This application is a 371 of PCT/IB2011/053908, filed Sep. 7, 2011, which claims the benefit of Italian Patent Application No. MI2010A001693, filed Sep. 17, 2010, the contents of each of which are incorporated herein by reference.
The present invention relates to a hinge for composite materials, in particular a hinge which can be fastened or integrated in two composite material parts which must be mutually connected in a rotatable manner. The present invention also relates to a process for manufacturing said hinge.
Known hinges for composite material parts comprise two metal plates pivoted to each other and provided with holes for the fastening by means of bolts or other threaded member to the parts to be mutually connected. The holes for said known hinges are relatively difficult to be made in the composite material parts and in any case they may cause a structural weakening of these parts, due to the particular physical features of the composite materials. Said known hinges are also relatively difficult to be fastened with adhesives to the composite material parts due to the different physical and chemical features of the materials to be glued.
EP 1738895 discloses a hinge comprising two groups of layers of carbon fibers impregnated with epoxy resin, which layers are arranged on and under a substrate of aramid fibers impregnated with a polyurethane resin. The layers and the substrate are cured together without injection of resins, after which a groove with a V- or U-shaped cross-section is made on both layers, so that a central portion of the substrate is not covered by said layers and forms thus a line of inflection.
However, said known hinge is complex and expensive to be manufactured, since it requires layers of pre-impregnated fibers, known also with the name of pre-preg, which are more expensive than the dry fibers. Furthermore, the outer layers, being more rigid when cured, require a precise mechanic working for making the grooves, which must be perfectly parallel to allow a correct inflection. Said mechanic working, besides increasing manufacture costs and times, also involves the risk of damages of the substrate, since the whole thickness of the rigid layers must be removed, however without leaving the substrate surfaces uncovered. In order to reduce said risk, EP 1738895 explains that the grooves with a V-shaped cross-section are preferable, however these grooves allow only inflections with angles smaller or equal to the summit angle of the groove, thus they cannot be employed in hinges which must rotate with angles greater than 180°. Due to the grooves, the substrate is much thinner than the whole hinge, with the consequent risk of breakings along the line of inflection. On the other hand, the substrate, due to its chemical-physical composition, would be too rigid if it was more or less thick like the rest of the hinge.
The use of different resins for the layers and the substrate further involves adhesion problems which EP 1738895 suggests to decrease through an additional working which roughens the substrate.
Said known hinge is also relatively expensive and delicate due to the aramid and/or woven fibers employed for the substrate. In order to decrease the latter drawbacks EP 1738895 suggests to employ substrates made up of several layers of fibers crossed and/or perpendicular to the line of inflection, with a consequent increase of the manufacture costs. In general, EP 1738895 suggests to employ substrates and layers with fibers similar to each other, wherein the difference of rigidity of the substrate with respect to the layers mainly depends upon the different resins impregnating the layers and the substrate.
It is therefore an object of the present invention to provide a hinge, which is free from said disadvantages. Said object is achieved with a hinge and a manufacture process, whose main features are disclosed in claims 1 and 7, respectively, while other features are disclosed in the remaining claims.
Thanks to its particular physical and chemical features, the hinge according to the present invention not only can be easily fastened to composite material parts also by means of adhesives or other known systems for mutually joining composite material members, but it can also be easily incorporated in these parts in RTM (Resin Transfer Molding), Light-RTM, VARTM (Vacuum Assisted Resin Transfer Molding) processes and/or in the process disclosed in the Italian patent application MI2010A001072.
Furthermore, thanks to the particular manufacture process, at the end of which both the substrate and the layers are incorporated in a cured and flexible resin, the hinge can be produced in a simple, fast and economic manner, so that it can be employed for various applications, not only for mutually connecting two members and not necessarily for connecting two members made of a composite material. For example, the hinge can be produced with such sizes and shapes as to be employed in itself as a folder.
The hinge according to the present invention can easily absorb tolerances of arrangement, since it is not provided with a pin and thus the position of the axis of rotation can be adapted to the relative position of the parts to be rotated. Furthermore, thanks to its reduced thickness, the hinge does not cause markings in A-class components (varnished or of unvarnished carbon) if it is glued to the latter.
The hinge has also a pleasant aesthetic aspect, especially if an outer layer is made of natural leather, microfiber and/or of a material with fibers substantially parallel to the axis of rotation, so as to avoid that this layer is damaged by the rotation of the hinge.
The hinge according to the present invention is particularly wear resistant, above all when using a special resin having a Young's modulus comprised between 2.8 and 6.5 MPa, an ultimate tensile strength comprised between 0.7 and 1.3 MPa and/or an elongation at break comprised between 21 and 39%.
Further advantages and features of the hinge and the process according to the present invention will become clear to those skilled in the art from the following detailed and non-limiting description of some embodiments thereof with reference to the attached drawings, wherein:
Referring to
Referring to
The manufacture process of the hinge according to the second, third and fourth embodiment is then substantially the same as the manufacture process of the first embodiment. Anyway, other resin molding processes can be employed in alternative embodiments, for example by using further moulds and resin injected according to RTM (Resin Transfer Molding), Light-RTM, VARTM (Vacuum Assisted Resin Transfer Molding) processes and/or in the process disclosed in the Italian patent application MI2010A001072.
Possible modifications and/or additions may be made by those skilled in the art to the hereinabove disclosed and illustrated embodiments while remaining within the scope of the following claims. In particular, further embodiments of the invention may comprise the technical features of one of the following claims with the addition of one or more technical features, taken singularly or in any mutual combination, disclosed in the text and/or illustrated in the drawings.
Number | Date | Country | Kind |
---|---|---|---|
MI2010A1693 | Sep 2010 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2011/053908 | 9/7/2011 | WO | 00 | 9/11/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/035465 | 3/22/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3391053 | Kolb | Jul 1968 | A |
3445052 | Lewallen | May 1969 | A |
5463794 | Erland | Nov 1995 | A |
6474945 | Nakasato | Nov 2002 | B1 |
20070000091 | Priegelmeir et al. | Jan 2007 | A1 |
20080237068 | Melamed | Oct 2008 | A1 |
20100162942 | Karow et al. | Jul 2010 | A1 |
20100163684 | Dando et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
3609413 | Oct 1987 | DE |
20120819 | Apr 2002 | DE |
1738895 | Jan 2007 | EP |
2001-271548 | Oct 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20140007377 A1 | Jan 2014 | US |