The present invention relates to a hinge, for example for doors or windows. The invention may be particularly well suited for use with a glass door, and in particular, a glass shower door.
U.S. Pat. No. 6,161,255 depicts a prior art device representative of the state of the art. A hinge is known from the state of the art that is equipped with a first joint part and a second joint part. The first joint part and the second joint part are connected by an articulated axle so that the first joint part can rotate in relation to the second joint part around a rotational axis. The known hinge furthermore has a locking device to lock the first joint part in a relative position with respect to the second joint part. This relative position, for example, is an open position or the closed position of a door. A catching device is provided on the first joint part of the known hinge to lock it in the relative position. The catching device comprises a first recess and a second recess. Both recesses are located on the joint axle. In one position, a first catching device enters into the first recess. In addition, a second catching device enters into the second recess. Each catching device is exposed to a coil spring element. The coil springs are diametrical to each other so that the joint axis is located between the two coil springs.
In the prior art, after a certain time of load on a known hinge (namely after a certain time during which the door is always moved from a first position into a second position using the known hinge), there is always the danger that the limiting areas of the first recess and the second recess in the known hinge become worn due to material abrasion and fatigue, and that these recesses become flattened. This reduces the secure lock of the first joint part in the relative position with respect to the second joint part.
The invention may be embodied as a hinge which ensures a secure lock of a first joint part in a relative position with respect to a second joint part. In one embodiment, the invention is achieved by a hinge having a first joint part, a second joint part, a locking device, a basic element which is arranged at the first joint part, and a holding device arranged at the second joint part. The first joint part is connected in hinge form to the second join part around an articulated axle element such that the first joint part can rotate in relation to the second joint part around a rotational axis. The locking device locks at least one relative position of the first joint part in relation to the second joint part. The holding device has at least one articulated axle seat where the axle element is positioned and arranged at the basic element.
The locking device is made of at least one first clamping plane which is arranged at the articulated axle element. The locking device also comprises at least one first clamping element arranged at the holding device. The first clamping element has a second clamping plane. The first clamping plane is located at the second clamping plane to lock a relative position of the first joint part in relation to the second joint part. In some embodiments, the first clamping element can move in a perpendicular direction to the rotational axis.
In one embodiment of the invention, the holding device has at least one fastening section. The fastening section may have a first sectional side and a second sectional side such that the first sectional side and the second sectional side extend along a first lengthwise axis of the fastening section. The invention may also use at least one guidance seat arranged at the first sectional side of the fastening section. The first guidance seat may comprise a first deep seat. The first deep seat may extend along a second lengthwise axis that is perpendicular to the first lengthwise axis. A second guidance seat may be arranged at the second sectional side of the fastening section. The second guidance seat may comprise a second deep seat. The second deep seat may extend along the second lengthwise axis which is perpendicular to the first lengthwise axis. In some embodiments, the first deep seat may be larger than the second deep seat.
In another embodiment, the first lengthwise axis may be perpendicular to the rotational axis and/or the second lengthwise axis may be perpendicular to the rotational axis.
In one embodiment, the hinge may comprise at least one first clamping element having at least one first guide element and at least one second clamping element having at least one second guide element. The first guide element may have a first expansion extending along the second lengthwise axis. The second guide element may have a second expansion extending along the second lengthwise axis. The first expansion may be larger the second expansion. The hinge can be configured such that the first guide element is arranged in the first guidance seat, and the second guide element is arranged in the second guidance seat. The hinge may also be configured such that the first guide element is arranged in the second guidance seat, and the second guide element is arranged in the first guidance seat.
In one embodiment of the invention, the locking device further comprises a third clamping plane arranged at the articulated axle element. The locking device further comprises at least one second clamping element which is arranged at the holding device. The second clamping element has a fourth clamping plane such that the third clamping plane is located at the fourth clamping plane to lock a relative position of the first joint part in relation to the second joint part. In another embodiment of the invention, the locking element is arranged at the articulated axle element such that the first clamping plane and the third clamping plane are arranged at the locking element.
In another embodiment, at least one locking element is arranged at the articulated axle element such that the first clamping plane is arranged at the locking element. The locking element, for example, may be bushing-shaped and partially surround the articulated axle element. The locking element may also completely surround the articulated axle element. The locking element may also be cuboid-shaped, have at least one chamfered edge, or comprise an axle seat in which the articulated axle element is arranged.
In one embodiment, the articulated axle element has a first end and a second end. The first end is arranged at the basic element and a thread is arranged at the second end. A fastening element is arranged at the thread such that the fastening element can be changed from an unlocked position into a locked position.
In another embodiment, the first clamping element is arranged in a first clamping element seat on the holding device. The first clamping element seat may have a first receiving end and a second receiving end. The first receiving end may be closed by a lock that supports a first end of a spring. The second end of the spring is supported by the first clamping element. The first clamping element is arranged at the second receiving end.
Other features of the invention can be found in the following description, the enclosed claims and/or the attached drawings.
For a fuller understanding of the nature and objects of the invention, reference should be made to the accompanying drawings and the subsequent description. Briefly, the drawings are:
The hinge of the invention is intended for example for a door or a window. The invented hinge joint is especially designed to hold and guide a door used as a boundary for a shower for example. The invention is particularly designed for a glass door. The invented hinge comprises at least a first joint part and at least a second joint part, where both are connected by at least one articulated axle, so that the first joint part can rotate in relation to the second joint part around a rotational axis. The invented hinge furthermore comprises at least one locking device to lock the first joint part in a relative position with respect to the second joint part. The relative position is for example the open position or the closed position of a door. The invented hinge furthermore comprises a basic element arranged at the first joint part. This basic element is the first joint part for example. Another configuration provides additionally, or as an alternative, that the basic element is plate-shaped.
In addition, the invented hinge comprises at least one holding device arranged at the second joint part. This holding device comprises at least one articulated axle seat. The articulated axle element is arranged in the articulated axle seat and is arranged at the basic element as well. The articulated axle element comprises a rotational axis around which the first joint part can rotate in relation to the second joint part.
The locking device of the invented hinge comprises at least a first clamping plane arranged at the articulated axle element. It is understood here and afterwards that a plane means a two-dimensional formation. An arrangement of the first clamping plane on the articulated axle element encompasses any such arrangement, also for example an arrangement of the first clamping plane in the articulated axle element. In addition the locking device comprises at least a first clamping element arranged at the holding device, wherein the first clamping element comprises a second clamping plane. This arrangement of the first clamping element at the holding device also comprises any arrangement of the first clamping element at the holding device, thus also an arrangement of the first clamping element in the holding device for example. The first clamping plane is arranged at the second clamping plane to lock the relative position of the first joint part in relation to the second joint part. In other words, to lock a relative position of the first joint part in relation to the second joint part, the first clamping element is arranged with the second clamping plane at the first clamping plane so that a clamping effect is achieved. This locks the position of the first joint part in relation to the second joint part. For example, the relative position can be an open position or a closed position of a door. The door can rotate around a rotational axis. Locking the relative position ensures that the first joint part can always be rotated in relation to the second joint part into this relative position, and can be securely locked in this relative position.
One configuration of the invention provides, in addition or as an alternative, that the locking device comprises at least a third clamping plane which is arranged at the articulated axle element, wherein its arrangement is defined in the above explanation. The locking device furthermore comprises at least a second clamping element arranged at the holding device. This arrangement is also defined in the above explanation. The second clamping element comprises a fourth clamping plane. The third clamping plane is arranged at the fourth clamping plane for locking the relative position of the first joint part in relation to the second joint part.
It is explicitly pointed out that the invention is not limited to a single clamping element or two clamping elements. The invented hinge can rather comprise any suitable number of clamping elements, for example four clamping elements. For example, in addition or as an alternative to, another configuration of the invented hinge provides that the latter comprises a third clamping element with a fifth clamping plane and a fourth clamping element with a sixth clamping plane. To lock the relative position of the first joint part in relation to the second joint part, the fifth clamping plane is arranged at a seventh clamping plane and the sixth clamping plane is arranged at an eighth clamping plane, wherein the seventh clamping plane and the eighth clamping plane are arranged at the articulated axle element.
Another configuration of the invented hinge provides in addition or as an alternative, that at least one locking element is arranged at the articulated axle element. The locking element comprises at least one of the above named clamping planes of the articulated axle element, thus for example the first clamping plane, the third clamping plane, the seventh clamping plane and/or the eighth clamping plane. It is provided that the locking element is bushing-shaped for example, and at least partially surrounds the articulated axle element. An alternative provides for the locking element to fully surround the articulated axle element.
Still another configuration of the invented hinge provides, in addition and/or as an alternative, for the locking element to comprise at least one of the following characteristics: the locking element is cuboid-shaped, the locking element comprises an axle seat where the articulated axle element is arranged, or the locking element comprises at least one chamfered edge.
Yet another configuration of the invented hinge provides in addition or as an alternative, that the articulated axle element comprises a first end and a second end. The first end is arranged at the basic element. In addition, a thread is provided on the second end of the articulated axle element. A fastening element is arranged at this thread. This fastening element is moveable so that it can be changed from a loose condition to a locked condition. The fastening element is used to adjust the location of the above named relative position. For example by loosening the fastening element and rotating the second joint part in relation to the first joint part around the rotational axis, the articulated axle element (and thereby also the clamping plane(s) arranged at the articulated axle element) are carried along. Tightening the fastening element anchors the position of the articulated axle element (and thereby also the clamping plane(s) arranged at the articulated axle element). This configuration allows the relative position of the first joint part to be adjustable in relation to the second joint part.
Another configuration of the invented hinge provides in addition or as an alternative, that the first clamping element is arranged in a first clamping element seat in the holding device. The first clamping element seat comprises a first receiving end and a second receiving end, wherein the first receiving end is closed by a plug. A spring element is located in the clamping element seat. A first spring element end is supported by the plug and a second spring element end is supported by the first clamping element. The latter is located on the second receiving end. The spring element ensures that the second clamping plane of the first clamping element is pressed against the first clamping plane of the articulated axle element with sufficient force to achieve a clamping effect.
Still another configuration of the invention provides, in addition or as an alternative, that the first clamping element is arranged at the holding device so that it can move in a direction perpendicular to the rotational axis.
Another configuration of the invented hinge provides in addition or as an alternative, that the holding device comprises at least one fastening section. The latter comprises a first section side and a second section side, wherein the first section side and the second section side extend along a first lengthwise axis of the fastening section. The first section side and the second section side for example are parallel and/or at a distance from each other. The first section side of the fastening section comprises at least a first guidance seat which includes a first receiving depth. The latter extends along a second lengthwise axis that is perpendicular to the first lengthwise axis. Furthermore, at least a second guidance seat is arranged at the second section side of the fastening section, wherein the second guidance seat comprises a second receiving depth and the latter extends along the second lengthwise axis, which is perpendicular to the first lengthwise axis. Furthermore, the first receiving depth is larger than the second receiving depth. For example, in addition or as an alternative, it is provided that the first lengthwise axis and/or the second lengthwise axis are perpendicular to the rotational axis. Furthermore and in addition or as an alternative for example, it is provided that the hinge comprises at least a first clamping element with at least a first guide element, and at least a second clamping element with at least a second guide element. The leaf of a door, for example the leaf of a glass door, can be held and clamped between the first clamping element and the second clamping element. To allow placing a door leaf of a different thickness between the first clamping element and the second clamping element, it is now provided that a first expansion of the first guide element extends along the second lengthwise axis, and that a second expansion of the second guide element extends along the second lengthwise axis. The first expansion is larger than the second expansion. The first guide element is arranged in the first guidance seat and the second guide element is arranged in the second guidance seat to securely hold a door leaf of a first thickness between the first and clamping element and the second clamping element. To securely hold a door leaf of a second thickness that is different from the first thickness, between the first clamping element and the second clamping element, the first guide element is arranged in the second guidance seat, and the second guide element is arranged in the first guidance seat. The above configuration enables the use of door leaves of different thicknesses.
The first joint part 2 is shown again in
The second joint part 3 is used to receive and secure a door leaf (not illustrated), for example the leaf of a glass door. The door leaf is clamped and securely held between a first clamping device 4 and a second clamping device 5.
The first end 11 is attached to the first joint part 2 by a screw connection 7. A locking device 31 is arranged in the area of the first end 11 and has a cuboid-bushing shape.
The second end 12 of the articulated axle element 6 is equipped with a thread 10 on which a fastening element 9 is arranged. The latter is shown in detail in
As shown in
The first clamping element seat 13 comprises a first clamping element 19.
The first clamping element seat 13 comprises a first receiving end and a second receiving end, wherein the first receiving end is closed by a first closing element 15. The latter is also shown in
The second clamping element seat 14 comprises a second clamping element 20. The second clamping element 20 has the same construction as the first clamping element 19.
The second clamping element seat 14 also comprises a first receiving end and a second receiving end, wherein the first receiving end is closed by a second closing element 16. The latter has the same construction as the first closing element 15. The second closing element 16 closes the second clamping element seat 14. A second spring element 18 is arranged in the second clamping element seat 14. A first spring end is supported by the second closing element 16, and a second spring end is supported by the second clamping element 20, wherein the second spring end is arranged in the spring element seat 44 of the second clamping element 20. The latter is arranged on the second receiving end of second clamping element seat 14.
A third clamping element 19A is arranged in the third clamping element seat 13A. The third clamping element 19A has the same construction as the first clamping element 19.
The third clamping element seat 13A also comprises a first receiving end and a second receiving end, wherein the first receiving end is closed by a third closing element 15A. The third closing element 15A has the same construction as the first closing element 15. The third closing element 15A closes the third clamping element seat 13A. A third spring element 17A is arranged in the third clamping element seat 13A. A first spring element end is supported by the third closing element 15A, and a second spring element end is supported by the third clamping element 19A, wherein the second spring element end is arranged in the spring element seat 44 of the third clamping element 19A. The third clamping element 19A is arranged at the second receiving end of the third clamping element seat 13A.
A fourth clamping element 20A is arranged in the fourth clamping element seat 14A. The fourth clamping element 20A has the same construction as the first clamping element 19.
The fourth clamping element seat 14A also comprises a first receiving end and a second receiving end, where the first receiving end is closed by a fourth closing element 16A. The fourth closing element 16A has the same construction as the first closing element 15. The fourth closing element 16A closes the fourth clamping element seat 14A. A fourth spring element 18A is arranged in the fourth clamping element seat 14A. A first spring end is supported by the fourth closing element 16A, and a second spring end is supported by the fourth clamping element 20A, wherein the second spring end is arranged in the spring element seat 44 of the fourth clamping element 20A. The fourth clamping element 20A is arranged at the second receiving end of the fourth clamping element seat 14A.
All the preceding clamping elements in the holding device 8 can move in one direction, perpendicular to the rotational axis 60.
The basic element 42 of holding device 8 comprises an articulated axle seat 46 in which the articulated axle element 6 and the locking device 31 are arranged.
In the adjustable relative position of the first joint part 2 in relation to the second joint part 3, the second clamping plane 27 of the first clamping element 19 is located on the first clamping plane 29 of locking device 31. Furthermore, a fourth clamping plane 28 of the second clamping element 14 is located on the third clamping plane 30 of locking device 31. The fifth clamping plane of the third clamping element 19A is located on the seventh clamping plane 33 of locking device 31. However, the sixth clamping plane 28A of the fourth clamping element 20A is located on the eighth clamping plane 34 of locking device 31. The above named spring elements ensure that the named clamping planes of the individual clamping elements are pressed against the clamping planes of locking device 31 with sufficient force to achieve a clamping effect. In this way the first joint part 2 is locked in a predetermined relative position with respect to the second joint part 3. For example, the relative position is an open position or a closed position of a door. The door can swing around the rotational axis 60. Locking the relative position ensures that the first joint part 2 can always be swung in relation to the second joint part 3 into this relative position, where it is secured.
The holding device 8 comprises two fastening sections arranged at the basic element 42, namely a first fastening section 47 and a second fastening section 48. The first fastening section 47 and the second fastening section 48 have essentially the same construction so that only the second fastening section 48 will be described in the following. A first sectional side 49 and a second sectional side 50 are arranged at the second fastening section 48, wherein the first sectional side 49 and the second sectional side 50 extend along the first lengthwise axis 43. A first guidance seat 51 is arranged at the first sectional side 49, wherein the first guidance seat 51 comprises a first deep seat T1. The first deep seat T1 extends along a second lengthwise axis 53 that is perpendicular to the first axis 43. Furthermore, a second guidance seat 52 is arranged at the second sectional side 50, wherein the second guidance seat 52 comprises a second deep seat T2. The second deep seat T2 extends along the second lengthwise axis 53. The second deep seat T2 is smaller than the first deep seat T1.
The first lengthwise axis 43 is perpendicular to the rotational axis 60. Moreover, the second lengthwise axis 53 is perpendicular to the rotational axis 60.
As mentioned earlier, the hinge 1 comprises the first clamping element 4 and the second clamping element 5. The first clamping element 4 is shown again in
A first cushion element 25 can be arranged at the first clamping element 4. And a second cushion element 26 can be arranged at the second clamping element 5. The first cushion element 25 and the second cushion elements 26 serve to cushion the (not illustrated) door leaf.
To enable placing a different thickness door leaf between the first clamping element 4 and the second clamping elements 5, it is provided that the first guide elements 54 extend along the second lengthwise axis 53 comprising a first expansion A1, and that the second guide elements 57 extend along the second lengthwise axis 53 comprising a second expansion A2. The first expansion A1 is larger than the second expansion A2. The first guide elements 54 are arranged in the first guidance seats 51 to enable a secure clamping of a door leaf with a first thickness between the first clamping element 4 and the second clamping element 5. Furthermore, the second guide elements 57 are arranged in the second guidance seats 52. The first guide elements 54 are arranged in the second guidance seats 52 to enable the secure clamping of a door leaf with a second thickness, different from the first one, between the first clamping element 4 and the second clamping element5. The second guide elements 57 are located in the first guidance seats 51.
Please note that a plain bearing can be arranged between the first joint part 2 and the second joint part 3 to ease the rotation of the first joint part 2 in relation to the second joint part 3.
Although the present invention has been described with respect to one or more particular embodiments, it will be understood that other embodiments of the present invention may be made without departing from the spirit and scope of the present invention. Hence, the present invention is deemed limited only by the appended claims and the reasonable interpretation thereof.
This application claims the benefit of priority to U.S. provisional patent application Ser. No. 61/440,060, filed on Feb. 7, 2011.
Number | Date | Country | |
---|---|---|---|
61440060 | Feb 2011 | US |