The present invention relates to a hinge.
U.S. Pat. Nos. 4,446,596; 4,672,715; 5,570,498; and 6,901,634 are representative of vehicle body door hinge constructions. Generally, a first bracket on the vehicle body is hingedly connected to a second bracket on vehicle door for movement of the vehicle door between open and closed positions.
As shown in U.S. Pat. No. 4,672,715, for example, a coil spring is positioned between a check arm and the second bracket to bias the check arm into engagement with an engagement member on the first bracket. Each end of the spring is seated in essentially a fixed orientation with the check arm and the second bracket, respectively. A problem, however, is that the coil spring is subject to lateral bending as the check arm moves with respect to the second bracket causing the spring to curve in the direction the hinge pivots. This increases complex stresses and fatigue in the spring, thereby reducing spring life.
The present invention endeavors to provide an improved hinge.
The present invention provides a hinge for connecting a panel to a body for movement between open and closed positions. The hinge comprises a first bracket constructed to be mounted to one of the body and the panel in an installed position of the hinge, and a second bracket constructed to be mounted to the other of the body and the panel in the installed position of the hinge. At least one hinge pin pivotally connects the first and second brackets. An engaging member is provided on the first bracket, and a check arm is movably connected to the second bracket. The check arm has an engaging surface with at least one detent. The engaging surface is engaged with the engaging member. A spring seat is pivotally mounted to the hinge pin, and a spring has one end engaging the spring seat and the other end engaging the check arm so as to bias the check arm into engagement with the engaging member. As the first and second brackets pivot relative to one another the engaging member and check arm move relative to one another with the spring biasing the check arm into engagement with the engaging member, and the spring seat pivots about the at least one hinge pin to accommodate a change in orientation between the check arm and the second bracket.
Another aspect of the invention relates to a vehicle having a body, a panel, and the above-described hinge for connecting the panel to the body.
Other objects, features, and advantages of the present invention will become apparent from the following detailed description, the accompanying drawings, and the appended claims.
The hinge 10 comprises a body bracket 12 and a door bracket 14. The term bracket is a generic structural term that refers to any structure that attaches the hinge 10 to an object, and the illustrated brackets 12, 14 should not be regarded as limiting. The body bracket 12 is constructed to be mounted to the vehicle body, and the door bracket 14 is constructed to be mounted to the vehicle door panel. That is, when the hinge 10 is in its installed position, the body bracket 12 is mounted to the vehicle body and the door bracket 14 is mounted to the vehicle door panel. The term installed position refers to the normal use position of the hinge wherein it hingedly connects the panel to the body.
The body bracket 12 is stamped from a piece of sheet metal, but may be formed in any suitable manner. The illustrated body bracket 12 has a base 16 and a pair of walls 18, 20 extending generally perpendicularly from the base 16. A plurality of holes (in the illustrated embodiment there are three) are formed through the base 16 and receive fasteners 22 for securely attaching the bracket 12 to a vehicle body. Any type of fasteners may be used, such as rivets, screws, nuts/bolts, etc., and any number of holes may be provided for receiving such fasteners. Also, instead of a mechanical fastener, the body bracket 12 may be attached to the vehicle body by welding.
The base 16 is somewhat flared, and is narrower at the end where the hinged connection is established, and wider at the opposite end. Also, the walls 18, 20 are higher at the narrower end of the base 16, and have a generally triangular shape as seen in
The illustrated body bracket 12 is provided solely as an example, and should not be regarded as limiting. To the contrary, the body bracket 12 may have any construction or configuration.
The door bracket 14 is stamped from a piece of sheet metal, but may be formed in any suitable manner. The illustrated door bracket 14 has a base 24 including a pair of flanges 30, 32, and a pair of walls 26, 28 extending generally perpendicularly from the base 24. A plurality of holes 34, 36 (in the illustrated embodiment there are two) are formed through the flanges 30, 32 of the base 24 and receive fasteners (not shown) for securely attaching the bracket 14 to a vehicle door panel. Any type of fasteners may be used, such as rivets, screws, nuts/bolts, etc., and any number of holes may be provided for receiving such fasteners. Also, instead of a mechanical fastener, the door bracket 14 may be attached to the vehicle door panel by welding. An optional strap 38 also connects the inner ends of the walls 26, 28 to provide additional structural rigidity. The strap 38 in some configurations may also serve as the sole structure connecting the lateral sides of the bracket 14.
The illustrated door bracket 14 is provided solely as an example, and should not be regarded as limiting. To the contrary, the door bracket 14 may have any construction or configuration.
The walls 26, 28 of the door bracket 14 are spaced apart so as to nest within the walls 18, 20 of the body bracket 12. Holes in the walls 18, 20, 26, 28 are aligned and receive a hinge pin 40 to pivotally connect the brackets 12, 14 to one another for opening and closing movements. To secure the hinge pin 40, one end may have a wide head (as shown at 42 in
The hinge 10 further comprises an engaging member 46 provided on the body bracket 12. The engaging member comprises a roller 48 rotatably mounted to the body bracket 12 about a roller axis parallel to the hinge pin 40 and the check arm axis, which is discussed below. The illustrated roller 48 rotates about a shaft 50 extending between the walls of the brackets 12, 14 along the roller axis, and may have any construction or configuration. For example, reference may be made to U.S. Pat. No. 6,901,634, the entirety of which is incorporated herein by reference. The shaft 50 may be mounted in the same manner as hinge pin 40, or in any other suitable manner. The roller 48 may be received on the shaft 50 in any suitable manner. Preferably but not necessarily, the roller 48 has an annular groove 52 for receiving the check arm 60, to be described below.
Alternatively, the engaging member 46 could be a fixed structure, such as a fixed shaft or any other structure suitable for engaging the check arm 60. Thus, the engaging member 46 illustrated and described should not be regarded as limiting, and any structure that engages the check arm 60 for controlling hinge movement may be used within the scope of the present invention.
The check arm 60 is movably connected to the door bracket 14. Preferably, the check arm 60 is pivotally connected to the door bracket 14 about a check arm axis parallel to the hinge pin 40 and the roller axis, and extends between the walls of the hinge brackets 12, 14. In the illustrated embodiment, a shaft 62 is connected between the walls 26, 28 of the door bracket 14, and one end of the check arm 60 is pivotally connected to the shaft 62, preferably by a bearing that is fixed against axial movement along the shaft 62. Other movable connections for accommodating motions of the check arm 60 may be provided, and the illustrated connection should not be regarded as limiting.
The check arm 60 has an engaging surface 64 with at least one detent. Two detents 66, 68 are illustrated. This engaging surface 64 is engaged with the engaging member 46, and, in particular, the roller 48 in the illustrated embodiment. The groove 52 on the roller 48 assists in maintaining the check arm 60 in engagement with the roller 48, and restricts relative movement of the check arm 60 in the axial direction of the roller 48. As will be discussed in further detail below, each detent provides a check position for the movement of the brackets 12, 14.
A spring seat 70 is pivotally mounted to the hinge pin 40 between the walls of the hinge brackets 12, 14. The spring seat 70 is best seen in
A spring 82 has one end engaging the spring seat 70 and the other end engaging the check arm 60 so as to bias the check arm 60 into engagement with the engaging member 46. The spring 82 is also located between the walls of the hinge brackets 12, 14. The illustrated example of spring 82 is a coil spring, but the spring 82 may take any construction or configuration suitable for biasing the check arm 60. In the illustrated embodiment, the end of the spring 82 engaging the spring seat 70 has the projection 78 extending into its interior, and the terminal volute (i.e., the last coil or winding) is engaged with the bearing surface 80. Likewise, the free end of the check arm 60 has a projection 84 on its side opposite the engaging surface 64. The opposite end of the spring 82 engages the check arm with the projection 84 extending into its interior and the terminal volute engaging the check arm 60 on opposing sides of the projection 84. The use of these projections 78, 84 within the interior of the spring 82 assist in securing the spring 82 in place between the spring seat 70 and the check arm 60. The illustrated spring 82 and its engagement with the check arm 60 and spring seat 70 is an example only, and should not be regarded as limiting. To the contrary, any suitable construction or mounting for the spring may be used.
As the first and second brackets 12, 14 pivot relative to one another in the opening and closing directions, the engaging member 46 and check arm 60 move relative to one another with the spring 82 biasing the check arm 60 into engagement with the engaging member 46. When the detents 66, 68 engage the engaging member 46, this provides a checked position. Specifically, the spring 82 extends slightly, and the engagement between the engaging member 46 and the respective detent 66, 68 resists relative movement between the brackets 12, 14. To move the brackets further in one direction or the other, sufficient force is applied to urge the check arm 60 against the spring 82 and disengage the respective detent 66, 68 from the engaging member 46.
During the movement of the hinge brackets 12, 14, the spring seat 70 pivots about the hinge pin 40 to accommodate a change in orientation between the check arm 60 and the door bracket 14. This is beneficial, as it allows the spring 82 to generally maintain a straighter orientation instead of experiencing too much curvature. This reduces the complex stresses associated with lateral bending of the spring, and reduces fatigue. With less fatigue, spring life may be increased, or similar spring life may be achieved with a less expensive spring.
Preferably, the spring seat 70 is molded from nylon or a suitable low friction material, and the hinge pin 40 is made of a metal, such as steel. This reduces noise between the pin 40 and the spring seat 70 (i.e., its mounting portion 72).
The illustrated embodiment has an overall advantageous design in that it has a reduced package size relative to the functionality provided. Specifically, providing the checking device (i.e., the engaging member 46, the check arm 60, and the spring seat 70) within the area between the walls of the brackets 12, 14 reduces overall size.
In the context of the illustrated embodiment, certain components have been described as being on the door bracket or the body bracket. However, the locations of these components can be reversed, and thus the illustrated embodiment is not intended to be limiting. In the claims, these brackets are referred to as a first bracket constructed to be mounted to one of the body and the panel and a second bracket constructed to be mounted to the other of the body of the panel. These terms are used to be clear that the first bracket could be either the bracket that attaches to the body or the bracket that attaches to the panel, and that the second bracket would be the other.
Any patents or applications referred to in this application, including any in the Background section, are incorporated into the present application.
The foregoing illustrated embodiment(s) has or have been provided solely for illustrating the structural and functional principles of the present invention, and should not be regarded as limiting. To the contrary, the present invention is intended to encompass all alterations, modifications, substitutions, and equivalents within the spirit and scope of the following claims.
This application claims priority to U.S. Provisional Application Ser. No. 60/809,851, filed Jun. 1, 2006, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2992451 | Schonitzer et al. | Jul 1961 | A |
4090273 | Hurst, Jr. | May 1978 | A |
4446596 | Arlauskas | May 1984 | A |
4672715 | Beckwith | Jun 1987 | A |
5511444 | Clausen | Apr 1996 | A |
5570498 | Hipkiss | Nov 1996 | A |
5867869 | Garrett | Feb 1999 | A |
5926917 | Gantz | Jul 1999 | A |
6105208 | Westerdale et al. | Aug 2000 | A |
6591452 | Jacquin | Jul 2003 | B2 |
6607236 | Mooy | Aug 2003 | B2 |
6681448 | Liang | Jan 2004 | B2 |
6687953 | Liang | Feb 2004 | B1 |
6901630 | Liang | Jun 2005 | B2 |
6901634 | Shaw | Jun 2005 | B2 |
6938303 | Watson et al. | Sep 2005 | B2 |
20020059692 | Jacquin | May 2002 | A1 |
20040020014 | Linnenbrink et al. | Feb 2004 | A1 |
20060208406 | Al-Dahhan | Sep 2006 | A2 |
Number | Date | Country | |
---|---|---|---|
20070277347 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
60809851 | Jun 2006 | US |