This invention relates to a hinge for interconnecting sections of a floating dock and for interconnecting walkways with floating docks. This hinge can be used both for reconstructing docks which have been damaged by storm or high winds or for constructing new docks that can better withstand the stress exerted by the side to side or up and down motion of the dock.
Most docks have sections interconnected together by simply threading a suitably diametered rod through a pair or a series of sturdy eye bolts secured in an aligned relation to the adjoining opposed vertical faces of the dock sections or through aligned bearing openings in pairs of metal bearing plates secured to the vertical sides of the respective adjoining dock sections and projecting downwardly therefrom. These eyebolts are usually constructed on corner brackets installed at each corner of the interconnecting dock sections but more aligned eyebolts may be installed along the vertical sides of the dock sections if reinforcement is desired or necessary, for example, when the dock sections span a sizeable width. The vertical faces of the interconnecting dock sections are positioned face to face and end to end in spaced apart relation relative to one another. These types of interconnection is usually restrictive of dock movements in relation to wave actions, high winds, or heavy loads thereby resulting in structural damage to the dock after some time of usage. Reconstructing damaged docks is costly since it requires downtime, materials and labor before it again becomes operational.
This problem has been addressed by installing flexible materials covering the gap between the interconnected clock sections to allow the sections to move with respect to each other or by installing semi-flexible hinges to each adjacent dock faces. These flexible materials, usually rubber based, are however not long lasting and while they may address the up and down motion of the dock, they are not very efficient in dealing with damages caused by the side to side motion of the clock.
It is therefore and object of this invention to provide a dock hinge that will allow the interconnecting dock sections to move side to side and up and down relative to each other.
It is also an object of this invention to provide a hinge that is simple and easy to install.
It is a further object of this invention to provide a hinge that can be easily installed on old damaged docks or to replace existing hinges on functional docks to preserve the docks from damage.
This invention relates to a hinge for interconnecting sections of a dock or for interconnecting walkways to a dock. The hinge comprises two stackable sheet of twisting members which are preferably flat, each having an arcuate front end for facilitating a twisting motion of the twisting members relative to each other, a mounting plate, and a central opening for accomodating a pivot rod; a fastener for keeping the hinge components together; and, preferably washers to protect the outside surfaces of the twisting members from abrasion. One side of the hinge preferably attaches to a dock section having a dock joint bracket while the other end preferably attaches to a plain corner bracket to allow vertical pivotal movement of the dock sections in response to wave motions. A cover is provided for a gap formed by the space occupied by the hinge. This cover is typically made of wood such as marine plywood laid on top of the interconnecting dock sections having an unbolted beveled arched edge on one end and a bolted beveled horizontal edge on the other end, the beveled edges extending beyond the interconnected vertical faces of the dock sections and lateral side ends coterminally aligning with the lateral side ends of the dock sections.
The hinge connects two dock sections or a walkway to a dock positioned face to face and end to end by the following steps: a) stacking an upper and a lower twisting member, each having a flat frame, a central hole, and a mounting plate in an orientation wherein the mounting plate of the upper twisting member face away from the mounting plate of the lower twisting member; b) aligning the central hole of the upper and lower twisting members; c) introducing a pivot rod through the aligned central holes; d) fastening the stacked twisting members together thereby forming an assembled hinge; and, e) mounting the assembled hinge by connecting/attaching the mounting plates to corresponding brackets on corresponding vertical faces of the dock sections or walkway. To further increase the lifetime of the hinge by preventing damages caused by abrasion, the following steps are added: between step b) and c), placing a washer having a center hole on top of the upper twisting member in such a way that the center hole aligns with the central holes of the twisting members; between d) and e) placing a washer having a center hole on the bottom of the lower twisting member in such a way that the center hole aligns with the central holes of the twisting members; and, greasing outside surfaces of a component of the hinge that comes in contact with outside surfaces of another component of the hinge. If a gap is formed between the interconnected dock sections due to the space occupied by the hinge, a covering, preferably a marine plywood, is laid over the gap to avoid injuries to dock users.
Floating docks are typically constructed from pivotally interconnected dock sections positioned face to face and end to end in spaced apart relation to each other. The dock sections typically include a rectangular frame having a flat top decking formed from a plurality of deck boards secured to the top of the frame. Other docks however may be of another shape other than rectangular. The length of the deck boards typically matches the width of the frame so as to be coterminus. The hinge to pivotally interconnect one dock section to another is usually secured on a vertical face of one frame facing a corresponding vertical face of another frame as shown in
The proposed hinge 1 may be installed in any type of dock. A detailed description of the construction of a dock or more specifically, a floating dock is known and is deemed unnecessary. The bolt 5, nut 6, and washers 7a and 7b used in constructing the hinge herein are conventional and commercially available, however, parts of comparable functions may be customized. The twisting members 4a and 4b and the mariner of attachments to the dock sections differentiate this hinge from conventional hinges. To allow the hinge to move up and down according with the motion of the wave and side to side with the force of the strong wind and protect the dock from breaking, it is preferably designed with two identical stackable twisting members 4a and 4b which is constructed with a flat frame 9 having an arcuate front 10 elevated by vertical sides 11a and 11b which are both in turn extended diagonally at each end by sides 12a and 12b, terminating at each end with mounting plates 13a and 13b. The base 15 opposite the arcuate front 10 of the frame is horizontal. The mounting plates 13a and 13b are positioned perpendicular to the flat frame 9 of the twisting members 4a and 4b. These mounting plates are typically welded to the twisting members. Although the figures show a preferred design for the hinge, alternate designs are possible so long as there are two stackable members that can twist from side to side relative to each other with an angular span of 30-40 degrees. Both twisting members 4a and 4b have a central hole 14 preferably located midway between the two mounting plates at each end of a twisting member and midway between the base 15 of the frame 9 and the arcuate front 10 of each twisting member. The central hole 14 of each twisting member align with each other when the twisting members are stacked or superimposed to each other.
The hinge is fully assembled before it is mounted to the opposed vertical faces 8 of the dock sections.
In the assembly of hinge 1, grease is preferably applied to lessen or prevent abrasion that may be caused by friction between the rubbing contacting surfaces of the twisting members 4a and 4b or between the contacting surfaces of the washers, the fasteners and the twisting members. The washers are also preferably made of hot dipped galvanized hot roll iron. Grease zerks 33 as shown in
A gusset 29, preferably triangular in shape, is recommended and this is welded at each end of the twisting members at a position midway between the edges of the mounting plates. The gusset 29 is oriented perpendicular to the mounting plate and protrudes upward as shown in
Due to the weight of hinge 1, it is preferable to install lifting brackets 34 on the bolt head 35 for easy transport. If a bolt is not used, the lifting brackets and the grease zerks above can be installed to the corresponding component used in lieu of the bolt.
When the hinge 1 is used to repair damaged docks instead of a new construction, it is simply mounted directly on the dock sections in the same manner as above. If there are existing brackets, one simply removes the old bolts on the existing brackets, move and align the corresponding holes 25 of the mounting plates to the existing holes of the bracket, and reinstall the old bolts through the mounting plate and bracket. For proper functioning, the hinge 1 should attach to one dock section having a dock joint bracket 18 and to the opposite dock section having a plain corner bracket 24.
After the assembly of hinge 1, depending upon the extention of the top decking 31 there may be a gap 30 formed between the dock sections 2 and 3, corresponding to a space occupied by the hinge. To ensure that no dangerous openings or clefts are present between the dock sections where a hand or foot may be accidentally caught or pinched, thereby causing injury, the gap is covered typically with plywood, preferably a ¾ inch marine plywood which is shown in FIG. 4 and in dashed lines on FIG. 1. Metal, plastic, and other types of wood that are heavy and can withstand repeated exposure to rain and strong wind are also suitable. The cover 36 is preferably laid on top of the top decking 31 of the interconnected dock sections as shown in
The arched 37 and the horizontal 38 edges are beveled at approximately 15-30 degrees to prevent a user from tripping. The length of the beveled edges typically ranges from ¼ in. to 3 inches. The side of the cover with a horizontal edge 38 extends preferably by about 6 inches beyond the vertical face of the dock section and is bolted to the dock section as shown in FIG. 4. The arched end, likewise, extend beyond the vertical face of the opposite dock section but is not bolted to allow the cover 36 to move with the movement of the dock sections. However, to ensure that every point of the cover 36 contacts the surface of the articulating dock, the top 39 of the arched edge 37 is approximately 18 inches beyond the vertical face of the dock section located on the same side as the arched edge. This amount of overlap and the weight of the cover prevent the arched end from lifting away from the top decking 31 even if this end is not bolted. Also, as seen in
The description herein purposely do not specify the dimensions of the hinge and its components because these vary according to the size of the dock sections to be interconnected. The example given will teach those in the art on how to proportionally adjust the dimensions for the particular application.
While the embodiment of the present invention has been described, it should be understood that various changes, modifications and adaptations may be made therein without departing from the spirit of the invention and the scope of the appended claims. Those skilled in the art will recognize that other and further variations of the features presented herein are possible. The scope of the present invention should be determined by the teachings disclosed herein, the appended claims and their legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
1748849 | Schmidt | Feb 1930 | A |
2715314 | Smith | Aug 1955 | A |
2746771 | Gross | May 1956 | A |
3850533 | Thielen | Nov 1974 | A |
4066131 | Zandbergen | Jan 1978 | A |
4281848 | Youngers | Aug 1981 | A |
4325564 | Phipps | Apr 1982 | A |
4561797 | Aldridge | Dec 1985 | A |
4581784 | Rousseau et al. | Apr 1986 | A |
4838735 | Warner | Jun 1989 | A |
4945595 | Meriweather | Aug 1990 | A |
6032973 | Flowers, Jr. | Mar 2000 | A |
6227749 | Fujii | May 2001 | B1 |
20030156890 | Tucker | Aug 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20030177608 A1 | Sep 2003 | US |