The present invention relates generally to improvements in embolic protection systems and methods. In particular, the present invention relates to an improved embolic protection device and system for enabling movement thereof through a patient's tortuous vasculature to a location distal to an interventional procedure site for deployment.
A variety of non-surgical interventional procedures have been developed over the years for opening blood vessels in a patient which are stenosed or occluded by the build up of plaque or other substances on the walls of the blood vessel. Such procedures usually involve the percutaneous introduction of the interventional device into the lumen of the artery, usually through a catheter.
One widely known and medically accepted procedure is balloon angioplasty in which an inflatable balloon is introduced within the stenosed region of the blood vessel to dilate the occluded vessel. The balloon catheter is initially inserted into the patient's arterial system and is advanced and manipulated into the area of stenosis in the artery. The balloon is inflated to compress the plaque and press the vessel wall radially outward to increase the diameter of the blood vessel.
Other procedures destroy or remove the plaque build up from the walls of the blood vessel. Laser angioplasty utilizes a laser to ablate the stenosis by super heating and vaporizing the deposited plaque. Atherectomy utilizes a cutting blade which is rotated to shave the deposited plaque from the arterial wall. A vacuum catheter may be used to capture the shaved plaque or thrombus from the blood stream during this procedure.
In another widely practiced procedure, the stenosis can be treated by placing a device known as a stent into the stenosed region to hold open and sometimes expand the segment of the blood vessel or other arterial lumen. Stents are particularly useful in the treatment or repair of blood vessels after a stenosis has been compressed by percutaneous transluminal coronary angioplasty (PTCA), percutaneous transluminal angioplasty (PTA) or removal by atherectomy or other means. Stents are usually delivered in a compressed condition to the target site, and then are deployed at the target location into an expanded condition to support the vessel and help maintain it in an open position.
The above non-surgical interventional procedures, when successful, avoid the necessity of major surgical operations. However, there is one common problem associated with all of these non-surgical procedures, namely, the potential release of embolic debris into the bloodstream which can occlude distal vasculature and cause significant health problems to the patient. For example, during deployment of a stent, it is possible that the metal struts of the stent can cut into the stenosis and shear off pieces of plaque which become embolic debris that can travel downstream and lodge elsewhere in the patient's vascular system. Pieces of plaque material can sometimes dislodge from the stenosis during a balloon angioplasty procedure and become released into the bloodstream. Additionally, while complete vaporization of plaque is the intended goal during a laser angioplasty procedure, particles are not always fully vaporized and may enter the bloodstream.
When any of the above-described procedures are performed, for example, in the carotid arteries, the release of emboli into the circulatory system can be extremely dangerous to the patient. Debris that is carried by the bloodstream to distal vessels of the brain may cause these cerebral vessels to occlude, resulting in a stroke, and in some cases, death. Therefore, although carotid percutaneous transluminal angioplasty has been performed in the past, the number of procedures performed has been limited due to the justifiable fear of causing an embolic stroke should embolic debris enter the bloodstream and block vital downstream blood passages.
Medical devices have been developed to address the problem of debris or fragments entering the circulatory system following treatment by one of the above-identified procedures. One approach has been to cut any debris into minute sizes which pose little chance of becoming occluded in major vessels within the patient's vasculature. However, it is often difficult to control the size of the fragments which are formed, and the potential risk of vessel occlusion still exists, making such procedures in the carotid arteries a high-risk proposition.
Other techniques which have been developed to address the problem of removing embolic debris include the use of catheters with a vacuum source which provides temporary suction to remove embolic debris from the bloodstream. However, such systems still present drawbacks since the vacuum catheter may not always remove all of the embolic material from the bloodstream and the powerful suction could cause additional damage to the patient's vasculature.
Techniques which have had some limited success include the placement of an embolic protection device such as a filter or trap downstream from the treatment site to capture embolic debris before it reaches the smaller blood vessels downstream. Such embolic protection devices are adapted to enable the capture of embolic debris which may be released into the bloodstream during the treatment, while still allowing a sufficient amount of oxygenated blood to flow past the device to supply vital organs downstream from the treatment site.
However, there have been problems associated with embolic protection devices, particularly during the expansion, deployment, and formation of the embolic protection device within the blood vessel. The deployment of an embolic protection device may not result in full expansion of the device to properly seal off the circumference of the inner wall of the blood vessel, particularly when the embolic protection device is deployed in tortuous locations having sharp bends. The length of the embolic protection device itself may result in partial collapse of its structure due to lateral loading from the sharp bend in the vessel walls, thereby causing a loss of apposition between the embolic protection device and wall. This can result in embolic material bypassing the filter.
There is a need for an improved system for treating stenosis in body vessels having sharp bends while enabling an embolic protection device to move through a patient's tortuous vasculature to a location distal to an interventional procedure site. Such a system should expand so as to efficiently and effectively seal off the entire circumference of the inner wall of the body vessel, capture embolic material, and prevent embolic material from bypassing the embolic protection device. The system should be relatively easy for a physician to use, while enabling the effective delivery and recovery of a filtering system capable of removing embolic debris released into the bloodstream. The invention disclosed herein satisfies these and other needs.
The present invention, in general, provides a filtering device for capturing and removing embolic debris from a body vessel and a system for insertion and removal of the filtering device. Embolic debris may be created during the performance of a therapeutic interventional procedure, such as a balloon angioplasty or stenting procedure. The present invention is potentially useful when performing balloon angioplasty, stenting procedures, laser angioplasty or atherectomy in critical body vessels, such as the carotid, renal, and saphenous vein graft arteries, where the release of embolic debris into the bloodstream could possibly occlude the flow of oxygenated blood to the brain or other vital organs which can cause devastating consequences to the patient.
In one aspect, the present invention includes a filtering device. The filtering device is adapted to expand against a body vessel wall to seal off the inner surface thereof, thereby preventing embolic material from bypassing the filtering device and lodging in and blocking body vessels downstream from an interventional procedure site. The filtering device is further adapted for maneuverability through tortuous anatomy having tight bends and for implantation in a curved portion of a body vessel. The present invention is potentially useful for enabling an interventional procedure to be performed in vital arteries, such as the carotid arteries, in which critical downstream body vessels can become blocked with embolic debris, including the main body vessels leading to the brain or other vital organs and in which effective implantation of an embolic protection device is often complicated by sharp bends in the body vessel. As a result, the present invention provides the physician with a higher degree of confidence in the efficient operation of the filtering device for the collection and removal of embolic debris from the body vessel when performing high-risk interventional procedures.
More particularly, the filtering device may have a pre-formed expandable shape and may include a guide wire, a pre-formed expandable basket or cage, filter material, and one or more hinges. The guide wire includes a distal end adapted to be positioned within the body vessel and to extend to a position distal to an interventional procedure site. The pre-formed expandable cage is adapted to engage the distal end of the guide wire and enables the filtering device to expand against and seal off the inner surface of a body vessel wall upon deployment. Filter material attached to the expandable cage facilitates blood flow therethrough while capturing for removal embolic debris released during an interventional procedure. The hinge provides added flexibility to allow the filtering device to be maneuvered through tortuous anatomy and to be deployed in a body vessel having sharp bends without deforming the cage.
Undeformed expansion of the expandable cage precludes the formation of a gap between the filtering device and the body vessel wall, through which embolic material may otherwise flow. The hinge facilitates maneuvering the filtering device through tortuous anatomy by allowing the cage to move independent of the guide wire while still maintaining its connection to the guide wire. Furthermore, the hinge reduces the tendency of the cage to partially collapse when deployed in a body vessel having a sharp bend due to lateral loading from the vessel walls. Moreover, the hinge ensures that the cage will maintain proper wall apposition, thereby providing effective blood filtering and embolic debris capture.
In another aspect, the present invention includes a system for delivering the filtering device through tortuous anatomy, deploying the filtering device in a body vessel at a location distal to an interventional procedure treatment site, and removing the filtering device with the captured embolic material. The system includes a delivery sheath and the aforementioned filtering device adapted to be retained in an unexpanded state by the delivery sheath. An obturator may be provided at the distal end of the guide wire to facilitate maneuvering the system in the patient's vasculature. In one configuration of the present invention, the hinge is located relative to the expandable cage to allow the cage to move independently from the axial direction defined by the portion of the guide wire which is distal to the expandable cage while still maintaining a connection between the cage and guide wire. In this manner, the hinge acts somewhat like a universal joint allowing the free articulation of the expandable cage on the guide wire to provide additional flexibility to the composite cage/guide wire, especially in tight bends in the patient's vasculature. The hinge also allows the effective length of the cage to be reduced, which helps resist the tendency of the cage to partially deform when positioned at sharp bends, thus precluding the formation of a gap between the cage and the body vessel wall. In another configuration of the present invention, a hinge is located so as to allow the cage to move independently from the axial direction defined by the portion of the guide wire which is proximal to the expandable cage while still maintaining a connection between the cage and guide wire. In still another configuration of the present invention, hinges are located so as to allow the cage to move independently from the axial directions defined by both the portion of the guide wire that is proximal to the expandable cage and the portion of the guide wire that is distal to the expandable cage while still maintaining a connection between the cage and guide wire, thereby further reducing the lateral loading on the cage due to sharp bends in the body vessel.
The above objects and advantages of the present invention, as well as others, are described in greater detail in the following description, when taken in conjunction with the accompanying drawings of illustrative embodiments.
The present invention is directed to an improved filtering device and system for delivering, deploying, and removing the filtering device to facilitate efficient and effective performance of an interventional procedure in a body vessel. The filtering device filters the blood in the body vessel in order to pass blood therethrough while capturing embolic material released into the body vessel during the interventional procedure. Additionally, the filtering device is adapted to enable an expandable cage and filter to freely expand in the body vessel from an unexpanded state. Moreover, the filtering device facilitates placement and deployment of an expandable cage and filter in a body vessel having sharp bends without loss of apposition between the deployed cage and the vessel wall. The system is adapted to facilitate delivery and deployment of the filtering device to a location distal to an interventional procedure site. Additionally, the system is adapted to remove the filtering device and the captured embolic material from the body vessel after the interventional procedure is completed. The embodiments of the improved system are illustrated and described herein by way of example only and not by way of limitation. While the present invention is described in detail as applied to the carotid arteries of the patient, those skilled in the art will appreciate that it can also be used in other body lumens as well, such as the coronary arteries, renal arteries, saphenous veins and other peripheral arteries. Additionally, the present invention can be utilized when performing any one of a number of interventional procedures, such as balloon angioplasty, laser angioplasty or atherectomy.
Referring to
The therapeutic interventional procedure may comprise implanting an expandable interventional instrument (not shown) to compress the build-up of plaque 22 against the inside wall 24 of a body vessel 12 of the patient, such as the carotid artery, and to increase the diameter of the occluded area 14 of the artery 26, thereby restoring sufficient blood flow to the downstream vessels leading to the brain. The expandable interventional instrument not only helps increase the diameter of the occluded area 14, but also may help prevent restenosis at the treatment area 14.
The delivery sheath 16 includes an elongated shaft 32 having a distal portion 30. The delivery sheath 16 may be formed of conventional materials of construction. Preferably, the shaft 32 is made out of a flexible material. Alternately, the shaft 32 can be made out of relatively inelastic materials such as polyethylene, polyvinyl chloride, polyesters and composite materials. The various components may be joined by suitable adhesive or cyanoacrylate based adhesives. Heat shrinking, heat bonding or laser bonding may also be employed where appropriate. Plastic-to-plastic or plastic-to-metal joints can be effected by a suitable acrylonitrile or cyanoacrylate adhesive. Variations can be made in the composition of the materials to vary properties as needed. The expandable interventional instrument may be adapted to be located in the distal portion 30 of the delivery sheath 16 for delivery and expansion at the treatment area 14.
The filtering device 18 expands within the body vessel 12, allowing blood to pass therethrough while capturing embolic material 28 released during the interventional procedure. The filtering device 18 includes a guide wire 21, expandable cage assembly 34, filter material 36, and one or more hinges 38. Stop fittings 40, 42 may be located at the proximal and distal ends of the filtering device 18. The filtering device 18 is adapted to be delivered to a position in the body vessel 12 distal the treatment area 14.
The guide wire 21 facilitates guiding the system 10 through the patient's vasculature past the treatment area 14 and may have a coiled tip 44 at the distal end 46 to provide additional flexibility. The guide wire 21 may be a single continuous piece extending through the expandable cage assembly 34. Alternately, the guide wire 21 may consist of separate distal and proximal sections, each section attached to, but not extending through, the expandable cage assembly 34, thereby reducing the tendency of the expandable cage assembly to deform in sharp bends. The guide wire 21 is typically between one-hundred thirty and three hundred centimeters long and extends two to four centimeters beyond the distal end of the filtering device 18, but it is contemplated that the invention may incorporate other guide wire 21 lengths as may be required.
The expandable cage assembly 34 has a distal end 48 and proximal end 50 which support the filter material 36 while preventing gaps between the filtering device 18 and the inside wall 24 of the body vessel 12 after deployment. The expandable cage assembly 34 is expandable to capture embolic material 28 and collapsible to retain the captured embolic material 28. The expandable cage assembly 34 is adapted to be retained in an unexpanded state by the delivery sheath 16 and expand upon retraction of the delivery sheath 16.
The expandable cage assembly 34 may include a plurality of self-expanding struts 52, each having a proximal portion 54 and a distal portion 56. It should be appreciated that this is just one particular example of an expandable cage assembly which may be used in accordance with the present invention. The expandable cage assembly 34 may be relatively flexible at the distal end 48 and relatively stiff at the proximal end 50, thereby facilitating its maneuverability in the body vessel 12 and its expansion when the delivery sheath 16 is retracted. It is contemplated that the invention may incorporate various forms of self-expanding struts known within the art. It is also contemplated that the plurality of self-expanding struts 52 may each include a radioopaque marker (not shown), thereby enabling verification of the opening or closing of the expandable cage assembly 34. It is further contemplated that the struts 52 may be made of a radioopaque material.
In one particular embodiment, the diameter of the distal end 48 of the expandable cage assembly 34 is less than the diameter of the proximal end 50 of the expandable cage assembly 34, the diameter in the unexpanded state increasing gradually along the length of the expandable cage assembly 34 from the distal end 48 to the proximal end 50. The expandable cage assembly 34 is typically one-and-one-half to three-and-one-half centimeters long and may be tubular-shaped, although it is contemplated that the invention may incorporate various sizes and shapes known within the art. The expandable cage assembly 34 may be comprised of a material, such as NITINOL, having advantageous superelasticity characteristics and which facilitates efficient formation of the expandable cage assembly 34. The expandable cage assembly 34 may be formed by heat treating or any other method known within the art. Radioopaque markers (not shown) may be comprised of platinum or gold bands or any other radioopaque material.
A proximal stop fitting 40 may be mounted on the guide wire 21 at the proximal end 50 of the expandable cage assembly 34 and a distal stop fitting 42 may be mounted on the guide wire 21 at the distal end 48 of the expandable cage assembly 34. The stop fittings 40, 42 have generally conical-shaped end portions for smooth transitions between the expandable cage assembly 34 and guide wire 21 and to provide smooth interfacing surfaces for enabling the expandable cage assembly 34 to rotate while preventing translational movement thereof. Alternately, a stop fitting 43 may be located distal to the proximal end 50 of the expandable cage assembly 34 to prevent the proximal end 50 of the cage from translating longitudinally along the guide wire while allowing the expandable cage assembly 34 to rotate freely thereon. The stop fittings 40, 42 may be secured to the guide wire 21 by a medical grade adhesive, crimping, welding, soldering, or any other method known within the art.
The filter material 36 filters the blood in the body vessel 12, allowing a sufficient amount of blood to flow while preventing embolic material 28 from passing therethrough, and may be defined by a plurality of openings 59. The filter material 36 may be parabolic-shaped, but it is contemplated that the invention can incorporate various filter material shapes known within the art. The filter material 36 may be comprised of polyurethane or any material known within the art having blood filtering capabilities. The filter material 36 may be secured either inside or outside the expandable cage assembly 34 by gluing, heat treating, or any other method known within the art.
A hinge 38 provides additional flexibility and can reduce the effective length of the expandable cage assembly 34, thereby ensuring that proper apposition with the inside wall 24 of the body vessel 12 will be maintained even if the body vessel 12 has a sharp bend. Although the guidewire 21 is flexible, the expandable cage assembly 34 of a filtering device 18 without a hinge 38 may partially collapse due to lateral loading from the body vessel 12 wall 28 when it is deployed in a body vessel 12 having a sharp bend. If the expandable cage assembly 34 partially collapses, apposition with the inside wall 24 of the body vessel 12 may be lost, thereby allowing embolic material 28 to bypass the filter material 36.
It is contemplated that a hinge 38 may be located on the guide wire 21 either at the distal end 48 of the expandable cage assembly 34 as shown in
The obturator 20 has an outer diameter at the proximal end 68 which is essentially the same as the outer diameter of the delivery sheath 16 and converges to an outer diameter at the distal end 70 which is slightly larger than the outer diameter of the guide wire 21. The obturator 20 is attached to the guide wire 21 such that its distal end 70 covers a portion of the of the guide wire 21 distal end 46 and its proximal end 68 lies distal of any stop fitting 42 or hinge 38 at the distal end 48 of the expandable cage assembly 34. When the filtering device 18 is retained in an unexpanded state by the introducer sheath 16, the introducer sheath 16 distal end 30 and obturator 20 proximal end 68 present a smooth profile for maneuvering the system 10 through the patient's vasculature. The obturator 20 is either partially separated from the expandable cage assembly 34 by a portion of the guide wire 21 (see
In use, the system 10 may be positioned in the patient's vasculature utilizing any of a number of different methods known in the art. In a preferred method, the delivery sheath 16 is placed in the body vessel 12 by utilizing the guidewire 21, which is inserted into the patient's vasculature and manipulated by the physician to the treatment area 14. Once the distal end 30 of the delivery sheath 16 is located distal to the treatment area, the delivery sheath 16 is retracted, thereby allowing the expandable cage assembly 34 to expand. The expansion of the expandable cage assembly 34 is enhanced by the self-expanding struts 52 and radioopaque markers enable verification of expanding or collapsing of the expandable cage assembly 34. After the expandable cage assembly 34 is deployed distal of the treatment area 14, the interventional procedure is performed with the filter material 36 capturing embolic material 28 dislodged during the procedure. After the interventional procedure is completed, the expandable cage assembly 34 is retracted into the delivery catheter 16 or another recovery sheath (not shown), thereby causing the expandable cage assembly 34 and filter material 36, containing the captured embolic material 28, to collapse. The system 10 is then withdrawn from the patient's body vessel 12.
In view of the foregoing, it is apparent that the system and method of the present invention enhances substantially the effectiveness of performing interventional procedures, specifically in body vessels having sharp bends, by maintaining apposition between the expandable filtering device and the wall of the body vessel in which it is deployed, thereby effectively capturing embolic material created during the interventional procedure. Further modifications and improvements may additionally be made to the system disclosed herein without departing from the scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.
This application is a continuation of application Ser. No. 09/944,633 filed Aug. 31, 2001 now U.S. Pat. No. 6,592,606.
Number | Name | Date | Kind |
---|---|---|---|
3952747 | Kimmell, Jr. | Apr 1976 | A |
4425908 | Simon | Jan 1984 | A |
4494531 | Gianturco | Jan 1985 | A |
4612931 | Dormia | Sep 1986 | A |
4619246 | Molgaard-Nielsen et al. | Oct 1986 | A |
4643184 | Mobin-Uddin | Feb 1987 | A |
4650466 | Luther | Mar 1987 | A |
4662885 | DiPisa, Jr. | May 1987 | A |
4688553 | Metals | Aug 1987 | A |
4706671 | Weinrib | Nov 1987 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4727873 | Mobin-Uddin | Mar 1988 | A |
4781177 | Lebigot | Nov 1988 | A |
4790812 | Hawkins, Jr. et al. | Dec 1988 | A |
4790813 | Kensey | Dec 1988 | A |
4794928 | Kletschka | Jan 1989 | A |
4832055 | Palestrant | May 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4921478 | Solano et al. | May 1990 | A |
4921484 | Hillstead | May 1990 | A |
4969891 | Gewertz | Nov 1990 | A |
4990156 | Lefebvre | Feb 1991 | A |
4997435 | Demeter | Mar 1991 | A |
4998539 | Delsanti | Mar 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5064428 | Cope et al. | Nov 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5092839 | Kipperman | Mar 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5100425 | Fischell et al. | Mar 1992 | A |
5102415 | Guenther et al. | Apr 1992 | A |
5108419 | Reger et al. | Apr 1992 | A |
5152777 | Goldberg et al. | Oct 1992 | A |
5158548 | Lau | Oct 1992 | A |
5160342 | Reger et al. | Nov 1992 | A |
5192286 | Phan et al. | Mar 1993 | A |
5324304 | Rasmussen | Jun 1994 | A |
5329942 | Gunther et al. | Jul 1994 | A |
5330482 | Gibbs et al. | Jul 1994 | A |
5350398 | Pavcnik et al. | Sep 1994 | A |
5370657 | Irie | Dec 1994 | A |
5375612 | Cottenceau et al. | Dec 1994 | A |
5383887 | Nadal | Jan 1995 | A |
5421832 | Lefebvre | Jun 1995 | A |
5490859 | Mische et al. | Feb 1996 | A |
5496277 | Termin et al. | Mar 1996 | A |
5496330 | Bates et al. | Mar 1996 | A |
5501694 | Ressemann et al. | Mar 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5601595 | Smith | Feb 1997 | A |
5613981 | Boyle et al. | Mar 1997 | A |
5626605 | Irie et al. | May 1997 | A |
5634942 | Chevillon et al. | Jun 1997 | A |
5649953 | Lefebvre | Jul 1997 | A |
5658296 | Bates et al. | Aug 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5662703 | Yurek et al. | Sep 1997 | A |
5669933 | Simon et al. | Sep 1997 | A |
5681347 | Cathcart et al. | Oct 1997 | A |
5695518 | Laerum | Dec 1997 | A |
5695519 | Summers et al. | Dec 1997 | A |
5720764 | Naderlinger | Feb 1998 | A |
5725550 | Nadal | Mar 1998 | A |
5746767 | Smith | May 1998 | A |
5755790 | Chevillon et al. | May 1998 | A |
5769816 | Barbut et al. | Jun 1998 | A |
5772674 | Nakhjavan | Jun 1998 | A |
5776162 | Kleshinski | Jul 1998 | A |
5779716 | Cano et al. | Jul 1998 | A |
5792145 | Bates et al. | Aug 1998 | A |
5792156 | Perouse | Aug 1998 | A |
5792157 | Mische et al. | Aug 1998 | A |
5795322 | Boudewijn | Aug 1998 | A |
5800457 | Gelbfish | Sep 1998 | A |
5800525 | Bachinski et al. | Sep 1998 | A |
5810874 | Lefebvre | Sep 1998 | A |
5814064 | Daniel et al. | Sep 1998 | A |
5827324 | Cassell et al. | Oct 1998 | A |
5833650 | Imran | Nov 1998 | A |
5836868 | Ressemann et al. | Nov 1998 | A |
5846251 | Hart | Dec 1998 | A |
5846260 | Maas | Dec 1998 | A |
5848964 | Samuels | Dec 1998 | A |
5868708 | Hart et al. | Feb 1999 | A |
5876367 | Kaganov et al. | Mar 1999 | A |
5897567 | Ressemann et al. | Apr 1999 | A |
5910154 | Tsugita et al. | Jun 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5935139 | Bates | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5941896 | Kerr | Aug 1999 | A |
5944728 | Bates | Aug 1999 | A |
5954745 | Gertler et al. | Sep 1999 | A |
5968071 | Chevillon et al. | Oct 1999 | A |
5976172 | Homsma et al. | Nov 1999 | A |
5980555 | Barbut et al. | Nov 1999 | A |
5989281 | Barbut et al. | Nov 1999 | A |
6001118 | Daniel et al. | Dec 1999 | A |
6007557 | Ambrisco et al. | Dec 1999 | A |
6013093 | Nott et al. | Jan 2000 | A |
6022336 | Zadno-Azizi et al. | Feb 2000 | A |
6027520 | Tsugita et al. | Feb 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6051015 | Maahs | Apr 2000 | A |
6053932 | Daniel et al. | Apr 2000 | A |
6059814 | Ladd | May 2000 | A |
6066158 | Engelson et al. | May 2000 | A |
6074357 | Kaganov et al. | Jun 2000 | A |
6086605 | Barbut et al. | Jul 2000 | A |
6090097 | Barbut et al. | Jul 2000 | A |
6096053 | Bates | Aug 2000 | A |
6099534 | Bates et al. | Aug 2000 | A |
6099549 | Bosma et al. | Aug 2000 | A |
6117154 | Barbut et al. | Sep 2000 | A |
6129739 | Khosravi | Oct 2000 | A |
6136015 | Kurz | Oct 2000 | A |
6136016 | Barbut et al. | Oct 2000 | A |
6142987 | Tsugita | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6152947 | Ambrisco et al. | Nov 2000 | A |
6165198 | McGurk et al. | Dec 2000 | A |
6165200 | Tsugita et al. | Dec 2000 | A |
6168579 | Tsugita et al. | Jan 2001 | B1 |
6168604 | Cano | Jan 2001 | B1 |
6171327 | Daniel et al. | Jan 2001 | B1 |
6171328 | Addis | Jan 2001 | B1 |
6174318 | Bates et al. | Jan 2001 | B1 |
6176849 | Yang et al. | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6179860 | Fulton, III et al. | Jan 2001 | B1 |
6179861 | Khosravi et al. | Jan 2001 | B1 |
6187025 | Machek | Feb 2001 | B1 |
6203561 | Ramee et al. | Mar 2001 | B1 |
6206868 | Parodi | Mar 2001 | B1 |
6214026 | Lepak et al. | Apr 2001 | B1 |
6214040 | Jayaraman | Apr 2001 | B1 |
6224620 | Maahs | May 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6235045 | Barbut et al. | May 2001 | B1 |
6238412 | Dubrul et al. | May 2001 | B1 |
6241746 | Bosma et al. | Jun 2001 | B1 |
6245012 | Kleshinski | Jun 2001 | B1 |
6245087 | Addis | Jun 2001 | B1 |
6245088 | Lowery | Jun 2001 | B1 |
6245089 | Daniel et al. | Jun 2001 | B1 |
6251119 | Addis | Jun 2001 | B1 |
6251122 | Tsukernik | Jun 2001 | B1 |
6254633 | Pinchuk et al. | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6258120 | McKenzie et al. | Jul 2001 | B1 |
6264663 | Cano | Jul 2001 | B1 |
6264672 | Fisher | Jul 2001 | B1 |
6267776 | O'Connell | Jul 2001 | B1 |
6267777 | Bosma et al. | Jul 2001 | B1 |
6270477 | Bagaosian | Aug 2001 | B1 |
6270513 | Tsugita et al. | Aug 2001 | B1 |
6273901 | Whitcher et al. | Aug 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6277139 | Levinson et al. | Aug 2001 | B1 |
6280451 | Bates et al. | Aug 2001 | B1 |
6287321 | Jang | Sep 2001 | B1 |
6290656 | Boyle et al. | Sep 2001 | B1 |
6290710 | Cryer et al. | Sep 2001 | B1 |
6295989 | Connors, III | Oct 2001 | B1 |
6306163 | Fitz | Oct 2001 | B1 |
6319242 | Patterson et al. | Nov 2001 | B1 |
6319268 | Ambrisco et al. | Nov 2001 | B1 |
6325815 | Kusleika et al. | Dec 2001 | B1 |
6336934 | Gilson et al. | Jan 2002 | B1 |
6340364 | Kanesaka | Jan 2002 | B2 |
6340465 | Hsu et al. | Jan 2002 | B1 |
6346116 | Brooks et al. | Feb 2002 | B1 |
6348056 | Bates et al. | Feb 2002 | B1 |
6355051 | Sisskind et al. | Mar 2002 | B1 |
6361545 | Macoviak et al. | Mar 2002 | B1 |
6361546 | Khosravi | Mar 2002 | B1 |
6364895 | Greenhalgh | Apr 2002 | B1 |
6364896 | Addis | Apr 2002 | B1 |
6364900 | Heuser | Apr 2002 | B1 |
6371969 | Tsugita et al. | Apr 2002 | B1 |
6371970 | Khosravi et al. | Apr 2002 | B1 |
6371971 | Tsugita et al. | Apr 2002 | B1 |
6375670 | Greenhalgh | Apr 2002 | B1 |
6383206 | Gillick et al. | May 2002 | B1 |
6384062 | Ikeda et al. | May 2002 | B1 |
6391044 | Yadav et al. | May 2002 | B1 |
6394978 | Boyle et al. | May 2002 | B1 |
6395014 | Macoviak et al. | May 2002 | B1 |
6398756 | Peterson et al. | Jun 2002 | B2 |
6402771 | Palmer et al. | Jun 2002 | B1 |
6406471 | Jang et al. | Jun 2002 | B1 |
6423032 | Parodi | Jul 2002 | B2 |
6423086 | Barbut et al. | Jul 2002 | B1 |
6425909 | Dieck et al. | Jul 2002 | B1 |
6428559 | Johnson | Aug 2002 | B1 |
6432122 | Gilson et al. | Aug 2002 | B1 |
6436121 | Blom | Aug 2002 | B1 |
6443926 | Kletschka | Sep 2002 | B1 |
6443971 | Boylan et al. | Sep 2002 | B1 |
6443972 | Bosma | Sep 2002 | B1 |
6443979 | Stalker et al. | Sep 2002 | B1 |
6447530 | Ostrovsky et al. | Sep 2002 | B1 |
6447531 | Amplatz | Sep 2002 | B1 |
6450989 | Dubrul et al. | Sep 2002 | B2 |
6458139 | Palmer et al. | Oct 2002 | B1 |
6461370 | Gray et al. | Oct 2002 | B1 |
6468291 | Bates et al. | Oct 2002 | B2 |
6482222 | Bruckheimer et al. | Nov 2002 | B1 |
6485456 | Kletschka | Nov 2002 | B1 |
6485497 | Wensel et al. | Nov 2002 | B2 |
6485500 | Kokish et al. | Nov 2002 | B1 |
6485501 | Green | Nov 2002 | B1 |
6485502 | Don Michael et al. | Nov 2002 | B2 |
6485507 | Walak et al. | Nov 2002 | B1 |
6494895 | Addis | Dec 2002 | B2 |
6499487 | McKenzie et al. | Dec 2002 | B1 |
6500166 | Zadno Azizi et al. | Dec 2002 | B1 |
6506203 | Boyle et al. | Jan 2003 | B1 |
6506205 | Goldberg et al. | Jan 2003 | B2 |
6511492 | Rosenbluth | Jan 2003 | B1 |
6511496 | Huter et al. | Jan 2003 | B1 |
6511497 | Braun et al. | Jan 2003 | B1 |
6511503 | Burkett et al. | Jan 2003 | B1 |
6514273 | Voss et al. | Feb 2003 | B1 |
6517550 | Konya et al. | Feb 2003 | B1 |
6517559 | O'Connell | Feb 2003 | B1 |
6520978 | Blackledge et al. | Feb 2003 | B1 |
6527746 | Oslund et al. | Mar 2003 | B1 |
6527791 | Fisher | Mar 2003 | B2 |
6530939 | Hopkins et al. | Mar 2003 | B1 |
6530940 | Fisher | Mar 2003 | B2 |
6533800 | Barbut | Mar 2003 | B1 |
6537294 | Boyle et al. | Mar 2003 | B1 |
6537295 | Peterson | Mar 2003 | B2 |
6537296 | Levinson et al. | Mar 2003 | B2 |
6537297 | Tsugita et al. | Mar 2003 | B2 |
6540722 | Boyle et al. | Apr 2003 | B1 |
6540767 | Walak et al. | Apr 2003 | B1 |
6540768 | Diaz et al. | Apr 2003 | B1 |
6544276 | Azizi | Apr 2003 | B1 |
6544279 | Hopkins et al. | Apr 2003 | B1 |
6544280 | Daniel et al. | Apr 2003 | B1 |
6547759 | Fisher | Apr 2003 | B1 |
6551268 | Kaganov et al. | Apr 2003 | B1 |
6551341 | Boylan et al. | Apr 2003 | B2 |
6551342 | Shen et al. | Apr 2003 | B1 |
6558401 | Azizi | May 2003 | B1 |
6558405 | McInnes | May 2003 | B1 |
6562058 | Seguin | May 2003 | B2 |
6565591 | Kelly et al. | May 2003 | B2 |
6569184 | Huter | May 2003 | B2 |
6575995 | Huter et al. | Jun 2003 | B1 |
6575996 | Denison et al. | Jun 2003 | B1 |
6575997 | Palmer et al. | Jun 2003 | B1 |
6582447 | Patel et al. | Jun 2003 | B1 |
6582448 | Boyle et al. | Jun 2003 | B1 |
6585756 | Strecker | Jul 2003 | B1 |
6589263 | Hopkins et al. | Jul 2003 | B1 |
6589265 | Palmer et al. | Jul 2003 | B1 |
6592546 | Barbut et al. | Jul 2003 | B1 |
6592606 | Huter et al. | Jul 2003 | B2 |
6592607 | Palmer et al. | Jul 2003 | B1 |
6592616 | Stack et al. | Jul 2003 | B1 |
6596011 | Johnson et al. | Jul 2003 | B2 |
6599307 | Huter et al. | Jul 2003 | B1 |
6599308 | Amplatz | Jul 2003 | B2 |
6602269 | Wallace et al. | Aug 2003 | B2 |
6602271 | Adams et al. | Aug 2003 | B2 |
6602272 | Boylan et al. | Aug 2003 | B2 |
6602273 | Marshall | Aug 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6605111 | Bose et al. | Aug 2003 | B2 |
6607506 | Kletschka | Aug 2003 | B2 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6616679 | Khosravi et al. | Sep 2003 | B1 |
6616680 | Thielen | Sep 2003 | B1 |
6616681 | Hanson et al. | Sep 2003 | B2 |
6616682 | Joergensen et al. | Sep 2003 | B2 |
6620148 | Tsugita et al. | Sep 2003 | B1 |
6620182 | Khosravi | Sep 2003 | B1 |
6623450 | Dutta | Sep 2003 | B1 |
6629953 | Boyd | Oct 2003 | B1 |
6632236 | Hogendijk | Oct 2003 | B2 |
6632241 | Hancock et al. | Oct 2003 | B1 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6635070 | Evans et al. | Oct 2003 | B2 |
6638293 | Makowner et al. | Oct 2003 | B1 |
6638294 | Palmer | Oct 2003 | B1 |
6645220 | Huter et al. | Nov 2003 | B1 |
6645221 | Richter | Nov 2003 | B1 |
6645223 | Boyle et al. | Nov 2003 | B2 |
6645224 | Gilson et al. | Nov 2003 | B2 |
6652480 | Imran et al. | Nov 2003 | B1 |
6652505 | Tsugita et al. | Nov 2003 | B1 |
6652554 | Wholey et al. | Nov 2003 | B1 |
6652557 | MacDonald | Nov 2003 | B1 |
6656202 | Papp et al. | Dec 2003 | B2 |
6656203 | Roth et al. | Dec 2003 | B2 |
6656204 | Ambrisco et al. | Dec 2003 | B2 |
6656351 | Boyle | Dec 2003 | B2 |
6660021 | Palmer et al. | Dec 2003 | B1 |
6663650 | Sepetka et al. | Dec 2003 | B2 |
6663651 | Krolik et al. | Dec 2003 | B2 |
6663652 | Daniel et al. | Dec 2003 | B2 |
6673090 | Root et al. | Jan 2004 | B2 |
6676666 | Vrba et al. | Jan 2004 | B2 |
6676682 | Tsugita et al. | Jan 2004 | B1 |
6676683 | Addis | Jan 2004 | B1 |
6679902 | Boyle et al. | Jan 2004 | B1 |
6679903 | Kurz | Jan 2004 | B2 |
6682546 | Amplatz | Jan 2004 | B2 |
6685722 | Rosenbluth et al. | Feb 2004 | B1 |
6689151 | Becker et al. | Feb 2004 | B2 |
6692513 | Streeter et al. | Feb 2004 | B2 |
6695813 | Boyle et al. | Feb 2004 | B1 |
6695858 | Dubrul et al. | Feb 2004 | B1 |
6695864 | Macoviak et al. | Feb 2004 | B2 |
6696666 | Merdan et al. | Feb 2004 | B2 |
6699260 | Dubrul et al. | Mar 2004 | B2 |
6702834 | Boylen et al. | Mar 2004 | B1 |
6706055 | Douk et al. | Mar 2004 | B2 |
6712834 | Yassour et al. | Mar 2004 | B2 |
6712835 | Mazzocchi et al. | Mar 2004 | B2 |
6716231 | Rafiee et al. | Apr 2004 | B1 |
6723085 | Jang et al. | Apr 2004 | B2 |
6726701 | Gilson | Apr 2004 | B2 |
6726702 | Khosravi | Apr 2004 | B2 |
6726703 | Broome et al. | Apr 2004 | B2 |
6740061 | Oslund et al. | May 2004 | B1 |
6743247 | Levinson et al. | Jun 2004 | B1 |
6746469 | Mouw | Jun 2004 | B2 |
6752819 | Brady et al. | Jun 2004 | B1 |
6755846 | Yadav | Jun 2004 | B1 |
6758855 | Fulton, III et al. | Jul 2004 | B2 |
6761727 | Ladd | Jul 2004 | B1 |
6773448 | Kusleika et al. | Aug 2004 | B2 |
6790219 | Murphy | Sep 2004 | B1 |
6793666 | Hansen et al. | Sep 2004 | B2 |
6793668 | Fisher | Sep 2004 | B1 |
6800080 | Bates | Oct 2004 | B1 |
6814739 | Secrest et al. | Nov 2004 | B2 |
6818006 | Douk et al. | Nov 2004 | B2 |
6837898 | Boyle | Jan 2005 | B2 |
6840950 | Stanford et al. | Jan 2005 | B2 |
6843798 | Kusleika et al. | Jan 2005 | B2 |
6846316 | Abrams | Jan 2005 | B2 |
6846317 | Nigon | Jan 2005 | B1 |
6863696 | Kantsevitcha et al. | Mar 2005 | B2 |
6866677 | Douk et al. | Mar 2005 | B2 |
6872216 | Daniel et al. | Mar 2005 | B2 |
6878151 | Carrison et al. | Apr 2005 | B2 |
6878153 | Linder et al. | Apr 2005 | B2 |
6887256 | Gilson et al. | May 2005 | B2 |
6887257 | Salaheih et al. | May 2005 | B2 |
6887258 | Denison | May 2005 | B2 |
6888098 | Merdan et al. | May 2005 | B1 |
6890340 | Duane | May 2005 | B2 |
6890341 | Dieck et al. | May 2005 | B2 |
6893450 | Foster | May 2005 | B2 |
6893451 | Cano et al. | May 2005 | B2 |
6896690 | Lambrecht et al. | May 2005 | B1 |
6896691 | Boylan | May 2005 | B2 |
6902540 | Dorros et al. | Jun 2005 | B2 |
6908474 | Hogenkijk et al. | Jun 2005 | B2 |
6911036 | Douk et al. | Jun 2005 | B2 |
6913612 | Palmer et al. | Jul 2005 | B2 |
6918921 | Brady et al. | Jul 2005 | B2 |
6929652 | Andrews | Aug 2005 | B1 |
6932830 | Ungs | Aug 2005 | B2 |
6932831 | Forber | Aug 2005 | B2 |
6936058 | Forde et al. | Aug 2005 | B2 |
6936059 | Belef | Aug 2005 | B2 |
6939361 | Kleshinski | Sep 2005 | B1 |
6939362 | Boyle et al. | Sep 2005 | B2 |
6942673 | Bates et al. | Sep 2005 | B2 |
6949103 | Mazzocchi et al. | Sep 2005 | B2 |
6951570 | Linder et al. | Oct 2005 | B2 |
6953471 | Lilly et al. | Oct 2005 | B1 |
6953472 | Palmer et al. | Oct 2005 | B2 |
6958074 | Russell | Oct 2005 | B2 |
6960370 | Monni et al. | Nov 2005 | B2 |
6962598 | Linder et al. | Nov 2005 | B2 |
6964670 | Shah | Nov 2005 | B1 |
6964672 | Brady | Nov 2005 | B2 |
6964673 | Tsugita et al. | Nov 2005 | B2 |
6969395 | Eskuri | Nov 2005 | B2 |
6969396 | Krolik et al. | Nov 2005 | B2 |
6969402 | Bales et al. | Nov 2005 | B2 |
6970730 | Fuimaono et al. | Nov 2005 | B2 |
6972025 | WasDyke | Dec 2005 | B2 |
6973340 | Fuimaono et al. | Dec 2005 | B2 |
6974468 | DoBrava et al. | Dec 2005 | B2 |
6974469 | Broome et al. | Dec 2005 | B2 |
6979343 | Russo | Dec 2005 | B2 |
6979344 | Jones et al. | Dec 2005 | B2 |
6986778 | Zadno-Azizi | Jan 2006 | B2 |
6989019 | Mazzocchi | Jan 2006 | B2 |
6989021 | Bosma et al. | Jan 2006 | B2 |
6989027 | Allen et al. | Jan 2006 | B2 |
6991641 | Diaz et al. | Jan 2006 | B2 |
6991642 | Peterson | Jan 2006 | B2 |
RE38972 | Purdy | Feb 2006 | E |
6994718 | Groothuis et al. | Feb 2006 | B2 |
6997938 | Wang et al. | Feb 2006 | B2 |
6997939 | Linder et al. | Feb 2006 | B2 |
7001406 | Eskuri et al. | Feb 2006 | B2 |
7001407 | Hansen et al. | Feb 2006 | B2 |
7004954 | Voss et al. | Feb 2006 | B1 |
7004955 | Shen et al. | Feb 2006 | B2 |
7004956 | Palmer et al. | Feb 2006 | B2 |
7004964 | Thompson et al. | Feb 2006 | B2 |
7011671 | Welch | Mar 2006 | B2 |
7011672 | Barbut et al. | Mar 2006 | B2 |
7014647 | Brady et al. | Mar 2006 | B2 |
7018372 | Casey | Mar 2006 | B2 |
7018385 | Bates et al. | Mar 2006 | B2 |
7018393 | Boyle et al. | Mar 2006 | B1 |
7029440 | Broome et al. | Apr 2006 | B2 |
7033375 | Mazocchi et al. | Apr 2006 | B2 |
7037320 | Brady et al. | May 2006 | B2 |
7041116 | Goto et al. | May 2006 | B2 |
7044958 | Douk et al. | May 2006 | B2 |
7048752 | Mazzocchi | May 2006 | B2 |
7048758 | Boyle et al. | May 2006 | B2 |
7056328 | Arnott | Jun 2006 | B2 |
7060082 | Goll et al. | Jun 2006 | B2 |
7077854 | Khosravi | Jul 2006 | B2 |
7094243 | Mulholland | Aug 2006 | B2 |
7094249 | Broome et al. | Aug 2006 | B1 |
7097651 | Harrison et al. | Aug 2006 | B2 |
7097834 | Boyle et al. | Aug 2006 | B1 |
7101380 | Khachin et al. | Sep 2006 | B2 |
7108707 | Huter et al. | Sep 2006 | B2 |
20020091408 | Sutton et al. | Jul 2002 | A1 |
20020091409 | Sutton et al. | Jul 2002 | A1 |
20020095141 | Belef et al. | Jul 2002 | A1 |
20020099407 | Becker et al. | Jul 2002 | A1 |
20020103501 | Diaz et al. | Aug 2002 | A1 |
20020107541 | Vale et al. | Aug 2002 | A1 |
20020111648 | Kusleika et al. | Aug 2002 | A1 |
20020111649 | Russo et al. | Aug 2002 | A1 |
20020115942 | Stanford et al. | Aug 2002 | A1 |
20020120286 | Dobrava et al. | Aug 2002 | A1 |
20020120287 | Huter | Aug 2002 | A1 |
20020121472 | Garner et al. | Sep 2002 | A1 |
20020123720 | Kusleika et al. | Sep 2002 | A1 |
20020123755 | Lowe et al. | Sep 2002 | A1 |
20020128679 | Turovskiy et al. | Sep 2002 | A1 |
20020128680 | Pavlovic | Sep 2002 | A1 |
20020128681 | Broome et al. | Sep 2002 | A1 |
20020133092 | Oslund et al. | Sep 2002 | A1 |
20020138094 | Borillo et al. | Sep 2002 | A1 |
20020138095 | Mazzocchi et al. | Sep 2002 | A1 |
20020143360 | Douk et al. | Oct 2002 | A1 |
20020143361 | Douk et al. | Oct 2002 | A1 |
20020151927 | Douk et al. | Oct 2002 | A1 |
20020156456 | Fisher | Oct 2002 | A1 |
20020156457 | Fisher | Oct 2002 | A1 |
20020161390 | Mouw | Oct 2002 | A1 |
20020161392 | Dubrul | Oct 2002 | A1 |
20020161393 | Demond et al. | Oct 2002 | A1 |
20020161395 | Douk et al. | Oct 2002 | A1 |
20020165576 | Boyle et al. | Nov 2002 | A1 |
20020169414 | Kletschka | Nov 2002 | A1 |
20020169458 | Connors, III | Nov 2002 | A1 |
20020169472 | Douk et al. | Nov 2002 | A1 |
20020169474 | Kusleika et al. | Nov 2002 | A1 |
20020173815 | Hogendijk et al. | Nov 2002 | A1 |
20020173817 | Kletschka et al. | Nov 2002 | A1 |
20020188313 | Johnson et al. | Dec 2002 | A1 |
20020188314 | Anderson et al. | Dec 2002 | A1 |
20020193825 | McGuckin et al. | Dec 2002 | A1 |
20020193826 | McGuckin et al. | Dec 2002 | A1 |
20020193827 | McGuckin et al. | Dec 2002 | A1 |
20020193828 | Griffin et al. | Dec 2002 | A1 |
20030004536 | Boylan et al. | Jan 2003 | A1 |
20030004537 | Boyle et al. | Jan 2003 | A1 |
20030004539 | Linder et al. | Jan 2003 | A1 |
20030004540 | Linder et al. | Jan 2003 | A1 |
20030004541 | Linder et al. | Jan 2003 | A1 |
20030009188 | Linder et al. | Jan 2003 | A1 |
20030009189 | Gilson et al. | Jan 2003 | A1 |
20030015206 | Roth et al. | Jan 2003 | A1 |
20030018354 | Roth et al. | Jan 2003 | A1 |
20030023265 | Forber | Jan 2003 | A1 |
20030028238 | Burkett et al. | Feb 2003 | A1 |
20030032941 | Boyle et al. | Feb 2003 | A1 |
20030032977 | Brady et al. | Feb 2003 | A1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030042186 | Boyle et al. | Mar 2003 | A1 |
20030045898 | Harrison et al. | Mar 2003 | A1 |
20030057156 | Peterson et al. | Mar 2003 | A1 |
20030060782 | Bose et al. | Mar 2003 | A1 |
20030060843 | Boucher | Mar 2003 | A1 |
20030060844 | Borillo et al. | Mar 2003 | A1 |
20030065354 | Boyle et al. | Apr 2003 | A1 |
20030069596 | Eskuri | Apr 2003 | A1 |
20030069597 | Petersen | Apr 2003 | A1 |
20030078519 | Salahieh et al. | Apr 2003 | A1 |
20030078614 | Satahieh et al. | Apr 2003 | A1 |
20030083692 | Vrba et al. | May 2003 | A1 |
20030083693 | Daniel et al. | May 2003 | A1 |
20030097095 | Brady et al. | May 2003 | A1 |
20030100917 | Boyle et al. | May 2003 | A1 |
20030100918 | Duane | May 2003 | A1 |
20030105484 | Boyle et al. | Jun 2003 | A1 |
20030109824 | Anderson et al. | Jun 2003 | A1 |
20030114879 | Euteneuer et al. | Jun 2003 | A1 |
20030114880 | Hansen et al. | Jun 2003 | A1 |
20030120303 | Boyle et al. | Jun 2003 | A1 |
20030125764 | Brady et al. | Jul 2003 | A1 |
20030130680 | Russell | Jul 2003 | A1 |
20030130681 | Ungs | Jul 2003 | A1 |
20030130682 | Broome et al. | Jul 2003 | A1 |
20030130684 | Brady et al. | Jul 2003 | A1 |
20030130685 | Daniel et al. | Jul 2003 | A1 |
20030130686 | Daniel et al. | Jul 2003 | A1 |
20030130687 | Daniel et al. | Jul 2003 | A1 |
20030130688 | Daniel et al. | Jul 2003 | A1 |
20030135162 | Deyette, Jr. et al. | Jul 2003 | A1 |
20030135232 | Douk et al. | Jul 2003 | A1 |
20030139764 | Levinson et al. | Jul 2003 | A1 |
20030144685 | Boyle et al. | Jul 2003 | A1 |
20030150821 | Bates et al. | Aug 2003 | A1 |
20030153935 | Mialhe | Aug 2003 | A1 |
20030153943 | Michael et al. | Aug 2003 | A1 |
20030158574 | Esch et al. | Aug 2003 | A1 |
20030163064 | Vrba et al. | Aug 2003 | A1 |
20030171770 | Kusleika et al. | Sep 2003 | A1 |
20030171771 | Anderson | Sep 2003 | A1 |
20030171803 | Shimon et al. | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030176885 | Broome et al. | Sep 2003 | A1 |
20030176886 | Daniel et al. | Sep 2003 | A1 |
20030176889 | Boyle et al. | Sep 2003 | A1 |
20030181942 | Sutton et al. | Sep 2003 | A1 |
20030181943 | Daniel et al. | Sep 2003 | A1 |
20030187474 | Keegan et al. | Oct 2003 | A1 |
20030187475 | Tsugita et al. | Oct 2003 | A1 |
20030187495 | Cully et al. | Oct 2003 | A1 |
20030191493 | Epstein et al. | Oct 2003 | A1 |
20030195554 | Shen et al. | Oct 2003 | A1 |
20030195555 | Khairkhahan et al. | Oct 2003 | A1 |
20030195556 | Stack et al. | Oct 2003 | A1 |
20030199819 | Beck | Oct 2003 | A1 |
20030199921 | Palmer et al. | Oct 2003 | A1 |
20030204168 | Bosme et al. | Oct 2003 | A1 |
20030204202 | Palmer et al. | Oct 2003 | A1 |
20030208222 | Zadno-Azizi | Nov 2003 | A1 |
20030208224 | Broome | Nov 2003 | A1 |
20030208225 | Goll et al. | Nov 2003 | A1 |
20030208226 | Bruckheimer et al. | Nov 2003 | A1 |
20030208227 | Thomas | Nov 2003 | A1 |
20030208228 | Gilson et al. | Nov 2003 | A1 |
20030208229 | Kletschka | Nov 2003 | A1 |
20030212361 | Boyle et al. | Nov 2003 | A1 |
20030212429 | Keegan et al. | Nov 2003 | A1 |
20030212431 | Brady et al. | Nov 2003 | A1 |
20030212434 | Thielen | Nov 2003 | A1 |
20030216774 | Larson | Nov 2003 | A1 |
20030220665 | Eskuri et al. | Nov 2003 | A1 |
20030225418 | Eskuri et al. | Dec 2003 | A1 |
20030225435 | Huter et al. | Dec 2003 | A1 |
20030229295 | Houde et al. | Dec 2003 | A1 |
20030229374 | Brady et al. | Dec 2003 | A1 |
20030233117 | Adams et al. | Dec 2003 | A1 |
20030236545 | Gilson | Dec 2003 | A1 |
20040002730 | Denison et al. | Jan 2004 | A1 |
20040006361 | Boyle et al. | Jan 2004 | A1 |
20040006364 | Ladd | Jan 2004 | A1 |
20040006365 | Brady et al. | Jan 2004 | A1 |
20040006366 | Huter et al. | Jan 2004 | A1 |
20040006367 | Johnson et al. | Jan 2004 | A1 |
20040006368 | Mazzocchi et al. | Jan 2004 | A1 |
20040015184 | Boylan et al. | Jan 2004 | A1 |
20040019363 | Hanson et al. | Jan 2004 | A1 |
20040034385 | Gilson et al. | Feb 2004 | A1 |
20040039411 | Gilson et al. | Feb 2004 | A1 |
20040044359 | Renati et al. | Mar 2004 | A1 |
20040044360 | Lowe | Mar 2004 | A1 |
20040049226 | Keegan et al. | Mar 2004 | A1 |
20040059372 | Tsugita | Mar 2004 | A1 |
20040059373 | Shapiro et al. | Mar 2004 | A1 |
20040082697 | Raetzsch et al. | Apr 2004 | A1 |
20040082968 | Krolik et al. | Apr 2004 | A1 |
20040088000 | Muller | May 2004 | A1 |
20040088002 | Boyle et al. | May 2004 | A1 |
20040093009 | Denison et al. | May 2004 | A1 |
20040093010 | Gesswein et al. | May 2004 | A1 |
20040093011 | Vrba | May 2004 | A1 |
20040093012 | Cully et al. | May 2004 | A1 |
20040093013 | Brady et al. | May 2004 | A1 |
20040098022 | Barone | May 2004 | A1 |
20040098026 | Joergensen et al. | May 2004 | A1 |
20040098032 | Papp et al. | May 2004 | A1 |
20040098033 | Leeflang et al. | May 2004 | A1 |
20040102807 | Kusleika et al. | May 2004 | A1 |
20040106944 | Daniel et al. | Jun 2004 | A1 |
20040111111 | Lin | Jun 2004 | A1 |
20040116960 | Demond et al. | Jun 2004 | A1 |
20040122466 | Bales | Jun 2004 | A1 |
20040127933 | Demond et al. | Jul 2004 | A1 |
20040127934 | Gilson et al. | Jul 2004 | A1 |
20040127936 | Salahieh et al. | Jul 2004 | A1 |
20040138693 | Eskuri et al. | Jul 2004 | A1 |
20040138694 | Tran et al. | Jul 2004 | A1 |
20040138696 | Drasler et al. | Jul 2004 | A1 |
20040144689 | Berlowitz et al. | Jul 2004 | A1 |
20040147955 | Beulke et al. | Jul 2004 | A1 |
20040153118 | Clubb et al. | Aug 2004 | A1 |
20040153119 | Kusleika et al. | Aug 2004 | A1 |
20040158275 | Crank et al. | Aug 2004 | A1 |
20040158277 | Lowe et al. | Aug 2004 | A1 |
20040158278 | Becker et al. | Aug 2004 | A1 |
20040158279 | Petersen | Aug 2004 | A1 |
20040158280 | Morris et al. | Aug 2004 | A1 |
20040158281 | Boylan et al. | Aug 2004 | A1 |
20040167564 | Fedie | Aug 2004 | A1 |
20040167565 | Beulke et al. | Aug 2004 | A1 |
20040167566 | Beulke et al. | Aug 2004 | A1 |
20040167567 | Cano et al. | Aug 2004 | A1 |
20040167568 | Boylan et al. | Aug 2004 | A1 |
20040172055 | Huter et al. | Sep 2004 | A1 |
20040176794 | Khosravi | Sep 2004 | A1 |
20040193208 | Talpade et al. | Sep 2004 | A1 |
20040199198 | Beulke et al. | Oct 2004 | A1 |
20040199199 | Krolik et al. | Oct 2004 | A1 |
20040199203 | Oslund et al. | Oct 2004 | A1 |
20040204737 | Boismier et al. | Oct 2004 | A1 |
20040210250 | Eskuri | Oct 2004 | A1 |
20040220608 | D'Aquanni et al. | Nov 2004 | A1 |
20040220609 | Douk et al. | Nov 2004 | A1 |
20040220611 | Ogle | Nov 2004 | A1 |
20040225322 | Garrison et al. | Nov 2004 | A1 |
20040236368 | McGucklin, Jr. et al. | Nov 2004 | A1 |
20040236369 | Dubrul | Nov 2004 | A1 |
20040249409 | Krolik et al. | Dec 2004 | A1 |
20040254601 | Eskuri | Dec 2004 | A1 |
20040254602 | Lehe et al. | Dec 2004 | A1 |
20040260308 | Gilson et al. | Dec 2004 | A1 |
20040260333 | Dubrul et al. | Dec 2004 | A1 |
20040267301 | Boylan et al. | Dec 2004 | A1 |
20040267302 | Gilson et al. | Dec 2004 | A1 |
20050004594 | Nool et al. | Jan 2005 | A1 |
20050004595 | Boyle et al. | Jan 2005 | A1 |
20050004597 | McGuckin, Jr. et al. | Jan 2005 | A1 |
20050010245 | Wasicek | Jan 2005 | A1 |
20050010246 | Steeter et al. | Jan 2005 | A1 |
20050010247 | Kusleika et al. | Jan 2005 | A1 |
20050021075 | Bonnette et al. | Jan 2005 | A1 |
20050021076 | Mazzocchi et al. | Jan 2005 | A1 |
20050055048 | Dieck et al. | Mar 2005 | A1 |
20050070953 | Riley | Mar 2005 | A1 |
20050075663 | Boyle et al. | Apr 2005 | A1 |
20050080446 | Gilson et al. | Apr 2005 | A1 |
20050085842 | Eversull et al. | Apr 2005 | A1 |
20050090845 | Boyd | Apr 2005 | A1 |
20050090857 | Kusleika et al. | Apr 2005 | A1 |
20050090858 | Pavlovic | Apr 2005 | A1 |
20050096691 | Groothuis et al. | May 2005 | A1 |
20050096692 | Linder et al. | May 2005 | A1 |
20050101986 | Daniel et al. | May 2005 | A1 |
20050101987 | Salahich | May 2005 | A1 |
20050101988 | Stanford et al. | May 2005 | A1 |
20050101989 | Cully et al. | May 2005 | A1 |
20050113865 | Daniel et al. | May 2005 | A1 |
20050119688 | Bergheim | Jun 2005 | A1 |
20050119689 | Mazzocchi et al. | Jun 2005 | A1 |
20050119690 | Mazzocchi et al. | Jun 2005 | A1 |
20050119691 | Daniel et al. | Jun 2005 | A1 |
20050124931 | Fulton et al. | Jun 2005 | A1 |
20050125023 | Bates et al. | Jun 2005 | A1 |
20050131450 | Nicholson et al. | Jun 2005 | A1 |
20050131453 | Parodi | Jun 2005 | A1 |
20050149110 | Wholey et al. | Jul 2005 | A1 |
20050149112 | Barbut | Jul 2005 | A1 |
20050149113 | Douk et al. | Jul 2005 | A1 |
20050159772 | Lowe et al. | Jul 2005 | A1 |
20050159773 | Broome et al. | Jul 2005 | A1 |
20050159774 | Belef | Jul 2005 | A1 |
20050171573 | Salahieh et al. | Aug 2005 | A1 |
20050177187 | Gray et al. | Aug 2005 | A1 |
20050182440 | Bates et al. | Aug 2005 | A1 |
20050182441 | Denison et al. | Aug 2005 | A1 |
20050192623 | Mazzocchi et al. | Sep 2005 | A1 |
20050192624 | Mazzocchi et al. | Sep 2005 | A1 |
20050203567 | Linder et al. | Sep 2005 | A1 |
20050203568 | Burg et al. | Sep 2005 | A1 |
20050203569 | Kusleika et al. | Sep 2005 | A1 |
20050203570 | Mazzocchi et al. | Sep 2005 | A1 |
20050203571 | Mazzocchi et al. | Sep 2005 | A1 |
20050209634 | Brady et al. | Sep 2005 | A1 |
20050209635 | Gilson et al. | Sep 2005 | A1 |
20050216051 | Mazzocchi et al. | Sep 2005 | A1 |
20050216052 | Mazzocchi et al. | Sep 2005 | A1 |
20050216053 | Douk et al. | Sep 2005 | A1 |
20050222583 | Cano et al. | Oct 2005 | A1 |
20050222604 | Schaeffer et al. | Oct 2005 | A1 |
20050222607 | Palmer et al. | Oct 2005 | A1 |
20050228437 | Gilson et al. | Oct 2005 | A1 |
20050228438 | Sachar et al. | Oct 2005 | A1 |
20050228439 | Andrews et al. | Oct 2005 | A1 |
20050234502 | Gilson et al. | Oct 2005 | A1 |
20050240215 | Ellis | Oct 2005 | A1 |
20050245866 | Azizi | Nov 2005 | A1 |
20050267517 | Ungs | Dec 2005 | A1 |
20050283184 | Gilson et al. | Dec 2005 | A1 |
20050283185 | Linder et al. | Dec 2005 | A1 |
20050283186 | Berrada et al. | Dec 2005 | A1 |
20050288705 | Gilson et al. | Dec 2005 | A1 |
20060004403 | Gilson et al. | Jan 2006 | A1 |
20060004405 | Salaheih et al. | Jan 2006 | A1 |
20060015138 | Gertner et al. | Jan 2006 | A1 |
20060015139 | Tsugita et al. | Jan 2006 | A1 |
20060015141 | Linder et al. | Jan 2006 | A1 |
20060020285 | Niermann | Jan 2006 | A1 |
20060020286 | Niermann | Jan 2006 | A1 |
20060025803 | Mitelberg et al. | Feb 2006 | A1 |
20060025804 | Krolik et al. | Feb 2006 | A1 |
20060025805 | DoBrava et al. | Feb 2006 | A1 |
20060030876 | Peacock, III et al. | Feb 2006 | A1 |
20060030877 | Martinez et al. | Feb 2006 | A1 |
20060030878 | Anderson et al. | Feb 2006 | A1 |
20060052817 | Russo et al. | Mar 2006 | A1 |
20060074446 | Gilson et al. | Apr 2006 | A1 |
20060095069 | Shah et al. | May 2006 | A1 |
20060100659 | Dinh et al. | May 2006 | A1 |
20060100662 | Daniel et al. | May 2006 | A1 |
20060100663 | Palmer et al. | May 2006 | A1 |
20060116715 | Khosravi et al. | Jun 2006 | A1 |
20060122643 | Wasicek | Jun 2006 | A1 |
20060122644 | Brady et al. | Jun 2006 | A1 |
20060122645 | Brady et al. | Jun 2006 | A1 |
20060129181 | Callol et al. | Jun 2006 | A1 |
20060129182 | Gilson et al. | Jun 2006 | A1 |
20060129183 | Boyle et al. | Jun 2006 | A1 |
20060149312 | Arguello et al. | Jul 2006 | A1 |
20060149313 | Arguello et al. | Jul 2006 | A1 |
20060149314 | Borillo et al. | Jul 2006 | A1 |
20060155322 | Sater et al. | Jul 2006 | A1 |
20060161198 | Sakai et al. | Jul 2006 | A1 |
20060167491 | Wholey et al. | Jul 2006 | A1 |
20060184194 | Pal et al. | Aug 2006 | A1 |
20060190025 | Lehe et al. | Aug 2006 | A1 |
20060195137 | Sepetka et al. | Aug 2006 | A1 |
20060195138 | Goll et al. | Aug 2006 | A1 |
20060200047 | Galdonik et al. | Sep 2006 | A1 |
20060200191 | Zadno-Azizi | Sep 2006 | A1 |
20060206139 | Tekulve | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
0427429 | Sep 1991 | EP |
0472334 | Feb 1992 | EP |
0533511 | Mar 1993 | EP |
1 127 556 | Aug 2001 | EP |
1 127 556 | Aug 2001 | EP |
2580504 | Oct 1986 | FR |
2020557 | Nov 1979 | GB |
WO9203097 | Mar 1992 | WO |
WO9601591 | Jan 1996 | WO |
WO9717100 | May 1997 | WO |
WO9802084 | Jan 1998 | WO |
WO9833443 | Aug 1998 | WO |
WO9916382 | Apr 1999 | WO |
WO9922673 | May 1999 | WO |
WO9923976 | May 1999 | WO |
WO9944510 | Sep 1999 | WO |
WO0067667 | Nov 2000 | WO |
WO0110346 | Feb 2001 | WO |
WO0112082 | Feb 2001 | WO |
WO0145592 | Jun 2001 | WO |
WO0187183 | Nov 2001 | WO |
WO0228292 | Apr 2002 | WO |
WO2004021928 | Mar 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060265002 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09944633 | Aug 2001 | US |
Child | 11496854 | US |