The disclosure relates to a hinge system for connecting two components and a collapsible container.
Empty container or box with fixed side walls requires a lot of space for storing, and therefore, the existing container includes collapsible side walls, thereby reducing the space occupied by the container during transport. Most of these collapsible containers comprise a base in form of rectangular plate structure, wherein the collapsible side walls are coupled to the edges of the base by hinges. The side walls may be interlocked when the container stay erected, usually through engaging the latch of one side wall with the hook of another side wall.
For many containers, the side walls are configured to be higher than half of the width of the base, thus the opposite side walls will be overlapped when they are folded towards each other. Therefore, the side wall which is folded later will go beyond the edge of the side wall which is folded first and will be not parallel to the base but angled. When pluralities of containers are overlapped, the upper side walls will he bent and deformed or damaged with time elapses. For such containers, another drawback is that several containers can not be stacked in a stable way.
To solve this problem, one solution is to connect the side walls to the rods of the base at different height respectively. However, the height of the opposite side walls are different, which leads to increase the cost of manufacturing and maintaining. Further, the workers must pay more attention during the operation which will affect the efficiency to some extend, since the folding work should be executed sequentially. It needs a more advanced alternative solution to solve this problem.
U.S. Pat. No. 5,938,059A disclosed a solution to solve the above problems. One side wall and the opposite side wall may overlap each other in a manner that the side walls are placed parallel to the base and the folding order is not limited through an oval hole provided on the base and a pin the base of the match, the pin being able to move up and down in the oval hole within a distance. This invention solves the problem of folding container to a certain extent. Also, the side walls of container are same with each other. However, it needs additional pins or tubes as pivot shafts and tools should be used to operate the pivot shafts when assembly or disassembly the side walls, which will lower the efficiency.
WO2005102850A1 proposed a more advanced solution with respect to the above solution. The solution of WO2005102850A1 optimizes the assembly method of the side walls and the base. The solution of WO2005102850A1 comprises a side wall having two specific projections with widths (w1, w2) respectively, the base having a recess with an opening. When the side wall is rotated to 45 degrees with respect to the base, the minimum width w2 of the projection may exactly pass through the opening of the recess so that the side walls and the base are assembled or disassembled. The side walls and the base may be assembled or disassembled without tools according to WO2005102850A1.
However, both application need an additional mechanism for moving the erected side walls up and down when lock the side walls to the base, and it is troublesome for assembly or disassembly the side walls according to U.S. Pat. No. 5,938,059A. Further, there is a large space for moving the pivot shafts during the rotation of the side walls according to WO2005102850A1, which leads to a poor operating experience.
The object of the invention is to provide a hinge system and a collapsible container.
To achieve the above object, a hinge system is provided, comprising: a first pin and a second pin provided on a first component; a first slot and a second slot provided on two sides of a concave portion of a second component respectively; wherein the concave portion is formed with one side open and the second slot is formed with a first pit, a second pit being provided on one of the first slot and the second slot; the first pin and the second pin are not on a same axis, the first pin being movably arranged in the first slot, the second pin being movably arranged in the second slot; the first component selectively switches between a first position state and a second position state relative to the second component; when the first component stays in the first position state, the first component is inserted into the second component, the second pin is received by the first pit so as to prevent the second pin from moving towards the notch of the second slot; the first pin acts as a pivot shaft of the rotation of the first component with respect to the second component; when the first component stays in the second position state, as compared to the first position state, the first component is rotated by a predetermined angle from the open side while moving towards the notch of the first slot or the second slot by a predetermined distance, then the first pin or the second pin is received by the second pit, so that the movement of the first pin or the second pin towards to the notch of the first slot or the second slot is limited by the second pit.
The further characteristic of the hinge system is that, the first component is erected with respect to the second component at the first position state, the first component superposing on the second component at the second position state; the first pin and the second pin are cylindrical pins with same diameter.
The further characteristic of the hinge system is that, the second pin acts as a pivot shaft of the first component after the first component switches from the first position state.
The further characteristic of the hinge system is that, the second slot is a shaped slot; the first pit is a pit located at the back side of the slot; the second pit is a width expanded portion at the front side of the slot, and the position of the width expanded portion is closer to the notch of the second slot than the position of the first pit; the first slot is a straight slot; the position of the first pin is higher than the position of the second pin when the side wall stays at the first position state.
The further characteristic of the hinge system is that, the second slot is a shaped slot; the first pit is a pit located at the front side of the slot; the second pit is a width expanded portion at the back side of the slot, and the position of the width expanded portion is closer to the notch of the second slot than the position of the first pit; the first slot is a straight slot; the position of the first pin is lower than the position of the second pin when the side wall stays at the first position state.
The further characteristic of the hinge system is that, the second slot is a shaped slot; the first pit is a pit located at the front side of the slot, the second pit is a width expanded portion at the back side of the slot, and the position of the width expanded portion is closer to the notch of the second slot than the position of the first pit; the first slot is a straight slot; the position of the first pin and the position of the second pin are of equal height when the side wall stays at the first position state.
The further characteristic of the hinge system is that, the first pit and the second pit are formed on a same side or formed on opposing sides.
The further characteristic of the hinge system is that, the first pit is formed on the first slot, and the first pit and the second pit are formed on a same side or formed on opposing sides of the first slot and the second slot respectively.
To achieve the above object, a collapsible container is also provided, comprising a base and several side walls mounted on the base, wherein at least one side wail is connected to the base through the above hinge system, wherein the first component is a side wall, and the second component is the base.
The further characteristic of the hinge system is that two opposing side walls are connected to the base through the hinge system respectively.
The first component is rotated towards the open side, so that the hinge system may switch between the first position state and the second position state, thus the side walls of large containers may be disassembled without using tools, and the side walls may be folded in any order. Further, it does not need additional mechanism to prevent the side walls from moving vertically when the side walls are erected.
As shown in
In
In
Receptacle 81 is provided with a concave portion 810 having two opposing guiding sidewalls 811 and an open side 812. One of the guiding sidewalk 811 is provided with the first slot 814, and the other guiding sidewall 811 is provided with a second slot 824.
The first slot and the second slot are provided on the two opposing guiding sidewalls in the same receptacle respectively. Alternatively, the two opposing guiding sidewalls of one receptacle are both provided with the first slots while the guiding sidewalk of other receptacles are all provided with the second slots. Alternatively, the two opposing guiding sidewalls of one receptacle are both provided with the second slots while the guiding sidewalls of other receptacles are all provided with the first slots. Alternatively, the first slot may be provided only on the one of the guiding sidewalls of one receptacle while another guiding sidewall of said receptacle and the guiding sidewalls of other receptacles are all provided with the second slots. In other words, it is not necessary to provide both the first slot and the second slot on each receptacle, but the first slot and the second slot can be provided on either guiding sidewalk of either receptacles, as long as the first slot and the second slot are both exit on the hinge system of the present invention regardless of the amount of the first slots and the second slots. Accordingly, the first component (side wall) and the second component (base) connected to each other by the hinge system herein may be provided with a first pin and a second pin on the plug of the first component.
The plug 31 has a projecting tongue portion 310, the first pin 314 and the second pin 324 being provided on opposite sides of the tongue portion 310, only one pin 314 being shown in the figure due to the projection angle.
The tongue portion 310 of the plug 31 is inserted into the concave portion 810 of the receptacle 81, and the first pin 314 is inserted into the corresponding, first slot 814. The first pin 314 may be moved or rotated in the first slot 814, and the tongue portion 310 can be turned and out of the open side 812 of the concave portion 810 of the receptacle 81. In one embodiment of the invention, the first slot 814 is a straight slot. The second pin 324 is inserted into the corresponding second slot 824, and the second pin 324 may be moved or rotated in the second slot 824. In one embodiment of the present invention, the second slot 824 is a shaped slot.
The first pin 314 is located at the bottom of the tongue portion 310, and the second pin 324 is located at the upper portion of the tongue portion 310. As shown in the figure, the position of the first pin 314 is lower than the position of the second pin 324.
As shown in
As shown in
As shown in
As shown in
As shown in
When the side walls 1,3 are both folded, the distance between the respective pins 314, 324 of the two side walls 1, 3 (the side wall is connected to the base 8 using a same hinge) along the vertical direction is equal to the distance between the centers of the side walls 1, 3 along the vertical direction, thus the second slot 824 should allow the folded side wall 3 to move vertically by a distance which equal to the sum of the above distance and the diameter of the second pin 324, that is, the distance between the arc transition corner 8243 and the width expanded portion 8244 should be greater or equal to the sum of the above distance and the diameter of the second pin 324.
As shown in
As shown in
The principle of the above embodiment is that the horizontal distance between the two pins 314 and 324 is varied through rotating the side wall 3, such that the second pin will reach a limited position predetermined at the second slot. Therefore, the invention is not limited to the above embodiments. Alternatively, the first pin may be positioned at the first slot when the side walls are erected.
There are other variations, for example, the first pit and the second pit may be provided on different slots, such as the first pit is provided on the second slot, and the second is provided on the first slot.
In the foregoing embodiments, the first pin and the second pin may be cylindrical pins with same or different diameter. Alternatively, a plane may be formed on the cylindrical pin so as to contact with the pits, such that the movement of the pins is limited by the pits. Also, the first pin and the second pin can be other pins with a variety of other shapes.
Number | Date | Country | Kind |
---|---|---|---|
2011 1 0295485 | Sep 2011 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2012/078369 | 7/9/2012 | WO | 00 | 5/7/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/044664 | 4/4/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5938059 | Luburic | Aug 1999 | A |
6152317 | Newby, Sr. | Nov 2000 | A |
7287661 | Knutsson | Oct 2007 | B2 |
7331480 | Nolan | Feb 2008 | B1 |
20010035412 | Kofod | Nov 2001 | A1 |
20040182858 | Smyers | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
101117171 | Feb 2008 | CN |
102502124 | Jun 2012 | CN |
202368860 | Aug 2012 | CN |
102009005212 | Jul 2010 | DE |
2006298468 | Nov 2006 | JP |
WO 2005102850 | Nov 2005 | WO |
Entry |
---|
International Search Report for PCT/CN2012/078369, dated Sep. 19, 2012. |
Extended European Search Report, May 4, 2015; European Patent Application No. 12836349.6 (5 pages). |
Number | Date | Country | |
---|---|---|---|
20140231425 A1 | Aug 2014 | US |