Hinges are used to allow to members attached thereto to rotate about a common axis. Hinges are often used to allow a first member to rotate about the axis while the second member is secured.
The following detailed description references the drawings, wherein:
In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Also, the term “couple” or “couples” is intended to include suitable indirect and/or direct connections. Thus, if a first component is described as being coupled to a second component, that coupling may, for example, be: (1) through a direct electrical or mechanical connection, (2) through an indirect electrical or mechanical connection via other devices and connections, (3) through an optical electrical connection, (4) through a wireless electrical connection, and/or (5) another suitable coupling. The term “approximately” as used herein to modify a value is intended to be determined based on the understanding of one of ordinary skill in the art, and can, for example, mean plus or minus 10% of that value.
The following discussion is directed to various examples of the disclosure. Although one or more of these examples may be preferred, the examples disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, the following description has broad application, and the discussion of any example is meant only to be descriptive of that example, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that example.
As used herein, an “electronic device” may be a desktop computer, laptop (or notebook) computer, workstation, tablet computer, all-in-once computer, mobile phone, smart device, television, phablet, or other processing device or equipment. A “torque” refers to a force to rotate an object about an axis. By way of illustration, a torque is applied by the force of gravity to an object which may rotate about an axis perpendicular or partially perpendicular with the force of gravity on the earth. Such a torque may result in the object rotating towards the earth about its rotational axis.
Hinges are used in many devices to hold an upper member at a relative angle with respect to a lower member. A spring may be used in a hinge to store energy and provide counter-torque to the torque applied by the force of gravity to hold the upper member at the angle. In such a hinge, the counter-torque provided by the spring may apply in all directions of rotation. However, counter-torque from a spring may require a greater force be applied when rotating the upper member in a desired direction.
To address these issues, in the examples described herein, a hinge assembly to provide greater counter-torque in one direction is provided using a spring to apply a compressive force on a compressible sleeve to resist rotational motion in a first direction. In a second rotational direction opposite the first rotational direction, the spring is uncompressed and the resistance to rotational motion in the second direction is reduced. In this manner, examples described herein may significantly reduce the force required to rotate an object about a hinge in a first direction while maintaining the force needed to rotate the object about the hinge in the opposite rotational direction.
Referring now to the drawings,
Second securing member 115 is coupled to first securing member 110 via shaft 130. First securing member 110 includes a first surface 112, a second surface 114, and a third surface 116. First surface 112 includes through holes to enable coupling of the first securing member 110 to a first surface of a device. Second surface 114 and third surface 116 are disposed parallel to each other and perpendicular to first surface 112 and on opposite edges of first surface 112. Shaft 130 may be threaded through a first hole in second surface 114 and a first hole in third surface 116. In an example, shaft 130 includes a first through-hole and a second through-hole to couple shaft 130 to a second surface of the device. However, the examples are not limited thereto and first securing member 110 and second securing member 115 may be coupled to a first surface of a device and a second surface of a device, respectively, via any coupling mechanism (e.g., welding, bonding, etc.).
In some implementations, first washer 120a is to engage shaft 130 such that first washer 120a abuts an outer side of second surface 114. First washer 120a is coupled to second surface 114 via a flange projecting from first washer 120a to engage a second hole in second surface 114. Second washer 120b engages shaft 130 such that second washer 120b abuts an outer side of third surface 116. Second washer 120b is coupled to third surface 116 and is coupled thereto via a flange projecting from second washer 120b to engage a second hole in third surface 116. Locking washer 122 engages shaft 130 to abut second washer 120b. Locking washer 122 is to secure second securing member 115 to first securing member 110. In an example, locking washer 122 may be replaced with any other mechanism to secure second securing member 115 to first securing member 110, such as a locking nut, etc.
Referring now to
Referring now to
In the examples, resistance member 140 is securely engaged to shaft 130 to provide a resistance to rotational movement of the first securing member 110 about rotational axis 133 in first direction 135. As first securing member 110 is rotated about rotational axis 133, first spring 154 coupled to second surface 114 and second spring 156 coupled to third surface 116 are compressed to apply a compressive force on compressible sleeve 150. In such an example, when first securing member 110 is rotated in a direction opposite to first direction 135, first spring 154 and second spring 156 are uncompressed to reduce the resistance applied by first spring 154 and second, spring 156 on compressible sleeve 150. It will be understood that compressible sleeve 150 may provide resistance to the rotation of shaft 130 and that first spring 154 and second spring 156 may increase the resistance to rotation of shaft 130 when first securing member 110 is rotated along first direction 135. In some implementations, first securing member 110 may be secured to an upright member and second securing member 115 may be secured to a base member such that a compressive force applied to shaft 130 by compressible sleeve 150, first spring 154, and second spring 156 may maintain the upright member in an approximately vertical position relative to a supporting surface on which the base member may be disposed. The upright member and base member may support another device or may be integrated into another device to support the device, for example, the upright member and base member may support an electronic device, such as, a display, a tablet computer, a mobile phone, a smartphone, an all-in-one computer, a notebook computer, a television, etc. In another example, the upper member may support any other object, such as, a painting, artwork, etc.
As shown in
In an example, spring 755 includes a first coil portion 751, a second coil portion 752, and a third coil portion 753. First coil portion 751 and third coil portion 753 may be dimensioned to mate with the outer surface of compressible sleeve 750. Second coil portion 752 may be dimensioned to not engage compressible sleeve 750 in an uncompressed state. In an example, when a rotational force is applied to spring 755, the force may reduce the diameter of second coil portion 752 to engage and compress compressible sleeve 750. It will be understood that spring 755 may be used to apply compressive force to compressible sleeve 750 to resist rotational motion in a first direction and reduce the compressive force on compressible sleeve 750 in second rotational direction opposite the first direction.
While certain implementations have been shown and described above, various changes in form and details may be made. For example, some features that have been described in relation to one implementation and/or process can be related to other implementations. In other words, processes, features, components, and/or properties described in relation to one implementation can be useful in other implementations. Furthermore, it should be understood that the systems, apparatuses, and methods described herein can include various combinations and/or sub-combinations of the components and/or features of the different implementations described. Thus, features described with reference to one or more implementations can be combined with other implementations described herein.
The above discussion is meant to be illustrative of the principles and various examples of the present disclosure. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/058092 | 9/29/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/053249 | 4/7/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5037231 | Kitamura | Aug 1991 | A |
5464083 | Arnold | Nov 1995 | A |
5467504 | Yang | Nov 1995 | A |
5566048 | Esterberg | Oct 1996 | A |
5749124 | Lu | May 1998 | A |
5771539 | Wahlstedt | Jun 1998 | A |
6601269 | Oshima et al. | Aug 2003 | B2 |
6779234 | Lu | Aug 2004 | B1 |
7513011 | Lu | Apr 2009 | B2 |
20020174519 | Huang | Nov 2002 | A1 |
20030223188 | Ha et al. | Dec 2003 | A1 |
20040205933 | Hsieh | Oct 2004 | A1 |
20050102796 | Lee | May 2005 | A1 |
20050108854 | Lee | May 2005 | A1 |
20050172453 | Duffy | Aug 2005 | A1 |
20060032020 | Duan | Feb 2006 | A1 |
20060085947 | Ge | Apr 2006 | A1 |
20070039135 | Duan | Feb 2007 | A1 |
20070136994 | Hu | Jun 2007 | A1 |
20080034543 | Hsu | Feb 2008 | A1 |
20090031531 | Chang | Feb 2009 | A1 |
20090183440 | Cheng | Jul 2009 | A1 |
20100086518 | Wang et al. | Apr 2010 | A1 |
20100096518 | Wang | Apr 2010 | A1 |
20100281653 | Lin | Nov 2010 | A1 |
20110146028 | Lee | Jun 2011 | A1 |
20120102675 | Lee | May 2012 | A1 |
20120192380 | Huang | Aug 2012 | A1 |
20150092335 | Patrick | Apr 2015 | A1 |
20150114782 | Saito | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2876421 | Mar 2007 | CN |
10-2002-0083970 | Nov 2002 | KR |
201019832 | Nov 1997 | TW |
202807 | Nov 2001 | TW |
Entry |
---|
HG-TQA One Way Torque Hinge, 2014 Sugatsune USA, pp. 1-4, Available at: <sugatsune.com/products/. |
Number | Date | Country | |
---|---|---|---|
20170298982 A1 | Oct 2017 | US |