Hinge for an over-head storage compartment having non-centered pivoting motion

Abstract
A hinge used to mount a door to an overhead storage cabinet is disclosed. The hinge provides a combination linear and articulated motion to provide the clearance between the door of the cabinet and the upper, outer corner of the cabinet. Further, the hinge provides a user assist on the opening of the cabinet door and a self-dampening motion on the closing of the cabinet door without the use of pneumatic cylinders.
Description




FIELD OF THE INVENTION




This invention relates to a hinge for mounting a door to the frame of a cabinet of the type used as an over-head storage container. In particular, this is a concealed hinge of the type that provides an articulated motion and has self-dampening characteristics during the opening and closing of the cabinet doors.




BACKGROUND OF THE INVENTION




This invention relates to a hinge of the type that would commonly be found in an overhead storage cabinet for a modular office system or cubicle. These types of storage cabinets hang on the wall panel at approximately eye height and are normally opened by swinging the door upward and backward, such that the door is supported on top of the unit. Typically, the doors on these types of cabinets are attached to the frame of the cabinet via a special kind of hinge using a pneumatic cylinder or a rack and pinion type mechanism.




With respect to this invention, the type of cabinet being referred to would be an overhead storage bin having door which is vertical when in the closed position. To open the door the user pulls the door horizontally away from the frame of the cabinet and upwardly. The desired effect is to have the door suspended at an angle between horizontal and vertical above the cabinet when in the open position. It is therefore an objective of this invention to provide a hinge that allows a combination linear/articulated motion as the door is being opened to allow clearance for the door around the upper, outer corner of the cabinet frame.




It is also desirable that the hinge be self-dampening to provide a quality feedback to the user when the door is opened or closed and to hold the door in an extended upright position when opened. Many prior art hinges provide a dampened type of motion during opening and closing using a pneumatic cylinder. In these cases the pneumatic cylinder also serves to hold the door in the upright position when opened. However, one drawback with pneumatic cylinders is that they are bulky and expensive. It is therefore on objective of this invention to provide a hinge which first, provides the user with a mechanical assist in the opening of the door, second, is able to hold the door in the upright, opened position, and third, provides a dampened closing motion to prevent slamming of the door as the door is closed. Preferably, these objectives should be met without the use of a pneumatic cylinder.




SUMMARY OF THE INVENTION




The hinge disclosed herein meets all of the objectives noted above and addresses the deficiencies in the prior art. First, the hinge provides a non-centered pivoting motion. That is, the door of the cabinet does not rotate about a single axis throughout the entire range of travel from the closed to open positions or from the open to closed positions. Instead, the door first moves radially outward from the cabinet frame, then articulates in an upward arc around the upper, outer corner of the cabinet frame, coming to rest in the opened position above the cabinet frame and at an angle between horizontal and vertical, thus providing clearance for the door around the upper, outer corner. Additionally, the hinge provides the required dampened motion without the use of pneumatic cylinders. As the user pulls the door outwardly and upwardly away from the cabinet frame, a certain point is reached after which the hinge will assist the user and pull the door the remaining distance to a full upright and opened position. The dampening force is provided by one or more springs connected to several structural members of the hinge. The springs also serve to hold the door in the upright position while opened. Lastly, the motion of the hinge is dampened, using the same springs, upon closing, to prevent slamming of the door. Thus, the desirable qualities of a hinge using a pneumatic cylinder are realized through the use of less expensive, more space-efficient springs.











DETAILED DESCRIPTION OF THE DRAWINGS





FIG. 1

is an exploded view of the hinge showing all the parts thereof.





FIG. 2



a


is a side elevational view of the fully assembled hinge in the closed position.





FIG. 2



b


is a side elevational view of the fully assembled hinge in the completely opened position.





FIGS. 3



a


-


3




d


illustrate the hinge in various stages between the closed position and the opened position demonstrating the travel of the portion of the hinge connected to the cabinet door.





FIG. 4

is a side elevational view of the hinge showing the path of travel of the hinge.











DETAILED DESCRIPTION OF THE INVENTION




The construction of the novel hinge disclosed herein is best shown in the exploded view of FIG.


1


. The hinge consists of four structural members


10


,


20


,


30


and


40


and spring assembly


50


as shown in FIG.


1


. Stationary member


10


connects to the interior, side wall of the cabinet via screws or other fasteners attached through holes


18


. First pivoting member


20


is connected at one end to stationary member


10


through a mating connection of post


14


and bore


22


. Thus, first pivoting member


20


can freely rotate about post


14


, as shown by arrow


106


in FIG.


4


. Second pivoting member


40


is attached to stationary member


10


via rivet


44


which extends through bore


42


, defined in second pivoting member


40


, and into a bore defined in standoff


16


located on stationary member


10


. Thus, second pivoting member


40


is able to freely rotate about standoff


16


, as shown by arrow


108


in FIG.


4


. Moving member


30


is connected to the interior portion of the cabinet door via standoffs


32


. In addition, moving member


30


has connections to both first and second pivoting members


20


and


40


respectively. Moving member


30


connects to first pivoting member


20


via rivet


24


through hole


26


defined in first pivoting member


20


and hole


34


, defined in moving member


30


, and pivots about point


113


following arrow


112


in FIG.


4


. First pivoting member


20


is connected to side


30




a


of moving member


30


, which is the side closest to stationary member


10


. Second pivoting member


40


is connected to the opposite side


30




b


of moving member


30


via rivet


56


, which extends through hole


46


in second pivoting member


40


and hole


36


in moving member


30


, thereby allowing moving member


30


to pivot about point


115


following arrow


114


in FIG.


4


.




Preferably members


10


,


20


,


30


and


40


of the hinge are made of twelve gauge steel. However, in alternative embodiments, the hinge may be constructed of light weight aluminum or synthetic materials. The selection of the material and the thickness thereof is dictated by the desired carrying capacity of the hinge. Additionally, the hinge shown in all of the drawings is a hinge for the left-hand side of the cabinet, as should be obvious to anyone of skill in the art. The hinge for the right-hand side of the cabinet will be the mirror image of the hinge shown in the drawings.




Spring assembly


50


comprises one or more coil-type springs


52


attached on either end to attachment members


54




a


and


54




b


. Note that in the event only one spring is used, attachment members


54




a


and


54




b


would not be necessary. In the preferred embodiment, four springs


52


are used, each having a spring constant of approximately twelve pounds per inch. However, the number of springs and the size thereof may vary depending upon the weight of the door that is being raised by the hinge. One advantage of using a plurality of smaller springs as opposed to a single or lesser number of larger springs is in the lateral size (thickness) of the overall hinge, which is minimized by the use of multiple smaller springs. Spring assembly


50


is connected on one end to second pivoting member


40


at post


60


via attachment member


54




a


and on the opposite end to stationary member


10


at post


62


via attachment member


54




b


. Push nuts


58


hold attachment members


54




a


and


54




b


to posts


60


and


62


respectively.




Post


12


on stationary member


10


acts as a motion stop which limits the upward travel of the door to which the hinge is connected. Second pivoting member


40


will abut against post


12


when the hinge is at its limit of travel in the upward direction. This is shown in

FIG. 2



b.







FIG. 2



a


shows the hinge in its fully closed position. In operation, to raise the cabinet door, a user will first pull the bottom edge of the cabinet door outwardly away from the cabinet frame in the direction of arrow


100


as shown in

FIG. 2



a


. This will cause moving member


30


to move approximately horizontally in the direction of arrow


100


. At this stage, leading edge


33


of moving member


30


is in an approximately vertical orientation. As moving member


30


moves horizontally, first and second pivoting members


20


and


40


simultaneously pivot about post


14


and standoff


16


respectively. Pivot points


113


on first pivoting member


20


and


115


on second pivoting member


40


follow paths


102


and


104


respectively, as shown in FIG.


4


. Note that paths


102


and


104


cross at point


116


. Prior to where the paths cross at point


116


, path


104


is outside of path


102


. However, after point


116


in the travel of the hinge has been reached path


104


moves inside of path


102


, thereby causing moving member


30


to rotate toward stationary member


10


, resulting in the movement of edge


33


of moving member


30


to a more horizontal position.




Because of the relative positioning of standoff


16


and post


62


, to which spring assembly


50


is connected, during the first portion of the travel of the hinge, springs


52


are held at an almost constant extension. At some point during the travel of the hinge between the fully closed and the fully opened position, approximately as pivot point


115


reaches point


116


, springs


52


will begin to retract to their un-extended position. When this happens, the spring assist of the hinge engages and the hinge is pulled to the fully opened position by the retraction of springs


52


. Thus, the user need only pull the door in the direction of arrow


100


a portion of the way until the spring assist engages. Also, at some point, the motion of the cabinet door will be more vertical, approximately in the direction of arrow


110


, than horizontal, and moving member will rotate, causing the hinge to end up in a position as shown in

FIG. 3



d


.

FIGS. 3



a


-


3




d


show the motion of the hinge in sequence from the fully closed position in

FIG. 3



a


to the fully open position of

FIG. 3



d


. When closing the door, springs


52


are extended to their greatest point of extension, placing tension of pivoting members


20


and


40


to dampen the motions thereof. This prevents slamming of the door upon closure.




The preferred embodiment of the hinge and the preferred shapes of the structural members


10


,


20


,


30


and


40


are shown in FIG.


1


. However, the actual shapes of these members may vary from what is shown without departing from the spirit of the invention. It is only important that the relationship of the pivot points of the structural members on either ends thereof be retained, as well as their relationship to the connection points of the spring assembly


50


. Additionally, standoffs


32


, which connect the hinge to the cabinet door are not part of the invention. Any suitable means of connecting moving member


30


to the cabinet door may be utilized.



Claims
  • 1. A hinge for a cabinet having a vertical door comprising:a stationary member for attachment to said cabinet; a moving member for attachment to said door; a first pivoting member pivotally attached to said stationary member at a single point and pivotally attached to said moving member at a single point; a second pivoting member pivotally attached to said stationary member at a single point and pivotally attached to said moving member at a single point; and a spring pivotally attached to said stationary member and to said second pivoting member.
  • 2. The hinge of claim 1 wherein said moving member exhibits a non-centered pivoting motion.
  • 3. The hinge of claim 1 wherein said spring is a spring assembly comprising:two or more springs arranged in a parallel relationship; a first attachment member connected to one side of said two or more springs; and a second attachment member connected to the opposite end of said two or more springs.
  • 4. The hinge of claim 3 further comprising:a first post defined on said stationary member; and a second post defined on said second pivoting member; wherein said first and said second attachment members define holes therein for pivotal connection to said first and said second posts.
  • 5. The hinge of claim 4 wherein said spring assembly contains four springs.
  • 6. The hinge of claim 5 wherein each of said springs has a spring constant of approximately twelve pounds per inch.
  • 7. The hinge of claim 1 further comprising a stop limit defined on said stationary member, said stop limit engaging said second pivoting member when said hinge is in a fully opened position.
  • 8. The hinge of claim 1 wherein said stationary member, said first and second pivoting members and said moving member are constructed from 12 gauge steel.
  • 9. The hinge of claim 1 wherein said spring operates to assist in the opening of said door and further operates to hold said door in an open position.
  • 10. The hinge of claim 1 wherein said spring operates to dampen the motion of said hinge.
  • 11. A hinge for a cabinet having a vertical door comprising:a stationary member for attachment to said cabinet; a moving member for attachment to said door; a first pivoting member pivotally attached to said stationary member and pivotally attached to said moving member at a first pivot point, said first pivot point circumscribing a first arc as said door is opened or closed; a second pivoting member pivotally attached to said stationary member and pivotally attached to said moving member at a second pivot point, said second pivot point circumscribing a second arc as said door is opened or closed; and a spring pivotally attached to said stationary member and to said second pivoting member, wherein said first arc and said second arc intersect.
  • 12. The hinge of claim 11 wherein said spring is a spring assembly comprising:two or more springs arranged in a parallel relationship; a first attachment member connected to one side of said two or more springs; and a second attachment member connected to the opposite end of said two or more springs.
  • 13. The hinge of claim 11 further comprising a stop limit defined on said stationary member, said stop limit engaging said second pivoting member when said hinge is in a fully opened position.
  • 14. The hinge of claim 11 wherein said spring operates to assist in the opening of said door and further operates to hold said door in an open position.
  • 15. The hinge of claim 11 wherein said spring operates to dampen the motion of said hinge.
US Referenced Citations (17)
Number Name Date Kind
2956303 Fiedler Oct 1960 A
3054137 Pulleyblank Sep 1962 A
3802125 Baker Apr 1974 A
3857623 Schneller Dec 1974 A
4223420 Yukimoto et al. Sep 1980 A
4429494 Kornerup et al. Feb 1984 A
4756054 Mitts et al. Jul 1988 A
4817240 Sovis et al. Apr 1989 A
4843680 Cress et al. Jul 1989 A
4915461 Kingsborough et al. Apr 1990 A
5172969 Reuter et al. Dec 1992 A
D339934 Reuter Oct 1993 S
5409308 Reuter et al. Apr 1995 A
5488757 Cohen et al. Feb 1996 A
5664290 Scherrer Sep 1997 A
5971514 Hayakawa Oct 1999 A
6073624 Laurent Jun 2000 A