355 | Lee et al. | Jun 2013 | A1 |
20130187525 | Chuang | Jul 2013 | A1 |
20140217875 | Park | Aug 2014 | A1 |
20140245569 | Cho | Sep 2014 | A1 |
20140347814 | Zaloom | Nov 2014 | A1 |
20140360296 | Hsu | Dec 2014 | A1 |
20150070858 | Wu | Mar 2015 | A1 |
20150146362 | Meyers | May 2015 | A1 |
20150176317 | Lee | Jun 2015 | A1 |
20150267450 | Chiang | Sep 2015 | A1 |
20150362956 | Tazbaz | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
201771947 | Mar 2011 | CN |
103453007 | Dec 2013 | CN |
104019120 | Sep 2014 | CN |
M391012 | Oct 2010 | TW |
M392529 | Nov 2010 | TW |
M489458 | Nov 2014 | TW |
Entry |
---|
Marco Chiappetta, “HP Spectre X360 Ultrabook Review: Sleek, Sexy, Convertible,” Mar. 1, 2015, pp. 1-7, Hardware.com. |
Number | Date | Country | |
---|---|---|---|
20180136699 A1 | May 2018 | US |