Not Applicable.
Not Applicable.
The present invention relates in general to decorative covers installed on internal combustion engines for automotive vehicles, and, more specifically, to the mounting of an engine cover to an air intake manifold.
The engine compartment of a vehicle presents various challenges for vehicle engineers and designers in providing functionality, serviceability, and aesthetics in a relatively small space. Consideration must also be given to manufacturing and assembly costs in addition to weight, which ultimately impacts fuel economy, to deliver a competitive product. An engine cover is typically used in order to enhance the overall appearance of the engine compartment and to reduce the propagation of engine noise. Injection molded polymers are commonly used to fabricate an engine cover.
The mounting of an engine cover to an engine typically is comprised of several steel brackets, fasteners, or other joining structures such as hooks or clamps. The use of several intermediate components which attach on one side to the engine cover and on the other side to an engine component (e.g., an air intake manifold or a cam cover) creates many potential sites for NVH (noise, vibration, and harshness) problems such as squeak and rattle. A relatively large part count leads to added part costs and an associated increase in manufacturing/assembly costs.
The air intake manifold which directs incoming air to the respective engine cylinders of a combustion engine has historically been fabricated from metal. More recently, various molded materials including thermoplastics, resins, and polymers have been used to manufacture intake manifolds. Preferred materials may include nylon or other polyamides which may further include filler materials such as glass fibers. A switch to plastic materials has achieved a reduction in weight, but reliance on brackets and fasteners with a high parts count have continued.
In co-pending U.S. application Ser. No. 14/525,578, filed Oct. 28, 2014, entitled “Integrally-Molded Intake Manifold Connector for Engine Cover of Combustion Engine,” which is incorporated herein by reference in its entirety, a hinged connection is disclosed wherein hinge pins extending from radial arms of the engine cover each carry an elastomeric ferrule and wherein the hinge pins are received in slots formed by transverse strips carried by structural ribs of the manifold body. A potential disadvantage of such a structure relates to manufacturing and assembly of the ferrules (e.g., O-rings) onto the hinge pins. The proper placement of the ferrules is critical for proper NVH (noise, vibration, and harshness) performance. However, the disclosed arrangement may be difficult to reliably implement with automated manufacturing techniques.
In one aspect of the invention, a combustion engine system comprises an intake manifold body comprised of molded polyamide defining a plurality of runners, an air intake passage, and parallel slotted ribs projecting from an external surface of the body oriented longitudinally and juxtaposed with a first edge of the body. Each slotted rib has a C-shaped slot with a mouth directed away from the first edge. An engine cover is comprised of a shroud section adapted to cover the intake manifold body and a hinge section adapted to join with the slotted ribs. The hinge section includes a spindle rotatably received by the slots. Elastomeric grommets are disposed over the slotted ribs and within the slots adapted to compress within the mouth to capture the spindle within the slots. The spindle and cover are rotatable with respect to the slots.
In the present invention, an internal combustion engine supports an engine cover. The cover may preferably be comprised of a molded polymeric material such as nylon, PVC, or polyurethane, for example. it may include various details for accommodating features and accessories of an engine, such as an oil port.
As shown in
U-shaped receiver strip 22 follows a U-shaped path creating a slot 23 with a closed end 24 which is proximate to first edge 17 of body 12. An open end 25 of slot 23 receiving a hinge pin on the engine cover as described below. Preferably, slot 23 follows a profile which provides an intermediate narrowing in the slot width, resulting in an expanded pocket at closed end 24 to retain a hinge pin.
Engine cover is shown in greater detail in
Returning to
A molded polyamide intake manifold body 40 defines a plurality of runners 41 and an air intake passage 42. Outer strengthening ribs integrally formed with body 40 include a pair of parallel slotted ribs 43 and 44 projecting from an external surface of body 40 and oriented longitudinally and juxtaposed with a first edge 45 of body 40. Each slotted rib 44 and 43 provides a C-hook with a pair of arcuate fingers defining each C-shaped slot 46 and 47, respectively. Each slot has a mouth between the arcuate fingers that is directed away from edge 45.
An engine cover 15 has a shroud section 51 adapted to cover intake manifold body 40 and a hinge section 52 adapted to join with slotted ribs 43 and 44. Within hinge section 52, a spindle 53 extends transversely for being inserted into respective C-shaped slots 46 and 47.
In order to simultaneously create a snap-in retention mechanism for the spindle and provide vibrational damping, elastomeric grommets 55 and 56 are disposed over slotted ribs 43 and 44, respectively. Grommets 55 and 56 are generally C-shaped and have arcuate sections 57 and 58 for lining the interior side of C-shaped slots 46 and 47. Grommets 55 and 56 further fit within the mouth of each slot and are adapted to compress within each respective mouth when spindle 53 is passing through so that spindle 53 may be captured within slots 46 and 47. Once spindle 53 passes through each mouth into the internal recesses of each grommet 55 and 56, spindle 53 and cover 50 are rotatable with respect to the slots.
As shown in
As shown in
Number | Name | Date | Kind |
---|---|---|---|
4222360 | Fujikawa | Sep 1980 | A |
4596301 | Nagashima | Jun 1986 | A |
5491607 | Bennett | Feb 1996 | A |
6167855 | Mammarella | Jan 2001 | B1 |
6302074 | Bolsover | Oct 2001 | B1 |
6321708 | Wehner | Nov 2001 | B1 |
7392784 | Yamasaki et al. | Jul 2008 | B2 |
20070022670 | Herter | Feb 2007 | A1 |
20110100315 | Vichinsky | May 2011 | A1 |
20110253080 | Newman | Oct 2011 | A1 |
20150190213 | Wang | Jul 2015 | A1 |
20160115918 | Kulkarni | Apr 2016 | A1 |
20160206920 | Gillis | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
2004132219 | Apr 2004 | JP |
2004198801 | Jul 2004 | JP |
2006183571 | Jul 2006 | JP |
2006336743 | Dec 2006 | JP |
2013108704 | Jul 2013 | WO |