Hinged wrap insulated container

Information

  • Patent Grant
  • 11932474
  • Patent Number
    11,932,474
  • Date Filed
    Monday, June 12, 2023
    a year ago
  • Date Issued
    Tuesday, March 19, 2024
    7 months ago
Abstract
An insulation wrap includes an insulation batt defining a top end and a bottom end, the insulation batt defining an inner side and an outer side; a wrap liner blank including an inner portion extending across a first panel and a second panel of the wrap liner blank, the inner side of the insulation batt positioned facing the inner portion; a ledge portion extending across the first panel and the second panel of the wrap liner blank, the ledge portion hingedly coupled to the inner portion by an inner hinge, the top end of the insulation batt positioned facing the ledge portion; and an outer portion extending across the first panel and the second panel of the wrap liner blank, the outer portion hingedly coupled to the ledge portion by a ledge hinge.
Description
JOINT RESEARCH AGREEMENT

The subject matter disclosed was developed and the claimed invention was made by, or on behalf of, one or more parties to a joint research agreement between MP Global Products LLC of Norfolk, NE and Pratt Retail Specialties, LLC of Conyers, GA, that was in effect on or before the effective filing date of the claimed invention, and the claimed invention was made as a result of activities undertaken within the scope of the joint research agreement.


TECHNICAL FIELD

This disclosure relates to packaging. More specifically, this disclosure relates to a hinged insulation wrap of an insulated container.


BACKGROUND

Packaging and shipping temperature sensitive contents can pose challenges. The contents can spoil, destabilize, freeze, melt, or evaporate during storage or shipping if the temperature of the contents is not maintained or the packaging is not protected from hot or cold environmental conditions. In applications such as hot food delivery, customers can be dissatisfied if the contents have cooled to ambient temperature upon delivery. Contents such as food, pharmaceuticals, electronics, or other temperature sensitive items can be damaged if exposed to temperature extremes. Many insulated packages are bulky and difficult to store prior to use. Additionally, many insulated packages are specialized to ship or carry hot goods, chilled goods, or frozen goods, and shippers must maintain large stocks of specialized packaging for each application. Additionally, many insulated packages cannot be recycled and are often disposed of in landfills.


SUMMARY

It is to be understood that this summary is not an extensive overview of the disclosure. This summary is exemplary and not restrictive, and it is intended to neither identify key or critical elements of the disclosure nor delineate the scope thereof. The sole purpose of this summary is to explain and exemplify certain concepts of the disclosure as an introduction to the following complete and extensive detailed description.


Disclosed is an insulation wrap comprising an insulation batt defining a top end and a bottom end, the insulation batt defining an inner side and an outer side; a wrap liner blank comprising an inner portion extending across a first panel and a second panel of the wrap liner blank, the inner side of the insulation batt positioned facing the inner portion; a ledge portion extending across the first panel and the second panel of the wrap liner blank, the ledge portion hingedly coupled to the inner portion by an inner hinge, the top end of the insulation batt positioned facing the ledge portion; and an outer portion extending across the first panel and the second panel of the wrap liner blank, the outer portion hingedly coupled to the ledge portion by a ledge hinge, the outer side of the insulation batt facing the outer portion, the outer portion defining an outer hinge between the first panel and the second panel, the first panel being foldable relative to the second panel about the outer hinge from an unfolded configuration to a folded configuration wherein the inner portion at least partially defines an insulated cavity within the wrap liner blank.


Also disclosed is a wrap liner blank comprising a first outer portion and a second outer portion extending across a first panel and a second panel of the wrap liner blank, the first outer portion and the second outer portion defining an outer hinge, the first panel hingedly coupled to the second panel by the outer hinge; a first ledge portion and a second ledge portion extending across the first panel and the second panel, the first ledge portion and the second ledge portion defined between the first outer portion and the second outer portion, the first ledge portion hingedly coupled to the first outer portion by a first ledge hinge, the second ledge portion hingedly coupled to the second outer portion by a second ledge hinge; and an inner portion extending across the first panel and the second panel, the inner portion defined between the first ledge portion and the second ledge portion, the inner portion hingedly coupled to the first ledge portion by a first inner hinge, the inner portion hingedly coupled to the second ledge portion by a second inner hinge.


Also disclosed is a method of assembling a packaging assembly comprising an insulation wrap and a box, the method comprising folding a first panel of an insulation wrap relative to a second panel of the insulation wrap about an outer hinge of the insulation wrap, the insulation wrap comprising an insulation batt and a wrap liner blank, the insulation batt at least partially captured in a first channel and a second channel, the first channel defined between a first outer portion of the wrap liner blank and an inner portion of the wrap liner blank, the first outer portion hingedly coupled to a first ledge portion of the wrap liner blank, the first ledge portion hingedly coupled to the inner portion, the second channel defined between a second outer portion of the wrap liner blank and the inner portion, the second outer portion hingedly coupled to a second ledge portion of the wrap liner blank, the second ledge portion hingedly coupled to the inner portion opposite from the first ledge portion, the first outer portion and the second outer portion at least partially defining an outer surface of the insulation wrap, the inner portion at least partially defining an inner surface of the insulation wrap; and inserting the insulation wrap into a cavity defined by a box, the outer surface positioned at least partially in facing engagement with the box, the inner surface at least partially defining an insulated cavity.


Various implementations described in the present disclosure may include additional systems, methods, features, and advantages, which may not necessarily be expressly disclosed herein but will be apparent to one of ordinary skill in the art upon examination of the following detailed description and accompanying drawings. It is intended that all such systems, methods, features, and advantages be included within the present disclosure and protected by the accompanying claims. The features and advantages of such implementations may be realized and obtained by means of the systems, methods, features particularly pointed out in the appended claims. These and other features will become more fully apparent from the following description and appended claims, or may be learned by the practice of such exemplary implementations as set forth hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS

The features and components of the following figures are illustrated to emphasize the general principles of the present disclosure. The drawings are not necessarily drawn to scale. Corresponding features and components throughout the figures may be designated by matching reference characters for the sake of consistency and clarity.



FIG. 1 is a perspective view of a wrap liner blank in accordance with one aspect of the present disclosure.



FIG. 2 is a perspective view of the wrap liner blank of FIG. 1 demonstrating steps to place the wrap liner blank in an assembled configuration and a folded configuration.



FIG. 3 is a front perspective view of the wrap liner blank of FIG. 1 in an assembled and unfolded configuration.



FIG. 4 is a rear perspective view of the wrap liner blank of FIG. 1 in an assembled and folded configuration.



FIG. 5 is a detailed view of a ledge clearance notch of another aspect of the wrap liner blank in accordance with another aspect of the present disclosure.



FIG. 6 is a top perspective view of an insulation wrap, in an unassembled configuration, comprising an insulation batt and another aspect of the wrap liner blank in accordance with another aspect of the present disclosure.



FIG. 7 is a top perspective view of the insulation wrap of FIG. 6 in the unassembled configuration.



FIG. 8 is a top perspective view of the insulation wrap of FIG. 6 in the unassembled configuration with the insulation wrap placed on an inner portion of the wrap liner blank.



FIG. 9 is a top perspective view of the insulation wrap of FIG. 6 in a partially assembled configuration.



FIG. 10 is a rear perspective view of the insulation wrap of FIG. 6 in an assembled and unfolded configuration.



FIG. 11 is a front perspective view of the insulation wrap of FIG. 6 in the assembled and unfolded configuration.



FIG. 12 is a front perspective view of the insulation wrap of FIG. 6 in the assembled and unfolded configuration with inner side flaps of the wrap liner blank folded upwards and away from the insulation batt.



FIG. 13 is a bottom perspective view of the insulation wrap of FIG. 6 in a folded configuration.



FIG. 14 is a detailed view of a closure mechanism of the insulation wrap of FIG. 6.



FIG. 15 is a side view of three different aspects of the closure mechanism in accordance with multiple aspects of the present disclosure.



FIG. 16 is a top perspective view of a plug comprising a plug blank and a plug insulation batt in accordance with another aspect of the present disclosure.



FIG. 17 is a perspective view of the plug of FIG. 16 in a partially assembled configuration.



FIG. 18 is a top view of the plug of FIG. 16.



FIG. 19 is a side view of the plug of FIG. 16.



FIG. 20 is an end view of the plug of FIG. 16 showing a second end panel of the plug.



FIG. 21 is a side view of the plug of FIG. 16 demonstrating formation of the second end panel from a first end subpanel and a second end subpanel of the plug blank of FIG. 16.



FIG. 22 is a side view of the plug of FIG. 16 demonstrating formation of the second end panel from the first end subpanel and the second end subpanel of the plug blank of FIG. 16.



FIG. 23 is an exploded top perspective view of a packaging assembly comprising a box, the insulation wrap of FIG. 6, and two plugs of FIG. 16 in accordance with another aspect of the present disclosure.



FIG. 24 is a top perspective view of the packaging assembly of FIG. 23 with the plugs partially enclosing an insulated cavity defined within the insulation wrap.



FIG. 25 is a top perspective view of the packaging assembly of FIG. 23 with the plugs fully inserted into the insulation liner and enclosing the insulated cavity to from an insulated core.



FIG. 26 is a top perspective view of the packaging assembly of FIG. 23 with one plug and the insulation liner of FIG. 6 inserted into a cavity of the box.



FIG. 27 is a perspective view of an assembly line for assembling and folding the insulation wraps of FIG. 6 in accordance with another aspect of the present disclosure.



FIG. 28 is a perspective view of a machine for assembling the plugs of FIG. 16 in accordance with another aspect of the present disclosure.



FIG. 29 is a top perspective view of an insulation wrap in accordance with another aspect of the present disclosure comprising the insulation batt of FIG. 6 and another aspect of the wrap liner blank in the unassembled configuration.



FIG. 30 is a top perspective view of the insulation wrap of FIG. 29 with the wrap liner blank enclosing the outer side in a partially assembled configuration.



FIG. 31 is top perspective view of the outer side of the insulation wrap of FIG. 29 in the assembled and unfolded configuration.



FIG. 32 is a detailed view of the inner surface of the insulation wrap of FIG. 29 in the assembled and unfolded configuration.



FIG. 33 is a top view of another aspect of a plug in accordance with another aspect of the present disclosure.



FIG. 34 is a bottom perspective view of the plug of FIG. 33.



FIG. 35 is a side perspective view of the plug of FIG. 33.



FIG. 36 is a top perspective view of another aspect of a packaging assembly with the plug of FIG. 33 and the insulation liner of FIG. 6 inserted into the cavity of the box of FIG. 23.



FIG. 37 is a top plan view of a box blank of the box of FIG. 23 in accordance with another aspect of the present disclosure.



FIG. 38 is a top plan view of another aspect of a plug blank in accordance with another aspect of the present disclosure.



FIG. 39 is a top plan view of another aspect of the wrap liner blank in accordance with another aspect of the present disclosure.



FIG. 40 is a top plan view of the insulation batt of FIG. 6 and the insulation batt of FIG. 16.



FIG. 41 is a top plan view of another aspect of a plug blank in accordance with another aspect of the present disclosure.





DETAILED DESCRIPTION

The present disclosure can be understood more readily by reference to the following detailed description, examples, drawings, and claims, and the previous and following description. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that this disclosure is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, and, as such, can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.


The following description is provided as an enabling teaching of the present devices, systems, and/or methods in its best, currently known aspect. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various aspects of the present devices, systems, and/or methods described herein, while still obtaining the beneficial results of the present disclosure. It will also be apparent that some of the desired benefits of the present disclosure can be obtained by selecting some of the features of the present disclosure without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present disclosure are possible and can even be desirable in certain circumstances and are a part of the present disclosure. Thus, the following description is provided as illustrative of the principles of the present disclosure and not in limitation thereof.


As used throughout, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “an element” can include two or more such elements unless the context indicates otherwise.


Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.


For purposes of the current disclosure, a material property or dimension measuring about X or substantially X on a particular measurement scale measures within a range between X plus an industry-standard upper tolerance for the specified measurement and X minus an industry-standard lower tolerance for the specified measurement. Because tolerances can vary between different materials, processes and between different models, the tolerance for a particular measurement of a particular component can fall within a range of tolerances.


As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.


The word “or” as used herein means any one member of a particular list and also includes any combination of members of that list. Further, one should note that conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain aspects include, while other aspects do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular aspects or that one or more particular aspects necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular aspect.


Disclosed are components that can be used to perform the disclosed methods and systems. These and other components are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these components are disclosed that while specific reference of each various individual and collective combinations and permutation of these may not be explicitly disclosed, each is specifically contemplated and described herein, for all methods and systems. This applies to all aspects of this application including, but not limited to, steps in disclosed methods. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific aspect or combination of aspects of the disclosed methods.


Disclosed is a packaging assembly and associated methods, systems, devices, and various apparatus. The packaging assembly can comprise a box, an insulation wrap, and at least one plug. It would be understood by one of skill in the art that the disclosed packaging assembly is described in but a few exemplary embodiments among many. No particular terminology or description should be considered limiting on the disclosure or the scope of any claims issuing therefrom.



FIG. 1 is a perspective view of a wrap liner blank 100 in accordance with one aspect of the present disclosure. In the present aspect, the wrap liner blank 100 can comprise two panels 106a,b; however, in other aspects, such as the wrap liner blank 600 shown in FIG. 6, the wrap liner blank can comprise more than two panels.


The wrap liner blank 100 can define a top end 102 and a bottom end 104, with the top end 102 disposed opposite from the bottom end 104. The wrap liner blank 100 can comprise an inner portion 110, a ledge portion 114, and an outer portion 118, each of which can extend across both panels 106a,b. The inner portion 110 can be hingedly coupled to the ledge portion 114 by an inner hinge 112, and the outer portion 118 can be hingedly coupled to the ledge portion 114 by a ledge hinge 116.


The wrap liner blank 100 can define an inner clearance notch 120, which can separate the inner portion 110 defined by panel 106a from the inner portion 110 defined by the adjacent panel 106b. The wrap liner blank 100 can define a ledge clearance notch 122, which can separate the ledge portion 114 defined by panel 106a from the ledge portion 114 defined by the adjacent panel 106b. The wrap liner blank 100 can define an outer hinge 108, which can hingedly couple the outer portion 118 defined by panel 106a to the outer portion 118 defined by the adjacent panel 106b.



FIG. 2 is a perspective view showing steps 201,203,205 to place the wrap liner blank in an assembled configuration and then to place the wrap liner blank 100 in the assembled and folded configuration. The steps 201,203,205 can be similar for assembling and folding an insulation wrap 601 (shown in FIG. 6) from the wrap liner 600 (shown in FIG. 6) and an insulation batt 690 (show in FIG. 6), in accordance with another aspect of the disclosure. Here in FIG. 2, the wrap liner blank 100 is shown alone without an insulation batt to provide an unobstructed view.


In step 201, the outer portion 118 of the wrap liner blank 100 can be folded relative to the ledge portion 114 about the ledge hinge 116 to place the wrap liner blank 100 in a partially assembled configuration. In step 203, the ledge portion 114 can be folded relative to the inner portion 110 about the inner hinge 112 to place the wrap liner blank 100 in an assembled configuration. As shown in step 203, the wrap liner blank 100 can be in the assembled configuration and in an unfolded configuration.


In other aspects, steps 201,203 can be performed in reverse order. For example, the wrap liner blank 100 can first be folded about the inner hinge 112 in accordance with step 203 to place the wrap liner blank 100 in the partially assembled configuration, and the wrap liner blank 100 can then be folded about the outer hinge 116 to place the wrap liner blank 100 in the assembled configuration. In the partially assembled configuration, the panels 106a,b of the wrap liner blank 100 are only folded about one of the inner hinge 112 and the outer hinge 116. In the assembled configuration, the panels 106a,b, of the wrap liner blank 100 can be folded about both the inner hinge 112 and the outer hinge 116. In the assembled configuration, the outer portion 118 can be substantially parallel to the inner portion 110, and the ledge portion 114 can be substantially perpendicular to both the inner portion 110 and the outer portion 118.


In step 205, the panels 106a,b can be folded relative to one another about the outer hinge 108 from the assembled and unfolded configuration to an assembled and folded configuration. In the unfolded configuration, the inner portion 110 and outer portion 118 of adjacent panels 106a,b of the assembled wrap liner blank 100 can be substantially parallel and coplanar to one another, respectively. In the folded configuration, the inner portion 110 and outer portion 118 of adjacent panels 106a,b, can be substantially perpendicular to one another. In the folded configuration, adjacent panels 106a,b can be positioned so that the ledge portion 114 defined by panel 106a contacts the ledge portion 114 defined by panel 106b and that the inner portion 110 defined by panel 106a contacts the inner portion 110 defined by panel 106b.


In the aspect shown, the wrap liner blank 100 can be configured to be positioned with a second wrap liner blank 100 (not shown) to form a square or rectangular cross-sectional shape when both wrap liner blanks 100 are in the assembled and folded configuration. In other aspects, the wrap liner blank 100 can have four panels 106, and the wrap liner blank 100 can define a square or rectangular in cross-sectional shape in the assembled and folded configuration, as demonstrated by the wrap liner 600 in FIG. 6. The steps 203,205,207 shown in FIG. 2 can apply for wrap liner blanks comprising more than two panels 106a,b. For example, the steps can be the same for insulation wrap 601 in FIG. 6.



FIG. 3 is a front perspective view of the wrap liner blank 100 in the assembled and unfolded configuration. The inner portion 110 of the panels 106a,b can define relieved edges 310a,b adjacent to the inner clearance notch 120. The relieved edges 310a,b can be beveled, chamfered, or mitered, for example and without limitation, so that adjacent relieved edges 310a,b can mate with one another when positioned together in the assembled and folded configuration shown in FIG. 4. The outer portion 118 of the panels 106a,b can define relieved edges 308a,b adjacent to the outer hinge 108. The relieved edges 308a,b can be beveled, chamfered, or mitered (for example and without limitation), so that adjacent relieved edges 308a,b can mate with one another and minimized deformation when adjacent panels 106a,b are folded about the outer hinge 108 to the assembled and folded configuration.


As demonstrated by a cutaway of the ledge portion 114, a channel 320 can be defined between the inner portion 110 and the outer portion 118. The ledge portion 114 can define a width W1, and the channel 320 can define a width W2. The width W2 can be slightly smaller than the width W1. As similarly discussed below with respect to FIG. 8, the channel 320 can be configured to receive an insulation batt. In the various aspects, the width W2 can range from less than one inch to greater than two inches, and the channel 320 can be configured to receive insulation batts with a thickness of less than one inch to greater than two inches.



FIG. 4 is a rear perspective view of the wrap liner blank 100 of FIG. 1 in the assembled and folded configuration. As shown, the outer hinge 108 can define an outer hinge axis 401, which can extend through the outer portion 118 but not the inner portion 110.



FIG. 5 is a detailed view of the ledge clearance notch 122 of another aspect of the wrap liner blank 100 in accordance with another aspect of the present disclosure. As shown by panel 106b, in some aspects, the ledge clearance notch 122 can be formed by folding a tab 522 of the ledge portion 114 about a clearance notch hinge 524. The clearance notch hinge 524 can extend across the ledge portion 114 from the inner portion 110 to the outer portion 118. Panel 106a can also define a clearance notch hinge (not shown) and a tab (not shown). In some aspects, the ledge portion 114 can be cut, rather than folded, to form the ledge clearance notch 122. In the present aspect, the ledge clearance notch 122 can define the shape of a triangle, such as an isoceles triangle for example and without limitation. In other aspects, the ledge clearance notch can define a different shape, such as a trapezoid or any other suitable shape.



FIG. 6 and FIG. 7 are top perspective views of the insulation wrap 601 in an unassembled configuration, in accordance with another aspect of the present disclosure. The insulation wrap 601 can comprise the wrap liner blank 600 and the insulation batt 690.


As shown in FIG. 6, the wrap liner blank 600 can comprise four panels 606a,b,c,d. The wrap liner blank 600 can define a top end 602 and a bottom end 604, with the top end 602 disposed opposite from the bottom end 604. The wrap liner blank 600 can comprise an inner portion 610, a first ledge portion 614a, a second ledge portion 614b, a first outer portion 618a, and a second outer portion 618b. The inner portion 610 can be hingedly coupled to the ledge portions 614a,b by a pair of inner hinges 612a,b, respectively. The outer portions 618a,b can be hingedly coupled to the ledge portions 614a,b by a pair of ledge hinges 616a,b, respectively. The hinges 612a,b,616a,b can extend across each of the panels 606a,b,c,d.


The wrap liner blank 600 can define outer hinges 608a,b,c, which can hingedly couple adjacent panels 606a,b,c,d together at the outer portions 618a,b. The outer hinges 608a,b,c can extend through both outer portions 618a,b. The wrap liner blank 600 can define ledge clearance notches 622, which can separate the ledge portions 614a,b defined by adjacent panels 606a,b,c,d, as demonstrated for second ledge portion 614b between adjacent panels 606c,d. The wrap liner blank 600 can define inner clearance notches 620, which can separate the inner portions 610 defined by adjacent panels 606a,b,c,d, as demonstrated between adjacent panels 606c,d. In the present aspect, the wrap liner blank 600 can comprise inner side flaps, such as inner side flaps 660a,b shown hingedly coupled to panel 606c by side hinges 662a,b.


The inner side flaps 660a,b can extend across all or part of the inner clearance notches 620. In the present aspect, inner side flaps 660a,b form a gap with the ledge portions 614a,b. This gap provides clearance for an insulated panel portion 1630 (show in FIG. 16) of a pair of plugs 1601 (shown in FIGS. 16 and 23). In the present aspects, the inner side flaps 660a,b can extend to the adjacent panels 606b,d, and the inner side flaps 660a,b can be separated from the adjacent panels 606b,d by clearance cuts 664a,b. In the present aspect, panels 606a,c can comprise side flaps while panels 606b,d do not comprise side flaps. In some aspects, side flaps 660b,d can comprise side flaps while panels 606a,c do not comprise side flaps. In some aspects, each panel 606a,b,c,d can each comprise one or more side flaps. In some aspects, each panel 606a,b,c,d can each comprise one panel on one side, such as the right side with respect to the present viewing angle for example and without limitation.


The insulation batt 690 can define a top end 691 and a bottom end 693, with the top end 691 disposed opposite from the bottom end 693. The insulation batt 690 can define an inner side 692 (shown in FIG. 6) and an outer side 792 (shown in FIG. 7). In the present aspect, the insulation batt 690 can comprise an insulation material 696. In some aspects, the insulation material 696 can be a flexible and resilient material.


In the present aspect, the inner side 692 can be a raw side 694, and the outer side 792 can be a finished side 794 (shown in FIG. 7). On the raw side 694, the insulation material 696 can be exposed, and on the finished side 794, the insulation material can be covered, such as by backing sheet 796 (shown in FIG. 7). In some aspects, both the inner side 692 and the outer side 792 can be finished sides 794 wherein the insulation material is covered. In some aspects, the insulation material 696 can be fully encapsulated, such as by one or more backing sheets 796 that can be fully wrapped around the insulation material 696.



FIG. 8 is a top perspective views of the insulation wrap 601 of FIG. 6 in the unassembled configuration. FIG. 9 is a top perspective view of the insulation wrap 601 of FIG. 6 in a partially assembled configuration. To reconfigure the insulation wrap 601 to the assembled configuration (shown in FIGS. 10 and 11), the insulation batt 690 can be positioned on the inner portion 610 (shown in FIG. 6) of the wrap liner blank 600, as shown in FIG. 8. As shown in FIG. 9 and similarly described in steps 201,203 with respect to FIG. 2, the wrap liner blank 600 can be folded about the inner hinges 612a,b (shown in FIG. 6) and the outer hinges 616a,b from the unassembled configuration to the assembled configuration, so that the top end 691 and the bottom end 693 (shown in FIG. 6) can be captured in channels respectively defined between the inner portion 610 (shown in FIG. 6) and the outer portions 618a,b, respectively, similar to channel 320 shown in FIG. 3. The outer portions 618a,b can be coupled to the outer side 792, such as with tape, an adhesive, or any other suitable means.


In aspects wherein the insulation batt 690 defines the raw side 694 and the finished side 794, the raw side 694 can be positioned facing the inner portion 610. In some aspects, the raw side 694 can be positioned in facing engagement with the inner portion 610, and the raw side 694 can be coupled to the inner portion 610, such as with an adhesive for example and without limitation. By securing the raw side 694 to the inner portion 610, dust, loose fibers, and other particles coming from the insulation batt 690 can be minimized through containment between the wrap liner blank 600 and the backing sheet 796. Additionally, the backing sheet 796 can provide dimensional stability to the insulation batt 690 while being easily foldable.



FIG. 10 is a rear perspective view of the insulation wrap 601 of FIG. 6 in the assembled and unfolded configuration. The outer side 792 of the insulation batt 690 and the outer portions 618a,b of the wrap liner blank 600 can define an outer surface 1092 of the insulation wrap 601. The insulation wrap 601 can define a first end 1002 and a second end 1004. The first end 1002 can be defined opposite from the second end 1004. The insulation wrap 601 can define a top end 1006 and a bottom end 1008. The top end 1006 can be defined opposite from the bottom end 1008. The top end 1006 can be defined by first ledge portion 614a (shown in FIG. 6), and the bottom end 1008 can be defined by second ledge portion 614b.


The outer hinges 608a,b,c can be defined by the outer surface 1092 of the insulation wrap 601. The insulation wrap 601 can be configured to fold about the outer hinges 608a,b,c into the folded configuration (shown in FIG. 13). By folding about the outer hinges 608a,b,c, tensile stresses along the outer surface 1092 of the insulation wrap 601 can be minimized. Minimization of tensile stresses through the outer surface 1092 can be desirable because tensile stress in the outer surface 1092 can cause the insulation wrap 601 to pull away from the outer portions 618a,b of the wrap liner blank 600 and/or cause tears in the insulation batt 690 and the backing sheet 796. Tears in the insulation batt 690 and backing sheet 796 can compromise the insulating performance of the insulation batt 690 and lead to excessive production of dust, loose fibers, or other particles from the insulation material 696 (shown in FIG. 6) of the insulation batt 690.


Instead of introducing substantial tensile stresses in the outer surface 1092, mild compressive stresses can be exerted on the inner side 692 (shown in FIG. 6) of the insulation batt 690 during folding, which can be resisted in part by the inner side 692 of the insulation batt 690 being coupled to the inner portion 610 of the wrap liner blank 600. This arrangement controls the thicker, flexible insulation batt 690 to minimize wrinkles and/or buckling along the inner side 692 and to ensure that the insulation batt 690 moves together with the thinner, rigid wrap liner blank 600. The design involving folding of the insulation wrap 601 through the outer hinges 608a,b,c resulted from results achieved through multiple experiments in folding composite insulation materials.


In the folded configuration, the first end 1002 can be positioned adjacent to the second end 1004, and the insulation wrap 601 can define a substantially rectangular or square cross-sectional shape when viewed from the top end 1006 or the bottom end 1008. A closure mechanism 1020 can be configured to secure the first end 1002 to the second end 1004 in the folded configuration. In the present aspect, the closure mechanism 1020 can be comprised by the insulation wrap 601. Specifically, the closure mechanism 1020 can be comprised by the wrap liner blank 600. More specifically, the closure mechanism 1020 can be defined by the outer portions 618a,b.


In the present aspect, the closure mechanism 1020 can comprise a pair of apertures 1022 defined by panel 606a at the first end 1002 and a pair of tabs 1024 defined by panel 606d at the second end 1004. The tabs 1024 can each define a barbed shape that is wider than the corresponding apertures 1022.



FIG. 11 is a front perspective view of the insulation wrap 601 of FIG. 6 in the assembled and unfolded configuration. The inner portion 610 and the inner side flaps 660 of the wrap liner blank 600 and the inner side 692 of the insulation batt 690 can define an inner surface 1192 of the insulation wrap 601 in the assembled and unfolded configuration. However, as demonstrated by FIG. 13, the insulation batt 690 can be mostly or completely concealed from the inner surface 1192 when the insulation wrap 601 is folded to the folded configuration.



FIGS. 29-32 show another aspect of the insulation wrap 601 in accordance with another aspect of the present disclosure. FIG. 29 is a top perspective view of the insulation wrap 601 comprising the insulation batt 690 of FIG. 6 positioned on another aspect of the wrap liner blank 600 in the unassembled configuration. FIG. 30 is a top perspective view of the insulation wrap 601 of FIG. 29 with the wrap liner blank 600 enclosing the insulation batt 690 (not shown) on the outer surface 1092 in a partially assembled configuration. FIG. 31 is a top perspective view of the outer surface 1092 of the insulation wrap 601 of FIG. 29 in the assembled and unfolded configuration. FIG. 32 is a detailed view of the inner surface 1192 of the insulation wrap 601 of FIG. 29 in the assembled and unfolded configuration.


The wrap liner blank 600 of FIG. 29 can be similar to the wrap liner blank 600 of FIG. 6, but with extended outer portions 618a,b that are configured to be coupled together, as shown in FIG. 31. In FIG. 31, the outer portions 618a,b can be coupled together by a tape strip 3101. As shown, the tape strip 3101 can extend down a seam 3102 defined between adjacent edges of the outer portions 618a,b. In other aspect, one or more tape strips 3101 can be coupled to the outer portions 618a,b in a different orientation, such as transverse to the seam 3102 rather than parallel to the seam 3102. In other aspects, a different coupling mechanism, such as an adhesive, mechanical fasteners such as staples, or any other suitable fastener or fastening means can be utilized to couple the outer portions 618a,b together.


In the present aspect, the outer portions 618a,b can fully enclose the insulation batt 690 (shown in FIG. 29) on the outer surface 1092, thereby covering the outer side 792 (shown in FIG. 7) of the insulation batt 690. The outer portions 618a,b may contact one another at the seam 3102, or a gap can be defined at the seam 3102. In some aspects, particularly those where the outer portions 618a,b fully enclose the insulation batt 690 on the outer side 792 (shown in FIG. 7), it may be desirable to reverse the orientation of the insulation batt 690 so that the finished side 794 faces the inner portion 610, as shown in FIG. 32. This arrangement can reduce exposure of the insulation material on the inner portion 610, which can reduce the production of dust, particles, and loose fibers escaping through the inner portion 610, particularly in the assembled and unfolded configuration.


Returning to FIG. 12, prior to folding the insulation wrap 601 about the outer hinges 608a,b,c (shown in FIG. 10), the inner side flaps 660 can be folded upwards and away from the inner side 692 of the insulation batt 690. While not necessary, this step can help prevent interference between the inner side flaps 660 and the inner portions 610 of the panels 606a,b,c,d.



FIG. 13 is a bottom perspective view of the insulation wrap 601 of FIG. 6 in the folded configuration. The insulation wrap 601 can define an insulated cavity 1310, which can be at least partially enclosed by the inner surface 1192 of the insulation wrap 601. The second ledge portion 614b can define a bottom ledge 1308 at the bottom end 1008 of the insulation wrap 601, and the bottom ledge 1308 can define a bottom opening 1312 to the insulated cavity 1310. As shown, the inner side flaps 660 can overlap the adjacent inner portion 610 of panels 606a,d. This arrangement can prevent dust, fibers, and other particles from the insulation batt 690 (shown in FIG. 16) from entering the insulated cavity 1310 by sealing seams in the inner surface 1192.


In the present aspect, 45-degree mitered joints can be formed at all of the corners between panels 606a,b,c,d, including where the first end 1002 joins the second end 1004.



FIG. 14 is a detailed view of the closure mechanism 1020 of the insulation wrap 601 of FIG. 6. The tab 1024 can be inserted through the aperture 1022 to secure the first end 1002 to the second end 1004 and to maintain the insulation wrap 601 in the folded configuration. The barbed shape of the tab 1024 can be configured to resist withdrawal of the tab 1024 from the aperture 1022 after the tab 1024 has been inserted through the aperture 1022. The insulation batt 690 (shown in FIG. 6) can be slightly offset from the ends 1002,1004 so that the insulation batt 690 overlaps when the ends 1002,1004 are positioned in contact with one another. In other aspects, the insulation wrap 601 can be configured to form a butt joint where the ends 1002,1004 meet. In such aspects, the first end 1002 can be placed in facing engagement with the inner portion 610 adjacent to the second end 1004, or vice versa.



FIG. 15 is side view demonstrating three different aspects of a closure mechanism. On the right, the insulation wrap 601 of FIG. 6 shows another view of closure mechanism 1020 from FIG. 10, which can secure the first end 1002 to the second end 1004. The left and center images show insulation wrap 1501, which can be substantially the same as insulation wrap 601 except that insulation wrap 1501 does not comprise closure mechanism 1020. On the left, a closure mechanism 1520 can demonstrate an aspect of the insulation wrap 1501 where the closure mechanism 1520 can be a separate component from the insulation wrap 1501. For example and without limitation, the closure mechanism 1520 can be tape, staples, twine, wire, straps, or any other suitable mechanism configured to secure the first end 1002 to the second end 1004. In the present aspect, the closure mechanism 1520 can be Kraft paper tape. In the center, the insulation wrap 1501 can depend upon external force to hold the first end 1002 and the second end 1004 together. Here, a worker 1502 is shown holding the insulation wrap 1501 in the folded configuration. Once the insulation wrap 1501 is in the folded configuration, the worker 1502 can then position the insulation wrap 1501 within a cavity of a complimentarily shaped box, which can secure the insulation wrap 1501 in the folded configuration.



FIG. 16 is a top perspective view of the plug 1601 comprising a plug blank 1600 and a plug insulation batt 1690 in accordance with another aspect of the present disclosure. As shown in FIG. 17, the plug blank 1600 can be folded around the plug insulation batt 1690 to enclose the plug insulation batt 1690 and form the plug 1601 (shown in FIG. 18).


As shown in FIG. 16, the plug blank 1600 can comprise a first end subpanel 1602, which can be hingedly coupled to an outer panel 1604. A first end panel 1606 can be hingedly coupled to the outer panel 1604 opposite from the first end subpanel 1602. An inner panel 1608 can be hingedly coupled to the first end panel 1606 opposite from the outer panel 1604. A second end subpanel 1610 can be hingedly coupled to the inner panel 1608 opposite from the first end panel 1606. A pair of wing portions 1612a,b can be hingedly coupled to opposite sides of the inner panel 1608 between the first end panel 1606 and the second end subpanel 1610.


As shown in FIG. 17, the plug insulation batt 1690 can be positioned on the inner panel 1608. The wing portions 1612a,b can then be wrapped around the plug insulation batt 1690, and the outer panel 1604 can be folded over the plug insulation batt 1690 and wing portions 1612a,b to fully enclose the plug insulation batt 1690. The first end subpanel 1602 can then be coupled to the second end subpanel 1610 to from a second end panel 1614, as shown in FIGS. 21 and 22. The end subpanels 1602,1610 can be secured together with an adhesive, tape, staples, or any other suitable method. With the end subpanels 1602,1610 secured together to form the second end panel 1614, the plug 1601 can be formed.


As shown in FIG. 16, the plug 1601 can comprise the insulated panel portion 1630, which can hold and enclose the plug insulation batt 1690. A pair of wing portions 1632a,b of the outer panel 1604 can extend outwards from opposite sides of the insulated panel portion 1630. As demonstrated by wing portion 1632a, the wing portions 1632a,b can define finger notches 1634 configured to facilitate removal of the plug 1601 when it is placed in a cavity of a box.



FIG. 18 is a top view of the plug 1601 of FIG. 16. FIG. 19 is a side view of the plug 1601 of FIG. 16. FIG. 20 is an end view of the plug 1601 of FIG. 16, showing the second end panel 1614. FIGS. 21 and 22 are side views of the plug 1601 of FIG. 16 demonstrating the formation of the second end panel 1614 from the end subpanels 1602,1610.



FIG. 23 is an exploded top view of a packaging assembly 2300 comprising a box 2301, the insulation wrap 601 of FIG. 6, and two plugs 1601a,b of FIG. 16, in accordance with another aspect of the present disclosure. The box 2301 can comprise a bottom panel 2304, a pair of opposing side panels 2306a,b, a pair of opposing end panels 2308a,b, a pair of top side flaps 2310a,b, and a pair of top end flaps 2312a,b. In the present aspect, the box 2301 can be a regular slotted carton (RSC). In other aspects, the box 2301 can be a different kind of box.


The box 2301 can define a cavity 2302, which can be sized complimentary to the insulation wrap 601, such that when the insulation wrap 601 is positioned within the cavity 2302, the insulation wrap 601 can be positioned in contact with the side panels 2306a,b and the end panels 2308a,b. The box 2301 can be sized and have tolerances set to keep the insulation wrap 601 “squared” (wherein right-angles are formed between adjacent panels 606, as shown in FIG. 13), particularly in aspects of the insulation wrap 601 lacking a closure mechanism 1020,1520, as shown in FIG. 15.


The top side flaps 2310a,b and the top end flaps 2312a,b can be folded to form a top panel (not shown) that encloses the cavity 2302 when the box is in a closed configuration (not shown). The insulation wrap 601 can be roughly equal to a height of the side panels 2306a,b and end panels 2308a,b, and the insulation wrap 601 can increase a stacking strength of the box 2301 when the box 2301 is in the closed configuration by providing additional support between the bottom panel 2304 and the top panel to resist collapse from a load exerted on the top panel.


Plug 1601a can be a top plug 2390, and plug 1601b can be a bottom plug 2392. As shown in FIG. 24, the bottom plug 2392 can be positioned with the wing portions 1632a,b in facing engagement with the bottom ledge 1308 (shown in FIG. 13) and the insulated panel portion 1630 insert into the insulated cavity 1310 through the bottom opening 1312 (shown in FIG. 13) of the insulation wrap 601. Accordingly, the bottom plug 2392 can enclose the insulated cavity 1310 at the bottom end 1008 (shown in FIG. 10) of the insulation wrap 601.


Because the insulation batt 1690 (shown in FIG. 16) of the bottom plug 2392 is enclosed by the plug blank 1600 (shown in FIG. 16) of the bottom plug 2392, the insulation batt 1690 (shown in FIG. 16) can be protected from compression by the plug blank 1600. For example and without limitation, if heavy items are placed within the insulated cavity 1310 atop the bottom plug 2392, a rigid nature of the plug blank 1600 can support the items without compressing the insulation batt 1690. Compression of insulation material often reduces the thermal insulation performance of the insulation material. By preventing the compression of the insulation batt 1690, the insulation performance of the bottom plug 2392 can be maintained.


As shown, the insulation batts 690,1690 can be completely concealed. This arrangement can prevent any dust, loose fibers, or other particles from the insulation batts 690,1690 from accumulating in the insulated cavity 1310. It can also provide an aesthetically pleasing presentation when opened by a receiving individual.


The first ledge portion 614a can define a top ledge 2408 at the top end 1006 of the insulation wrap 601. The top ledge 2408 can define a top opening 2412 to the insulated cavity 1310. As shown in FIGS. 24 and 25, the top plug 2390 can be positioned so that the insulated panel portion 1630 can be inserted into the insulated cavity 1310 through the top opening 2412, and the wing portions 1632a,b can be positioned in facing engagement with the top ledge 2408 to enclose the insulated cavity 1310 at the top end 1006 of the insulation wrap 601. The inner side flaps 660 (shown in FIG. 23) do not extend all the way to the top ledge 2408 and the bottom ledge 1308 (shown in FIG. 13) to provide clearance for the insulated panel portions 1630 (shown in FIG. 24) and avoid interference which could result in a weaker seal between the plugs 2390,2392 and the insulation wrap 601.


The top plug 2390, the bottom plug 2392 (shown in FIG. 24), and the insulation wrap 601 can define an insulated core 2500, as shown in FIG. 25. After assembly, the insulated core 2500 can then be placed in the cavity 2302 of the box 2301, and the box 2301 can be closed. In some aspects, the insulated core 2500 can be secured together, such as by fixing the plugs 2390,2392 in place with tape or any other suitable method, before placing the insulated core 2500 in the cavity 2302. In some aspects, frictional engagement between the insulated panel portions 1630 of the plugs 2390,2392 and the respective openings 1312,2412 can couple the plugs 2390,2392 to the insulation wrap 601 and form seals there between.


Rather than assembling the insulated core 2500 outside of the cavity 2302, the plugs 2390,2392 and insulation wrap 601 can be placed inside the cavity 2302 of the box 2301 to assemble the insulated core 2500 within the cavity 2302, as shown in FIG. 26. For example, the bottom plug 2392 can first be placed in the cavity 2302, then the insulation wrap 601 can be placed in the cavity 2302, and finally the top plug 2390 can be placed in the cavity 2302 to assemble the insulated core 2500. In some aspects, the plugs 2390,2392 can be sized to self-center within the cavity 2302, such as by comprising wing portions that engage both the end panels 2308a,b (shown in FIG. 23) and the side panels 2306a,b (shown in FIG. 23) to facilitate alignment between the plugs 2390,2392 and the insulation wrap 601. In some aspects, the bottom plug 2392 and the insulation wrap 601 can be coupled together and then inserted into the cavity 2302, and the top plug 2390 can be inserted in a separate step to assemble the insulated core 2500 within the cavity 2302. In some aspects, the bottom plug 2392 can be positioned within the cavity 2302, and the top plug 2390 and insulation wrap 601 can be coupled together and then inserted into the cavity 2302 to in a separate step to assemble the insulated core 2500 within the cavity 2302.



FIG. 27 is a perspective view of an assembly line 2700 for assembling and folding the insulation wraps 601 of FIG. 6 in accordance with another aspect of the present disclosure. In a first step 2701, a worker 2752a can take wrap liner blanks 600 from a pallet 2750 and queue the wrap liner blanks 600 on a first work table 2754. From the first work table 2754, the wrap liner blanks 600 can be individually fed onto a first conveyor belt 2756.


In a second step 2702, the first conveyor belt 2756 can guide the wrap liner blanks 600 through an insulation station 2758 wherein insulation batts 690 can be positioned atop the wrap liner blanks 600. In the present aspect, this step can be performed by a machine at insulation station 2758, such as a pick-and-place robotic machine that picks up an insulation batt 690 and places it on each wrap liner blank 600. In other aspects, a worker 2752b can perform this step.


In step 2703, the insulation batt 690 and wrap liner blank 600 can pass through an assembly station 2760 wherein the wrap liner blanks 600 can be wrapped around the insulation batts 690 to form insulation wraps 601 in the assembled and unfolded configuration, as similarly described with respect to FIGS. 9 and 10 above. In the present aspect, assembly station 2760 can be a fold-and-glue station that folds the wrap liner blanks 600 and couples them to the insulation batts 690 with an adhesive. The unfolded insulation wraps 601 can then move from the first conveyor belt 2756 to a second work table 2762.


In step 2704, the insulation wraps 601 can be folded to the folded configuration and be placed on a second conveyor belt 2764. This step can be completed by one or more workers, such as workers 2752c,d, or by a machine (not shown). The steps 2701,2702,2703,2704 should not be viewed as limiting. Any step shown may be manually performed or automated, for example and without limitation.


Additionally, rather than folding the insulation wraps 601 in step 2704, the assembled insulation wraps 601 in the unfolded configuration can be palletized and shipped, such as to a customer, where the insulation wraps 601 can be folded on-site at the customer's location and used to contain and ship products. In some aspects, the insulation wraps 601 can be compressed before being palletized. By shipping the insulation wraps 601 in the unfolded configuration, the volume of the insulation wraps 601 can be minimized, thereby removing dead space and avoiding “shipping air” to the customer. Palletized liners 601 in the unfolded configuration also take less space in the customer's warehouse.



FIG. 28 is a perspective view of a machine 2800 for assembling the plugs 1601 of FIG. 16, as shown and described with respect to FIGS. 16, 17, 21, and 22. In the present aspect, the 1600 can be specifically designed to facilitate automated assembly of the plugs 1601.



FIGS. 33-35 show various views of another aspect of a plug 3300 in accordance with another aspect of the present disclosure. The plug 3300 can comprise another aspect of a plug blank 3302 (shown in FIGS. 33-35 and 41) and the insulation batt 1690 (shown in FIG. 34) of FIG. 16. As shown in FIG. 33, the plug blank 3302 can comprise a center panel 3304 and a plurality of side panels 3306. The center panel 3304 can define a top side 3301 of the plug 3300. Each of the side panels 3306 can be hingedly coupled to a different edge 3308 of the center panel 3304 by a different hinge 3310.


The insulation batt 1690 (shown in FIG. 34) can be positioned in facing engagement with the center panel 3304 (shown in FIGS. 33 and 35). As shown in FIG. 34, the side panels 3306 can fold around the insulation batt 1690. The center panel 3304 and the side panels 3306 can partially enclose the insulation batt 1690. In the present aspect, the insulation batt 1690 may only be exposed on a bottom side 3400 of the plug 3300, so that the insulation batt 1690 and the side panels 3306 can define the bottom side 3400.



FIG. 36 is a top perspective view of another aspect of a packaging assembly 3600 with the plug 3300 of FIG. 33 and the insulation liner 601 of FIG. 6 inserted into the cavity 2302 of the box 2301 of FIG. 23. The plug 3300 can be positioned within the insulated cavity 1310, with the top side 3301 facing into the insulated cavity 1310. With the side panels 3306 (shown in FIGS. 33-35) folded around the insulation batt 1690 (shown in FIG. 34), the side panels 3306 can provide structural support to the plug 3300 to prevent the insulation batt 1690 from being compressed when a load is placed atop the plug 3300.



FIG. 37 is a top plan view of a box blank 3700 of the box 2301 of FIG. 23. The side panels 2306 and the end panels 2308 can be coupled together by corner hinges 3702. An end tab 3708 can also be coupled to one of the side or end panels 2306,2308 by one of the corner hinges 3702. The end tab 3708 can define a first end 3704 of the box blank 3700, and the box blank 3700 can define a second end 3706 opposite from the first end 3704. The top side flaps 2310 and top end flaps 2312 can be coupled to the respective side or end panels 2306,2308 by top hinges 3703.


The bottom panel 2304 (shown in FIG. 23) can be defined by a pair of bottom side flaps 3710 and bottom end flaps 3712. The bottom side flaps 3710 can be coupled to the side panels 2306 by bottom hinges 3705, and the bottom end flaps 3712 can be coupled to the end panels 2308 by bottom hinges 3705.



FIG. 38 is a top plan view of a plug blank 3800 in accordance with another aspect of the present disclosure. The outer panel 1604 can define a pair of folding tabs 3804a,b. The folding tabs 3804a,b can be cutout from the outer panel 1604. The folding tabs 3804a,b can be positioned inward from the wing portions 1632a,b of the outer panel 1604. In the aspect shown, each wing portion 1632a,b can define a pair of finger notches 1634. In some aspects, each wing portion 1632a,b can define greater or fewer than two finger notches 1634.


The wing portions 1612a,b coupled to the inner panel 1606 can define a pair of wing slots 3812a,b. When the plug blank 3800 is folded to form a plug, such as a plug similar in some ways to the plug 1601 of FIG. 16, the wing slots 3812a,b can receive the folding tabs 3804a,b to couple the outer panel 1604 to the wing portions 1612a,b and the inner panel 1606. In such aspects, the wing portions 1612a,b may or may not be coupled to the outer panel 1604 with a secondary means, such as an adhesive for example and without limitation.



FIG. 39 is a top plan view of another aspect of a wrap liner blank 3900 in accordance with another aspect of the present disclosure. The wrap liner blank 3900 can share some features in common with the wrap liner blank 600 of FIG. 6. In the aspect shown, the outer portions 618a,b can be extended so that when the wrap liner blank 3900 is folded about the inner hinges 612a,b and the ledge hinges 616a,b, the outer portions 618a,b can touch or nearly touch one another. For example and without limitation, the outer portions 618a,b can come within 1″ or less of contacting one another when the inner portion 610 and the outer portions 618a,b are folded perpendicular to the ledge portions 614a,b. In some aspects, the outer portions 618a,b can partially or fully overlap one another.


In the present aspect, the ledge hinges 616a,b can define a plurality of relief cuts 3916, which can facilitate folding of the outer portions 618a,b relative to the ledge portions 614a,b about the ledge hinges 616a,b. In some aspects, the inner hinges 612a,b can define a plurality of relief cuts in addition to or in place of the relief cuts 3916.



FIG. 40 is a top plan view of the insulation batt 690 of FIG. 6 and the insulation batt 1690 of FIG. 16. The insulation batt 690 can be between 0.25″ and 2″ thick. Preferably, the insulation batt 690 can be 0.75″ to 0.825″ thick. The insulation batt 690 can have a weight of about 700 grams per square meter (“GSM”), depending on thickness. The insulation batt 1690 can be between 1″ and 3″ in thickness. Preferably, the insulation batt 1690 can be between 1.5″ and 1.65″ in thickness. The insulation batt 1690 can have a weight of about 1400 GSM, depending on thickness.


In the present aspect, the blanks 600,1600 and/or the box 2301 can comprise corrugated cardboard. In other aspects, the blanks 1600,1600 and/or the box 2301 can comprise a different material, such as posterboard, corrugated plastic, polymer sheet material, or any other suitable material. In the present aspect, the blanks 600,1600 and/or the box 2301 can be die cut.


The backing sheet 796 can comprise Kraft paper. In other aspects, the backing sheet 796 can comprise a different material, such as a polymer film, corrugated cardboard, posterboard, corrugated plastic, or polymer sheet material, for example and without limitation.


In the present aspect, the insulation batts 690,1690 can comprise paper or other paper fiber materials; however, in other aspects, the insulation batts can comprise cotton, foam, rubber, plastics, fiberglass, mineral wool, or any other flexible insulation material. In the present application, the insulation batts 690,1690 can be repulpable. In the present aspect, the packaging assembly 2300 can be 100% recyclable. In the present aspect, the packaging assembly 2300 can be single-stream recyclable wherein all materials comprised by the packaging assembly 2300 can be recycled by a single processing train without requiring separation of any materials or components of the packaging assembly 2300. In the present aspect, the packaging assembly 2300 can be compostable. In the present aspect, the packaging assembly 2300 can be repulpable. In the present aspect, the packaging assembly 2300 and all components thereof can be repulpable in accordance with the requirements of the Aug. 16, 2013, revision of the “Voluntary Standard For Repulping and Recycling Corrugated Fiberboard Treated to Improve Its Performance in the Presence of Water and Water Vapor” provided by the Fibre Box Association of Elk Grove Village, IL which is hereby incorporated in its entirety. In the present aspect, the packaging assembly 2300 and all components thereof can be recyclable in accordance with the requirements of the Aug. 16, 2013, revision of the “Voluntary Standard For Repulping and Recycling Corrugated Fiberboard Treated to Improve Its Performance in the Presence of Water and Water Vapor” provided by the Fibre Box Association of Elk Grove Village, IL.


Recyclable and repulpable insulation materials are further described in U.S. Patent Application No. 62/375,555, filed Aug. 16, 2016, U.S. Patent Application No. 62/419,894, filed Nov. 9, 2016, and U.S. Patent Application No. 62/437,365, filed Dec. 21, 2016, which are each incorporated by reference in their entirety herein.


The packaging assembly 2300 can be used in applications in which a user or mail carrier transports perishable or temperature-sensitive goods. For example and without limitation, the packaging assembly 2300 can be used to transport pharmaceuticals or groceries. The packaging assembly 2300 can improve upon a common cardboard box by providing insulation to prevent spoilage or deterioration of the contents.


In order to ship temperature-sensitive goods, common cardboard boxes are often packed with insulating materials made of plastics or foams which are not accepted by many recycling facilities or curb-side recycling programs in which a waste management service collects recyclables at a user's home. Consequently, shipping temperature-sensitive goods often produces non-recyclable waste which is deposited in landfills. The insulation materials often decompose very slowly, sometimes over the course of several centuries. In some instances, non-recyclable and non-biodegradable insulating materials can enter the oceans where the insulation materials can remain for years and harm marine life. In some aspects, the packaging assembly 2300 can reduce waste and pollution by comprising materials which are recyclable or biodegradable. In aspects in which the packaging assembly 2300 is curb-side or single-stream recyclable, the user may be more likely to recycle the insulated packaging assembly 2300 due to the ease of curb-side collection.


One should note that conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular embodiments or that one or more particular embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


It should be emphasized that the above-described embodiments are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the present disclosure. Any process descriptions or blocks in flow diagrams should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process, and alternate implementations are included in which functions may not be included or executed at all, may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those reasonably skilled in the art of the present disclosure. Many variations and modifications may be made to the above-described embodiment(s) without departing substantially from the spirit and principles of the present disclosure. Further, the scope of the present disclosure is intended to cover any and all combinations and sub-combinations of all elements, features, and aspects discussed above. All such modifications and variations are intended to be included herein within the scope of the present disclosure, and all possible claims to individual aspects or combinations of elements or steps are intended to be supported by the present disclosure.

Claims
  • 1. A method of assembling a packaging assembly comprising an insulation wrap and a box, the method comprising: folding a first panel of an insulation wrap relative to a second panel of the insulation wrap about an outer hinge of the insulation wrap, the insulation wrap comprising an insulation batt and a wrap liner blank, the insulation batt at least partially captured in a first channel and a second channel, the first channel defined between a first outer portion of the wrap liner blank and an inner portion of the wrap liner blank, the first outer portion hingedly coupled to a first ledge portion of the wrap liner blank, the first ledge portion hingedly coupled to the inner portion, the second channel defined between a second outer portion of the wrap liner blank and the inner portion, the second outer portion hingedly coupled to a second ledge portion of the wrap liner blank, the second ledge portion hingedly coupled to the inner portion opposite from the first ledge portion, the first outer portion and the second outer portion at least partially defining an outer surface of the insulation wrap, the inner portion at least partially defining an inner surface of the insulation wrap; andinserting the insulation wrap into a cavity defined by a box, the outer surface positioned at least partially in facing engagement with the box, the inner surface at least partially defining an insulated cavity.
  • 2. The method of claim 1, further comprising positioning the second ledge portion at least partially in facing contact with a bottom panel of the box.
  • 3. The method of claim 1, wherein the wrap liner blank defines a clearance notch separating a portion of the inner portion defined by the first panel from a portion of the inner portion defined by the second panel.
  • 4. The method of claim 1, wherein the packaging assembly further comprises a plug, wherein the plug comprises a plug insulation batt at least partially enclosed between an inner panel and an outer panel of the plug, and wherein the method further comprises: inserting the inner panel and at least a portion of the plug insulation batt into the insulated cavity; andpositioning a portion of the outer panel in facing engagement with the second ledge portion.
  • 5. The method of claim 4, wherein positioned the portion of the outer panel in facing engagement with the second ledge portion comprises positioning the portion of the outer panel between the second ledge portion and a bottom panel of the box.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 17/307,650, filed on May 4, 2021, which claims the benefit of U.S. Provisional Application No. 63/020,346, filed on May 5, 2020, which are each hereby incorporated by reference in their entirety.

US Referenced Citations (605)
Number Name Date Kind
265985 Seabury Oct 1882 A
1061531 Emmons May 1913 A
1150105 Emmons Aug 1915 A
1527167 Birdseye Feb 1925 A
1677565 Oppenheim Jul 1928 A
1682410 Oppenheim Aug 1928 A
1747980 Kondolf Feb 1930 A
1753813 Washburn Apr 1930 A
1868996 Sharp Jul 1932 A
1896393 Devine Feb 1933 A
1899892 D'Este et al. Feb 1933 A
1930680 Hinton Oct 1933 A
1935923 Thoke Nov 1933 A
1937263 Bubb Nov 1933 A
1942917 D'Este et al. Jan 1934 A
1954013 Lilienfield Apr 1934 A
2018519 Hall Oct 1935 A
2070747 Ostrom Feb 1937 A
2116513 Frankenstein May 1938 A
2148454 Gerard Feb 1939 A
2165327 Zalkind Jul 1939 A
2289060 Merkle Jul 1942 A
2293361 Roberts Aug 1942 A
2326817 Zalkind Aug 1943 A
2360806 Van Rosen Oct 1944 A
2386905 Meitzen Oct 1945 A
2389601 De Witt Nov 1945 A
2485643 Norquist Oct 1949 A
2554004 Bergstein May 1951 A
2632311 Sullivan Mar 1953 A
2650016 McMillan Aug 1953 A
2753102 Paige Jul 1956 A
2867035 Patterson, Jr. Jan 1959 A
2899103 Ebert Aug 1959 A
2927720 Adams Mar 1960 A
2950225 Losse Aug 1960 A
2986324 Anderson, Jr. May 1961 A
2987239 Atwood Jun 1961 A
3003680 Wilcox, Jr. et al. Oct 1961 A
3029008 Membrino Apr 1962 A
3031121 Chase Apr 1962 A
3065514 Henning et al. Nov 1962 A
3065895 Lipschutz Nov 1962 A
3096879 Schumacher Jul 1963 A
3097782 Koropatkin et al. Jul 1963 A
3182913 Brian May 1965 A
3193176 Gullickson et al. Jul 1965 A
3194471 Murphy Jul 1965 A
3206103 Bixler Sep 1965 A
3222843 Schneider Dec 1965 A
3236206 Willinger Feb 1966 A
3282411 Jardine Nov 1966 A
3286825 Laas Nov 1966 A
3335941 Gatward Aug 1967 A
3349984 Halko, Jr. Oct 1967 A
3371462 Nordkvist et al. Mar 1968 A
3375934 Bates Apr 1968 A
3399818 Stegner Sep 1968 A
3420363 Blickensderfer Jan 1969 A
3435736 Reiche Apr 1969 A
3465948 Boyer Sep 1969 A
3503550 Main et al. Mar 1970 A
3551945 Eyberg et al. Jan 1971 A
3670948 Berg Jun 1972 A
3703383 Kuchenbecker Nov 1972 A
3734336 Rankow et al. May 1973 A
3736221 Evers et al. May 1973 A
3747743 Hoffman, Jr. Jul 1973 A
3749299 Ingle Jul 1973 A
3836044 Tilp et al. Sep 1974 A
3843038 Sax Oct 1974 A
3880341 Bamburg et al. Apr 1975 A
3883065 Presnick May 1975 A
3887743 Lane Jun 1975 A
3890762 Ernst et al. Jun 1975 A
3919372 Vogele Nov 1975 A
3945561 Strebelle Mar 1976 A
3976605 Matsunaga et al. Aug 1976 A
3980005 Buonaiuto Sep 1976 A
4030227 Oftedahl Jun 1977 A
4050264 Tanaka Sep 1977 A
4068779 Canfield Jan 1978 A
4091852 Jordan et al. May 1978 A
4146660 Hall et al. Mar 1979 A
4169540 Larsson et al. Oct 1979 A
4170304 Huke Oct 1979 A
4211267 Skovgaard Jul 1980 A
4213310 Buss Jul 1980 A
4335844 Egli Jun 1982 A
4342416 Philips Aug 1982 A
4351165 Gottsegen et al. Sep 1982 A
4380314 Langston, Jr. et al. Apr 1983 A
D270041 Vestal Aug 1983 S
4396144 Gutierrez et al. Aug 1983 A
4418864 Neilsen Dec 1983 A
4488623 Linnell, II et al. Dec 1984 A
4509645 Hotta Apr 1985 A
4536145 Sawyer et al. Aug 1985 A
4679242 Brockhaus Jul 1987 A
4682708 Pool Jul 1987 A
4711390 Andrews et al. Dec 1987 A
4797010 Coelho Jan 1989 A
4819793 Willard et al. Apr 1989 A
4828133 Hougendobler May 1989 A
4830282 Knight, Jr. May 1989 A
4889252 Rockom et al. Dec 1989 A
4930903 Mahoney Jun 1990 A
4989780 Foote et al. Feb 1991 A
5016813 Simons May 1991 A
5020481 Nelson Jun 1991 A
5062527 Westerman Nov 1991 A
5094547 Graham Mar 1992 A
5102004 Hollander et al. Apr 1992 A
5154309 Wischusen, III et al. Oct 1992 A
5158371 Moravek Oct 1992 A
5165583 Kouwenberg Nov 1992 A
5185904 Rogers et al. Feb 1993 A
5226542 Boecker et al. Jul 1993 A
5230450 Mahvi et al. Jul 1993 A
5263339 Evans Nov 1993 A
5358757 Robinette et al. Oct 1994 A
5372429 Beaver, Jr. et al. Dec 1994 A
5417342 Hutchison May 1995 A
5418031 English May 1995 A
5441170 Bane, III Aug 1995 A
5454471 Norvell Oct 1995 A
5460324 Vinther Oct 1995 A
5491186 Kean et al. Feb 1996 A
5493874 Landgrebe Feb 1996 A
5499473 Ramberg Mar 1996 A
5505810 Kirby et al. Apr 1996 A
5507429 Arlin Apr 1996 A
5511667 Carder Apr 1996 A
5512345 Tsutsumi et al. Apr 1996 A
5516580 Frenette et al. May 1996 A
5562228 Ericson Oct 1996 A
5573119 Luray Nov 1996 A
5596880 Welker et al. Jan 1997 A
5601232 Greenlee Feb 1997 A
5613610 Bradford Mar 1997 A
5615795 Tipps Apr 1997 A
5638978 Cadiente Jun 1997 A
5683772 Andersen et al. Nov 1997 A
5775576 Stone Jul 1998 A
5842571 Rausch Dec 1998 A
5906290 Haberkorn May 1999 A
5922379 Wang Jul 1999 A
5996366 Renard Dec 1999 A
6003719 Steward, III Dec 1999 A
6022615 Rettenbacher Feb 2000 A
D421457 Crofton Mar 2000 S
6041958 Tremelo Mar 2000 A
6048099 Muffett et al. Apr 2000 A
6050410 Quirion Apr 2000 A
6050412 Clough et al. Apr 2000 A
6090027 Brinkman Jul 2000 A
6138902 Welch Oct 2000 A
6164526 Dalvey Dec 2000 A
6168040 Sautner et al. Jan 2001 B1
6200404 Andersen et al. Mar 2001 B1
6220473 Lehman et al. Apr 2001 B1
6223551 Mitchell May 2001 B1
6238091 Mogil May 2001 B1
6244458 Frysinger et al. Jun 2001 B1
6247328 Mogil Jun 2001 B1
6274077 Hur et al. Aug 2001 B1
6295830 Newman Oct 2001 B1
6295860 Sakairi et al. Oct 2001 B1
6296134 Cardinale Oct 2001 B1
6308850 Coom et al. Oct 2001 B1
6325281 Grogan Dec 2001 B1
6364199 Rose Apr 2002 B1
6406649 Fisk Jun 2002 B1
6443309 Becker Sep 2002 B1
6453682 Jennings et al. Sep 2002 B1
6478268 Bidwell et al. Nov 2002 B1
6510705 Jackson Jan 2003 B1
6582124 Mogil Jun 2003 B2
6598783 Brinkman Jul 2003 B2
6618868 Minnick Sep 2003 B2
6641758 Arentsen et al. Nov 2003 B1
6688133 Donefrio Feb 2004 B1
6725783 Sekino Apr 2004 B2
6726017 Maresh et al. Apr 2004 B2
6736309 Westerman et al. May 2004 B1
6771183 Hunter Aug 2004 B2
6821019 Mogil Nov 2004 B2
6837420 Westerman et al. Jan 2005 B2
6868982 Gordon Mar 2005 B2
6875486 Miller Apr 2005 B2
6878199 Bowden et al. Apr 2005 B2
6899229 Dennison et al. May 2005 B2
6910582 Lantz Jun 2005 B2
6913389 Kannankeril et al. Jul 2005 B2
6971539 Abbe Dec 2005 B1
7000962 Le Feb 2006 B2
7019271 Wnek et al. Mar 2006 B2
7041369 Mackey et al. May 2006 B1
7070841 Benim et al. Jul 2006 B2
7083673 Bowden et al. Aug 2006 B2
7094192 Schoenberger et al. Aug 2006 B2
7138078 Gotoh Nov 2006 B2
7140773 Becker et al. Nov 2006 B2
D534797 El-Afandi Jan 2007 S
D545189 El-Afandi Jun 2007 S
7225632 Derifield Jun 2007 B2
7225970 Philips Jun 2007 B2
7229677 Miller Jun 2007 B2
D546679 El-Afandi Jul 2007 S
7255261 Mesly Aug 2007 B2
7264147 Benson et al. Sep 2007 B1
7270358 Hirsch Sep 2007 B2
7392931 Issler Jul 2008 B2
7452316 Cals et al. Nov 2008 B2
D582676 Rothschild Dec 2008 S
7484623 Goodrich Feb 2009 B2
7487904 McClure Feb 2009 B2
7597209 Rothschild et al. Oct 2009 B2
7607563 Hanna et al. Oct 2009 B2
7659316 Kittle et al. Feb 2010 B2
7677406 Maxson Mar 2010 B2
7681405 Williams Mar 2010 B2
7784301 Sasaki et al. Aug 2010 B2
7807773 Matsuoka et al. Oct 2010 B2
7841512 Westerman et al. Nov 2010 B2
7845508 Rothschild et al. Dec 2010 B2
7870992 Schille et al. Jan 2011 B2
7908870 Williams Mar 2011 B2
7909806 Goodman et al. Mar 2011 B2
7943765 Muller et al. May 2011 B2
7955428 Aoki et al. Jun 2011 B2
7967904 Bowden et al. Jun 2011 B2
7971720 Minkler Jul 2011 B2
8003032 Al-Sabih et al. Aug 2011 B2
8118177 Drapela et al. Feb 2012 B2
8153783 Muller et al. Apr 2012 B2
8209995 Kieling et al. Jul 2012 B2
8210353 Epicureo Jul 2012 B2
8277718 Aoki et al. Oct 2012 B2
8343024 Contanzo, Jr. et al. Jan 2013 B1
8365943 Bentley Feb 2013 B2
8389110 Liu Mar 2013 B2
8465404 Hadley Jun 2013 B2
8567662 Costanzo, Jr. Oct 2013 B2
8579183 Belfort et al. Nov 2013 B2
8596520 Scott Dec 2013 B2
8613202 Williams Dec 2013 B2
8651593 Bezich et al. Feb 2014 B2
8763811 Lantz Jul 2014 B2
8763886 Hall Jul 2014 B2
D710692 Genender Aug 2014 S
8795470 Henderson et al. Aug 2014 B2
8875885 Padden et al. Nov 2014 B2
8875983 Lenhard et al. Nov 2014 B2
8919082 Cataldo Dec 2014 B1
8960528 Sadlier Feb 2015 B2
9139319 Crespo et al. Sep 2015 B2
9272475 Ranade et al. Mar 2016 B2
9290313 De Lesseux et al. Mar 2016 B2
9322136 Ostendorf et al. Apr 2016 B2
D758182 Sponselee Jun 2016 S
9394633 Shimotsu et al. Jul 2016 B2
D764903 Sanfilippo et al. Aug 2016 S
9408445 Mogil et al. Aug 2016 B2
9410032 Kim et al. Aug 2016 B2
9429350 Chapman, Jr. Aug 2016 B2
9499294 Contanzo, Jr. Nov 2016 B1
9550618 Jobe Jan 2017 B1
9580846 Tseitlin et al. Feb 2017 B2
9605382 Virtanen Mar 2017 B2
9611067 Collison Apr 2017 B2
9635916 Bezich et al. May 2017 B2
9688454 Ranade Jun 2017 B2
9701437 Bugas et al. Jul 2017 B2
9738420 Miller Aug 2017 B2
9738432 Petrucci et al. Aug 2017 B1
9834366 Giuliani Dec 2017 B2
9908680 Shi et al. Mar 2018 B2
9908684 Collison Mar 2018 B2
9920517 Sollie et al. Mar 2018 B2
9950830 De Lesseux et al. Apr 2018 B2
9981797 Aksan et al. May 2018 B2
10046901 Jobe Aug 2018 B1
10065786 Kuhn Sep 2018 B2
10094126 Collison et al. Oct 2018 B2
10112756 Menzel, Jr. Oct 2018 B2
10226909 Frem et al. Mar 2019 B2
10266332 Aksan et al. Apr 2019 B2
10273073 Collison Apr 2019 B2
10357936 Vincent et al. Jul 2019 B1
10392156 McDonald et al. Aug 2019 B2
10400105 Stevens Sep 2019 B2
10435194 Sollie et al. Oct 2019 B2
10442600 Waltermire et al. Oct 2019 B2
10449694 Ojala et al. Oct 2019 B2
10507968 Sollie et al. Dec 2019 B2
10550523 Shih Feb 2020 B2
10551110 Waltermire et al. Feb 2020 B2
10583977 Collison et al. Mar 2020 B2
10604304 Waltermire et al. Mar 2020 B2
D881690 Smalley Apr 2020 S
10661941 Genender et al. May 2020 B2
10662301 Krause et al. May 2020 B2
10676263 Menzel, Jr. Jun 2020 B2
10745542 Bastioli et al. Aug 2020 B2
10800595 Waltermire et al. Oct 2020 B2
10843840 Sollie et al. Nov 2020 B2
10858141 Sollie et al. Dec 2020 B2
10875979 Ge et al. Dec 2020 B2
10882681 Waltermire et al. Jan 2021 B2
10882682 Collison et al. Jan 2021 B2
10882683 Collison et al. Jan 2021 B2
10882684 Sollie et al. Jan 2021 B2
10926939 Collison et al. Feb 2021 B2
10941977 Waltermire et al. Mar 2021 B2
10947025 Sollie et al. Mar 2021 B2
10954057 Waltermire et al. Mar 2021 B2
10954058 Sollie et al. Mar 2021 B2
11027875 Sollie et al. Jun 2021 B2
11059652 Sollie et al. Jul 2021 B2
11066228 Sollie et al. Jul 2021 B2
11117731 Waltermire et al. Sep 2021 B2
11124354 Waltermire et al. Sep 2021 B2
D934064 Satnick Oct 2021 S
11137198 Waltermire et al. Oct 2021 B2
11148870 Collison et al. Oct 2021 B2
11203458 Sollie et al. Dec 2021 B2
11214427 Collison et al. Jan 2022 B2
11215393 Waltermire et al. Jan 2022 B2
11230404 Sollie et al. Jan 2022 B2
11247806 Sollie et al. Feb 2022 B2
11247827 Jobe Feb 2022 B2
11255596 Waltermire et al. Feb 2022 B2
11261017 Waltermire et al. Mar 2022 B2
11267641 Collison et al. Mar 2022 B2
11286099 Sollie et al. Mar 2022 B2
11312563 Smith Apr 2022 B2
11325772 Sollie et al. May 2022 B2
D955876 Sill et al. Jun 2022 S
D957246 Culler et al. Jul 2022 S
D957936 Lincoln Jul 2022 S
D968950 Sollie et al. Nov 2022 S
11485566 Waltermire et al. Nov 2022 B2
11524832 Sollie et al. Dec 2022 B2
11542092 Sollie et al. Jan 2023 B2
11565871 Waltermire et al. Jan 2023 B2
11618608 Sollie et al. Apr 2023 B2
11623783 Sollie et al. Apr 2023 B2
11628978 Waltermire et al. Apr 2023 B2
11634265 Collison et al. Apr 2023 B2
11679925 Sollie et al. Jun 2023 B2
11692762 Waltermire et al. Jul 2023 B2
11697542 Sollie et al. Jul 2023 B2
11713180 Sollie et al. Aug 2023 B2
11718464 Sollie et al. Aug 2023 B2
11724851 Sollie et al. Aug 2023 B2
11780635 Sollie et al. Oct 2023 B2
11780636 Sollie et al. Oct 2023 B2
11780666 Collison et al. Oct 2023 B2
11858717 Waltermire Jan 2024 B2
20010010312 Mogil Aug 2001 A1
20020020188 Sharon et al. Feb 2002 A1
20020064318 Malone et al. May 2002 A1
20020134698 Rhodes et al. Sep 2002 A1
20020162767 Ohtsubo Nov 2002 A1
20030099833 Erb, Jr. et al. May 2003 A1
20030145561 Cals et al. Aug 2003 A1
20040004111 Cardinale Jan 2004 A1
20040031842 Westerman et al. Feb 2004 A1
20040079794 Mayer Apr 2004 A1
20040164132 Kuester Aug 2004 A1
20050109655 Vershum et al. May 2005 A1
20050117817 Mogil et al. Jun 2005 A1
20050189404 Xiaohai et al. Sep 2005 A1
20050214512 Fascio Sep 2005 A1
20050224501 Folkert et al. Oct 2005 A1
20050279963 Church et al. Dec 2005 A1
20060053828 Shallman et al. Mar 2006 A1
20060062990 Gotoh Mar 2006 A1
20060078720 Toas et al. Apr 2006 A1
20060096978 Lafferty et al. May 2006 A1
20060193541 Norcom Aug 2006 A1
20060235099 Kamite et al. Oct 2006 A1
20060243784 Glaser et al. Nov 2006 A1
20060255507 Bowden et al. Nov 2006 A1
20070000932 Cron et al. Jan 2007 A1
20070000983 Spurrell et al. Jan 2007 A1
20070051782 Lantz Mar 2007 A1
20070122584 Song et al. May 2007 A1
20070151685 Horsfield et al. Jul 2007 A1
20070193298 Derifield Aug 2007 A1
20070209307 Andersen Sep 2007 A1
20070257040 Price, Jr. et al. Nov 2007 A1
20080095959 Warner et al. Apr 2008 A1
20080135564 Romero Jun 2008 A1
20080173703 Westerman et al. Jul 2008 A1
20080190940 Scott Aug 2008 A1
20080203090 Dickinson Aug 2008 A1
20080268220 Olliges Oct 2008 A1
20080289302 Vulpitta Nov 2008 A1
20080296356 Hatcher et al. Dec 2008 A1
20080308616 Phung Dec 2008 A1
20080314794 Bowman Dec 2008 A1
20090034883 Giuliani Feb 2009 A1
20090078708 Williams Mar 2009 A1
20090114311 McDowell May 2009 A1
20090193765 Lantz Aug 2009 A1
20090214142 Bossel et al. Aug 2009 A1
20090275531 Muller et al. Nov 2009 A1
20090283578 Miller Nov 2009 A1
20090288791 Hammer et al. Nov 2009 A1
20100001056 Chandaria Jan 2010 A1
20100006630 Humphries et al. Jan 2010 A1
20100062921 Veiseh Mar 2010 A1
20100072105 Glaser et al. Mar 2010 A1
20100109196 Al-Sabih et al. May 2010 A1
20100139878 Clemente Jun 2010 A1
20100140124 Hafner Jun 2010 A1
20100151164 Grant et al. Jun 2010 A1
20100168260 Frenzel et al. Jul 2010 A1
20100219232 Smith Sep 2010 A1
20100258574 Bentley Oct 2010 A1
20100270317 Kieling et al. Oct 2010 A1
20100282827 Padovani Nov 2010 A1
20100284634 Hadley Nov 2010 A1
20100291822 Netravali Nov 2010 A1
20100314397 Williams et al. Dec 2010 A1
20100314437 Dowd Dec 2010 A1
20110042388 Tristancho Tello Feb 2011 A1
20110042449 Copenhaver et al. Feb 2011 A1
20110100868 Lantz May 2011 A1
20110114513 Miller May 2011 A1
20110235950 Lin Sep 2011 A1
20110240515 Ridgeway Oct 2011 A1
20110284556 Palmer et al. Nov 2011 A1
20110311758 Burns et al. Dec 2011 A1
20110317944 Liu Dec 2011 A1
20120031957 Whitaker Feb 2012 A1
20120074823 Bezich et al. Mar 2012 A1
20120097067 Fascio Apr 2012 A1
20120145568 Collison et al. Jun 2012 A1
20120178856 Gobl et al. Jul 2012 A1
20120243808 De Lesseux et al. Sep 2012 A1
20120248101 Tumber et al. Oct 2012 A1
20120251818 Axrup et al. Oct 2012 A1
20120279896 Lantz Nov 2012 A1
20120309246 Tseitlin et al. Dec 2012 A1
20120328807 Grimes Dec 2012 A1
20130017349 Heiskanen et al. Jan 2013 A1
20130026215 Lenhard et al. Jan 2013 A1
20130112694 Bentley May 2013 A1
20130112695 Hall May 2013 A1
20130140317 Roskoss Jun 2013 A1
20130203879 Rensen et al. Aug 2013 A1
20140000306 Chapman, Jr. Jan 2014 A1
20140021208 Anti et al. Jan 2014 A1
20140093697 Perry et al. Apr 2014 A1
20140248003 Mogil et al. Sep 2014 A1
20140272163 Tilton Sep 2014 A1
20140274633 Tilton Sep 2014 A1
20140300026 Taccolini Oct 2014 A1
20140319018 Collison Oct 2014 A1
20140367393 Ranade Dec 2014 A1
20150110423 Fox et al. Apr 2015 A1
20150111011 Hoekstra et al. Apr 2015 A1
20150166244 Wood et al. Jun 2015 A1
20150175338 Culp et al. Jun 2015 A1
20150238033 Zavitsanos Aug 2015 A1
20150239639 Wenner et al. Aug 2015 A1
20150255009 Akhter et al. Sep 2015 A1
20150259126 McGoff et al. Sep 2015 A1
20150284131 Genender et al. Oct 2015 A1
20150345853 Oeyen Dec 2015 A1
20150367981 Moore Dec 2015 A1
20160015039 Pierce Jan 2016 A1
20160052696 Cook et al. Feb 2016 A1
20160060017 De Lesseux et al. Mar 2016 A1
20160264294 Bacon Sep 2016 A1
20160304267 Aksan Oct 2016 A1
20160312010 Alavi Oct 2016 A1
20160312941 Alavi et al. Oct 2016 A1
20160318648 Kuninobu Nov 2016 A1
20160325915 Aksan Nov 2016 A1
20170015080 Collison et al. Jan 2017 A1
20170021961 Humphrey et al. Jan 2017 A1
20170043937 Lantz Feb 2017 A1
20170121052 Morimoto May 2017 A1
20170144792 Block May 2017 A1
20170198959 Morris Jul 2017 A1
20170225870 Collison Aug 2017 A1
20170233134 Grajales et al. Aug 2017 A9
20170233165 Kuhn Aug 2017 A1
20170283157 Jobe Oct 2017 A1
20170305639 Kuhn et al. Oct 2017 A1
20170320653 Mogil et al. Nov 2017 A1
20170334622 Menzel, Jr. Nov 2017 A1
20170341847 Chase et al. Nov 2017 A1
20170361973 Padilla Dec 2017 A1
20170369226 Chase et al. Dec 2017 A1
20170369667 Ruckdaschel et al. Dec 2017 A1
20180002451 Ge et al. Jan 2018 A1
20180050857 Collison Feb 2018 A1
20180051460 Sollie et al. Feb 2018 A1
20180086539 Aksan et al. Mar 2018 A1
20180148245 Aggarwal et al. May 2018 A1
20180148246 Fu et al. May 2018 A1
20180194534 Jobe Jul 2018 A1
20180215525 Vogel et al. Aug 2018 A1
20180229917 Jobe Aug 2018 A1
20180237207 Aksan et al. Aug 2018 A1
20180274837 Christensen Sep 2018 A1
20180290813 Waltermire et al. Oct 2018 A1
20180290815 Waltermire et al. Oct 2018 A1
20180299059 McGoff et al. Oct 2018 A1
20180319569 McGoff et al. Nov 2018 A1
20180327171 Waltermire et al. Nov 2018 A1
20180327172 Waltermire et al. Nov 2018 A1
20180334308 Moore et al. Nov 2018 A1
20180335241 Li et al. Nov 2018 A1
20190009946 Nixon et al. Jan 2019 A1
20190032991 Waltermire et al. Jan 2019 A1
20190040221 Hitzler et al. Feb 2019 A1
20190047775 Waltermire et al. Feb 2019 A1
20190071550 Ge et al. Mar 2019 A1
20190085155 Niles Mar 2019 A1
20190144155 Geng et al. May 2019 A1
20190185246 Sollie et al. Jun 2019 A1
20190185247 Sollie et al. Jun 2019 A1
20190193916 Waltermire et al. Jun 2019 A1
20190210790 Rizzo et al. Jul 2019 A1
20190234679 Waltermire et al. Aug 2019 A1
20190248573 Collison et al. Aug 2019 A1
20190270572 Collison et al. Sep 2019 A1
20190270573 Collison et al. Sep 2019 A1
20190352075 Waltermire et al. Nov 2019 A1
20190352076 Waltermire et al. Nov 2019 A1
20190352080 Waltermire et al. Nov 2019 A1
20190359412 Sollie et al. Nov 2019 A1
20190359413 Sollie et al. Nov 2019 A1
20190359414 Sollie et al. Nov 2019 A1
20190367208 Jobe Dec 2019 A1
20190367209 Jobe Dec 2019 A1
20190376636 Fellinger et al. Dec 2019 A1
20190382186 Sollie et al. Dec 2019 A1
20190390892 Waltermire et al. Dec 2019 A1
20200047976 Collison et al. Feb 2020 A1
20200048422 Doug et al. Feb 2020 A1
20200071056 Henderson et al. Mar 2020 A1
20200088458 Waltermire et al. Mar 2020 A1
20200103159 Waltermire et al. Apr 2020 A1
20200122896 Waltermire et al. Apr 2020 A1
20200148409 Sollie et al. May 2020 A1
20200148410 Sollie et al. May 2020 A1
20200148452 Sollie et al. May 2020 A1
20200148453 Sollie et al. May 2020 A1
20200214314 Bakker et al. Jul 2020 A1
20200283188 Sollie et al. Sep 2020 A1
20200308359 Glenn et al. Oct 2020 A1
20200318292 Alden et al. Oct 2020 A1
20200346816 Sollie et al. Nov 2020 A1
20200346841 Sollie et al. Nov 2020 A1
20210039869 Waltermire et al. Feb 2021 A1
20210039870 Sollie et al. Feb 2021 A1
20210039871 Sollie et al. Feb 2021 A1
20210070527 Sollie et al. Mar 2021 A1
20210070529 Sollie et al. Mar 2021 A1
20210070530 Sollie et al. Mar 2021 A1
20210078755 Sollie et al. Mar 2021 A1
20210101734 Collison et al. Apr 2021 A1
20210101735 Collison et al. Apr 2021 A1
20210101736 Waltermire et al. Apr 2021 A1
20210101737 Waltermire et al. Apr 2021 A1
20210102746 Waltermire et al. Apr 2021 A1
20210155365 Sollie et al. May 2021 A1
20210155367 Sollie et al. May 2021 A1
20210163210 Waltermire et al. Jun 2021 A1
20210179313 Sollie et al. Jun 2021 A1
20210179337 Sollie et al. Jun 2021 A1
20210347553 Sollie et al. Nov 2021 A1
20220017260 Sollie et al. Jan 2022 A1
20220024634 Sollie et al. Jan 2022 A1
20220024635 Sollie et al. Jan 2022 A1
20220026140 Waltermire et al. Jan 2022 A1
20220026141 Waltermire et al. Jan 2022 A1
20220033167 Collison et al. Feb 2022 A1
20220081152 Sollie et al. Mar 2022 A1
20220081186 Waltermire et al. Mar 2022 A1
20220177216 Sollie et al. Jun 2022 A1
20220185533 Chen et al. Jun 2022 A1
20220242607 Sollie et al. Aug 2022 A1
20220251783 Anagnostopoulos et al. Aug 2022 A1
20220288870 Collison et al. Sep 2022 A1
20220297918 Collison et al. Sep 2022 A1
20220388755 Waltermire et al. Dec 2022 A1
20220411167 Sollie et al. Dec 2022 A1
20230125191 Waltermire et al. Apr 2023 A1
20230159213 Sollie et al. May 2023 A1
20230159214 Sollie et al. May 2023 A1
20230182990 Sollie et al. Jun 2023 A1
20230227210 Waltermire et al. Jul 2023 A1
20230257157 Sollie et al. Aug 2023 A1
20230280087 Waltermire et al. Sep 2023 A1
20230322466 Sollie et al. Oct 2023 A1
20230322467 Sollie et al. Oct 2023 A1
20230382627 Collison et al. Nov 2023 A1
Foreign Referenced Citations (77)
Number Date Country
2021204424 Jul 2023 AU
2019104 Dec 1991 CA
2097735 Dec 1994 CA
2145953 Oct 1996 CA
2149939 Nov 1996 CA
1073993 Jul 1993 CN
11503962 Jun 2004 CN
102206361 Oct 2011 CN
102264961 Nov 2011 CN
206494316 Sep 2017 CN
108001787 May 2018 CN
110204794 Sep 2019 CN
117071332 Nov 2023 CN
1897846 Jul 1964 DE
102011016500 Oct 2012 DE
202017103230 Jul 2017 DE
202017003908 Oct 2017 DE
202018101998 Jul 2019 DE
202019003407 Nov 2019 DE
0133539 Feb 1985 EP
0537058 Apr 1993 EP
2781652 Dec 2015 EP
2990196 Mar 2016 EP
3144248 Mar 2017 EP
3348493 Jul 2018 EP
3538708 Jan 2022 EP
4071298 Jan 2024 EP
1241878 Sep 1960 FR
2705317 Nov 1994 FR
2820718 Aug 2002 FR
2821786 Sep 2002 FR
3016352 Jul 2015 FR
217683 Jun 1924 GB
235673 Jun 1925 GB
528289 Jan 1940 GB
713640 Aug 1954 GB
713640 Aug 1954 GB
1204058 Sep 1970 GB
1305212 Jan 1973 GB
1372054 Oct 1974 GB
2029461 Mar 1980 GB
2400096 May 2006 GB
2516490 Jan 2015 GB
2528289 Jan 2016 GB
2534912 Aug 2016 GB
01254557 Oct 1989 JP
H0632386 Feb 1994 JP
H06135487 May 1994 JP
2001009949 Jan 2001 JP
2005139582 Jun 2005 JP
2005247329 Sep 2005 JP
2006158584 Jun 2006 JP
4069255 Apr 2008 JP
2012126440 Jul 2012 JP
2017079632 May 2017 JP
101730461 Apr 2017 KR
8807476 Oct 1988 WO
9726192 Jul 1997 WO
9932374 Jul 1999 WO
2001070592 Sep 2001 WO
2009026256 Feb 2009 WO
2014147425 Sep 2014 WO
2016187435 May 2016 WO
2016187435 Nov 2016 WO
2017207974 Dec 2017 WO
2018089365 May 2018 WO
2018093586 May 2018 WO
2018227047 Dec 2018 WO
2019113453 Jun 2019 WO
2019125904 Jun 2019 WO
2019125906 Jun 2019 WO
2019226199 Nov 2019 WO
2020011587 Jan 2020 WO
2020101939 May 2020 WO
2020102023 May 2020 WO
2020122921 Jun 2020 WO
2020222943 Nov 2020 WO
Non-Patent Literature Citations (417)
Entry
US 10,562,676 B2, 02/2020, Waltermire et al. (withdrawn)
US 10,899,530 B2, 01/2021, Sollie et al. (withdrawn)
US 10,899,531 B2, 01/2021, Sollie et al. (withdrawn)
US 11,027,908 B2, 06/2021, Sollie et al. (withdrawn)
US 11,040,817 B2, 06/2021, Sollie et al. (withdrawn)
US 11,072,486 B2, 07/2021, Waltermire et al. (withdrawn)
US 11,079,168 B2, 08/2021, Waltermire et al. (withdrawn)
US 11,084,644 B2, 08/2021, Waltermire et al. (withdrawn)
US 11,167,877 B2, 11/2021, Sollie et al. (withdrawn)
US 11,167,878 B2, 11/2021, Sollie et al. (withdrawn)
US 11,247,836 B2, 02/2022, Sollie et al. (withdrawn)
US 11,292,656 B2, 04/2022, Sollie et al. (withdrawn)
US D959,977 S, 08/2022, Sollie et al. (withdrawn)
US 11,479,403 B2, 10/2022, Sollie et al. (withdrawn)
US 11,498,745 B2, 11/2022, Sollie et al. (withdrawn)
US 11,591,131 B2, 02/2023, Sollie et al. (withdrawn)
US 11,591,132 B2, 02/2023, Sollie et al. (withdrawn)
US 11,603,253 B2, 03/2023, Collison et al. (withdrawn)
US 11,613,421 B2, 03/2023, Sollie et al. (withdrawn)
Collison, Alan B.; Applicant Interview Summary for U.S. Appl. No. 16/658,756, filed Oct. 21, 2019, dated Jun. 29, 2020, 3 pgs.
Collison, Alan B.; Final Office Action for U.S. Appl. No. 16/658,756, filed Oct. 21, 2019, dated Jun. 17, 2020, 10 pgs.
Collison, Alan B.; Non-Final Office Action for U.S. Appl. No. 16/658,756, filed Oct. 21, 2019, dated Feb. 4, 2020, 14 pgs.
Collison, Alan B.; Notice of Allowance for U.S. Appl. No. 16/658,756, filed Oct. 21, 2019, dated Oct. 23, 2020, 10 pgs.
MP Global Products LLC: European Search Report for serial No. 17868605.1, dated Mar. 16, 2020, 7 pgs.
MP Global Products LLC: Office Action for European application No. 17868605.1, dated Dec. 3, 2020, 4 pgs.
MP Global Products, LLC; Examination Report for Australian patent application No. 2017359035, dated Nov. 27, 2020, 3 pgs.
MP Global Products, LLC; Office Action for Chinese patent application No. 201780081689.7, dated Nov. 2, 2020, 17 pgs.
Collison, Alan B.; Non-Final Office Action for U.S. Appl. No. 17/181,377, filed Feb. 22, 2021, dated Jul. 1, 2021, 22 pgs.
Collison, Alan B.; Notice of Allowance for U.S. Appl. No. 17/181,377, filed Feb. 22, 2021, dated Oct. 21, 2021, 6 pgs.
Collison, Alan B.; Restriction Requirement for U.S. Appl. No. 17/181,377, filed Feb. 22, 2021, dated Apr. 22, 2021, 6 pgs.
MP Global Products LLC; Office Action for Chinese Patent Application No. 201780081689.7, dated May 14, 2021, 17 pgs.
MP Global Products, LLC; Decision on Rejection for Chinese patent application No. 201780081689.7, dated Sep. 23, 2021, 15 pgs.
Collison, Alan B.; Applicant-Initiated Interview Summary for U.S. Appl. No. 16/414,309, filed May 16, 2019, dated Aug. 21, 2020, 3 pgs.
Collison, Alan B.; Applicant-Initiated Interview Summary for U.S. Appl. No. 16/414,309, filed May 16, 2019, dated Oct. 15, 2020, 3 pgs.
Collison, Alan B.; Certificate of Correction for U.S. Appl. No. 16/414,309, filed May 16, 2019, dated Mar. 9, 2021, 1 pg.
Collison, Alan B.; Final Office Action for U.S. Appl. No. 16/414,309, filed May 16, 2019, dated Oct. 8, 2020, 15 pgs.
Collison, Alan B.; Non-Final Office Action for U.S. Appl. No. 16/414,309, filed May 16, 2019, dated Jul. 17, 2020, 77 pgs.
Collison, Alan B.; Notice of Allowance for U.S. Appl. No. 16/414,309, filed May 16, 2019, dated Oct. 21, 2020, 6 pgs.
Collison, Alan B.; Requirement for Restriction/Election for U.S. Appl. No. 16/414,309, filed May 16, 2019, dated Jun. 16, 2020, 5 pgs.
Collison, Alan B.; Applicant-Initiated Interview Summary for U.S. Appl. No. 17/123,673, filed Dec. 16, 2020, dated Jun. 24, 2021, 2 pgs.
Collison, Alan B.; Certificate of Correction for U.S. Appl. No. 11/214,427, filed Dec. 16, 2020, dated Mar. 29, 2022, 1 pg.
Collison, Alan B.; Non-Final Office Action for U.S. Appl. No. 17/123,673, filed Dec. 16, 2020, dated Mar. 23, 2021, 86 pgs.
Collison, Alan B.; Notice of Allowance for U.S. Appl. No. 17/123,673, filed Dec. 16, 2020, dated Jul. 1, 2021, 12 pgs.
Collison, Alan B.; Applicant-Initiated Interview Summary for U.S. Appl. No. 16/414,310, filed May 16, 2019, dated Jul. 30, 2020, 3 pgs.
Collison, Alan B.; Non-Final Office Action for U.S. Appl. No. 16/414,310, filed May 16, 2019, dated Jul. 8, 2020, 84 pgs.
Collison, Alan B.; Notice of Allowance for U.S. Appl. No. 16/414,310, filed May 16, 2019, dated Nov. 13, 2020, 15 pgs.
Collison, Alan; Final Office Action for U.S. Appl. No. 16/414,310, filed May 16, 2019, dated Oct. 13, 2020, 30 pgs.
Collison, Alan B.; Applicant-Initiated Interview Summary for U.S. Appl. No. 17/123,676, filed Dec. 16, 2020, dated May 4, 2021, 4 pgs.
Collison, Alan B.; Certificate of Correction for U.S. Appl. No. 17/123,676, filed Dec. 16, 2020, dated Jan. 4, 2021, 1 pg.
Collison, Alan B.; Non-Final Office Action for U.S. Appl. No. 17/123,676, filed Dec. 16, 2020, dated Feb. 3, 2021, 23 pgs.
Collison, Alan B.; Notice of Allowance for U.S. Appl. No. 17/123,676, filed Dec. 16, 2020, dated May 13, 2021, 93 pgs.
Collison, Alan B.; Applicant-Initiated Interview Summary for U.S. Appl. No. 17/502,599, filed Oct. 15, 2021, dated Oct. 27, 2022, 2 pgs.
Collison, Alan B.; Certificate of Correction for U.S. Appl. No. 17/502,599, filed Oct. 15, 2021, dated Jun. 6, 2023, 1 pg.
Collison, Alan B.; Non-Final Office Action for U.S. Appl. No. 17/502,599, filed Oct. 15, 2021, dated Nov. 30, 2021, 6 pgs.
Collison, Alan B.; Non-Final Office Action for U.S. Appl. No. 17/502,599, filed Oct. 15, 2021, dated Sep. 12, 2022, 12 pgs.
Collison, Alan B.; Notice of Allowance for U.S. Appl. No. 17/502,599, filed Oct. 15, 2021, dated Jan. 23, 2023, 12 pgs.
Collison, Alan B.; Notice of Allowance for U.S. Appl. No. 17/502,599, filed Oct. 15, 2021, dated Mar. 9, 2022, 94 pgs.
Collison, Alan B.; Applicant-Initiated Interview Summary for U.S. Appl. No. 17/834,999, filed Jun. 8, 2022, dated Oct. 27, 2022, 2 pgs.
Collison, Alan B.; Non-Final Office Action for U.S. Appl. No. 17/834,999, filed Jun. 8, 2022, dated Jan. 27, 2023, 28 pgs.
Collison, Alan B.; Non-Final Office Action for U.S. Appl. No. 17/834,999, filed Jun. 8, 2022, dated Sep. 12, 2022, 104 pgs.
Collison, Alan B.; Notice of Allowance for U.S. Appl. No. 17/834,999, filed Jun. 8, 2022, dated May 18, 2023, 14 pgs.
Collison, Alan B.; Advisory Action for U.S. Appl. No. 17/688,356, filed Mar. 7, 2022, dated Apr. 26, 2023, 7 pgs.
Collison, Alan B.; Applicant-Initiated Interview Summary for U.S. Appl. No. 17/688,356, filed Mar. 7, 2022, dated Dec. 28, 2022, 3 pgs.
Collison, Alan B.; Applicant-Initiated Interview Summary for U.S. Appl. No. 17/688,356, filed Mar. 7, 2022, dated Apr. 6, 2023, 3 pgs.
Collison, Alan B.; Final Office Action for U.S. Appl. No. 17/688,356, filed Mar. 7, 2022, dated Feb. 1, 2023, 21 pgs.
Collison, Alan B.; Non-Final Office Action for U.S. Appl. No. 17/688,356, filed Mar. 7, 2022, dated Oct. 24, 2022, 41 pgs.
Collison, Alan B.; Restriction Requirement for U.S. Appl. No. 17/688,356, filed Mar. 7, 2022, dated Jun. 20, 2022, 9 pgs.
Sollie, Greg; Applicant Initiated Interview Summary for U.S. Appl. No. 15/988,550, filed May 24, 2018, dated Dec. 27, 2019, 3 pgs.
Sollie, Greg; Applicant-Initiated Interview Summary for U.S. Appl. No. 15/988,550, filed May 24, 2018, dated Dec. 24, 2020, 2 pgs.
Sollie, Greg; International Preliminary Report on Patentability for PCT Application No. PCT/US18/65459, filed Dec. 13, 2018, dated Jul. 2, 2020, 11 pgs.
Sollie, Greg; International Search Report and Written Opinion for PCT Application No. PCT/US18/65459, filed Dec. 13, 2018, dated May 1, 2019, 15 pgs.
Sollie, Greg; International Preliminary Report on Patentability for PCT Application No. PCT/US18/65461, filed Dec. 13, 2018, dated Jul. 2, 2020, 12 pgs.
Sollie, Greg; International Search Report and Written Opinion for PCT Application No. PCT/US18/65461, filed Dec. 13, 2018, dated Mar. 21, 2019, 13 pgs.
MP Global Products, LLC; First Examination Report for Australian patent application No. 2017359035, filed Nov. 7, 2017, dated Nov. 27, 2020, 3 pgs.
MP Global Products, LLC; Office Action for Canadian patent application No. 3,043,192, filed Nov. 7, 2017, dated Oct. 25, 2021, 11 pgs.
MP Global Products, LLC; Office Action for Canadian patent application No. 3,043,192, filed Nov. 7, 2017, dated Nov. 8, 2022, 3 pgs.
MP Global Products, LLC; Office Action for Canadian patent application No. 3,043,192, filed Nov. 7, 2017, dated Apr. 8, 2022, 9 pgs.
MP Global Products LLC: European Office Action for application No. 17868605.1, dated Dec. 3, 2020, 4 pgs.
MP Global Products LLC: European Office Action for application No. 17868605.1, dated Apr. 13, 2021, 3 pgs.
MP Global Products LLC: European Office Action Response for application No. 17868605.1, filed Jan. 19, 2021, 15 pgs.
MP Global Products LLC: European Search Report Response for serial No. 17868605.1, filed Oct. 2, 2020, 15 pgs.
Collison, Alan B.; Examination Report for Australian patent application No. 2021204424, filed Nov. 7, 2017, dated Dec. 6, 2022, 2 pgs.
Collison, Alan B.; Examination Report for Australian patent application No. 2021204424, filed Nov. 7, 2017, dated Aug. 25, 2022, 8 pgs.
Collison, Alan B.; Office Action for Chinese patent application No. 2021107289972, filed Nov. 7, 2017, dated Apr. 15, 2023, 7 pgs.
Collison, Alan. B.; Extended European Search Report for application No. 21160713.0, filed Nov. 7, 2017, dated May 10, 2021, 7 pgs.
MP Global Products, LLC; Extended European Search Report for application No. 22152100.8, dated Jun. 2, 2022, 7 pgs.
Collison, Alan B.; Extended European Search Report for application No. 22173063.3, filed Nov. 7, 2017, dated Sep. 9, 2022, 7 pgs.
MP Global Products, L.L.C.; Examination Report for Australian patent application No. 2021245201, filed Nov. 7, 2017, dated Feb. 21, 2023, 3 pgs.
Sollie, Greg; International Preliminary Report on Patentability for PCT/US18/65463, filed Dec. 13, 2018, dated Dec. 3, 2020, 9 pgs.
Sollie, Greg; International Search Report and Written Opinion for PCT/US18/65463, filed Dec. 13, 2018, dated Mar. 25, 2019, 11 pgs.
Sollie, Greg; International Preliminary Report on Patentability for PCT Application No. PCT/US20/24820, filed Mar. 26, 2020, dated Nov. 11, 2021, 13 pgs.
Sollie, Greg; International Search Report and Written Opinion for PCT Application No. PCT/US20/24820, filed Mar. 26, 2020, dated Jul. 2, 2020, 14 pgs.
Sollie, Greg; International Preliminary Report on Patentability for PCT Application No. PCT/US19/60486, filed Nov. 18, 2019, dated May 27, 2021, 9 pgs.
Sollie, Greg; International Search Report and Written Opinion for PCT Application No. PCT/US19/60486, filed Nov. 18, 2019, dated Jan. 13, 2020, 10 pgs.
Sollie, Greg; International Preliminary Report on Patentability for PCT Application No. PCT/US19/59764, filed Nov. 5, 2019, dated May 27, 2021, 9 pgs.
Sollie, Greg; International Search Report and Written Opinion for PCT Application No. PCT/US19/59764, filed Nov. 5, 2019, dated Jul. 1, 2020, 13 pgs.
Sollie, Greg; Invitation to Pay Additional Fees for PCT/US19/59764, filed Nov. 5, 2019, dated Jan. 2, 2020, 2 pgs.
Amazon. ECOOPTS Cling Wrap Plastic Food Wrap with Slide Cutter. First available Dec. 21, 2020. Visited Sep. 2, 2022. https://www.amazon.com/ECOOPTS-Cling-Plastic-Cutter-121 N %C3%971 000FT/dp/B08R3L7K4W/ (Year: 2020).
Sollie, Greg; Notice of Allowance for Design U.S. Appl. No. 29/745,881, filed Aug. 10, 2020, dated May 9, 2022, 139 pgs.
Sollie, Greg; Notice of Allowance for Design U.S. Appl. No. 29/745,881, filed Aug. 10, 2020, dated Sep. 13, 2022, 12 pgs.
American Bag Company; Article entitled: “Cool Green Bag, Small”, located at <http://hotcoldbags.com/items/Cool%20Green%20Bag,%20Small>, accessed on Mar. 20, 2017, 2 pgs.
Cold Keepers; Article entitled: “Insulated Shipping Boxes—Coldkeepers, Thermal Shipping Solutions”, located at <https://www.coldkeepers.com/product-category/shipping/>, (Accessed: Jan. 12, 2017), 3 pgs.
Duro Bag; Article entitled: “The Load and Fold Bag”, accessed on May 24, 2017, copyrighted Apr. 2017, 3 pgs.
Greenblue; “Environmental Technical Briefs of Common Packaging Materials—Fiber-Based Materials”, Sustainable Packaging Solution, 2009.
Images of Novolex bag, including an outer paper bag, a corrugated cardboard insert, and an inner foil-covered bubble-wrap bag, publicly available prior to May 9, 2017, 7 pgs.
MP Global Products, LLC; International Search Report and Written Opinion of the International Searching Authority for PCT/US2017/060403, filed Nov. 7, 2017, dated Feb. 19, 2018, 15 pgs.
MP Global Products; Article entitled: “Thermopod mailer envelopes and Thermokeeper insulated box liners”, located at < http://www.mhpn.com/product/thermopod_mailer_envelopes_and_thermokeeper_insulated_box_liners/packaging>, accessed on Aug. 30, 2017, 2 pgs.
Needles ‘N’ Knowledge; Article entitled: “Tall Box With Lid”, located at <http://needlesnknowledge.blogspot.com/2017/10/tall-box-with-lid.html> (Accessed: Jan. 12, 2017), 10 pgs.
Periwrap; Article entitled: “Insulated Solutions”, located at <https://www.peri-wrap.com/insulation/>, accessed on Dec. 3, 2018, 9 pgs.
Salazar Packaging; Article entitle: “Custom Packaging and Design”, located at <https://salazarpackaging.com/custom-packaging-and-design/>, accessed on Sep. 28, 2017, 2 pgs.
Singh, et al; Article entitled: “Performance Comparison of Thermal Insulated Packaging Boxes, Bags and Refrigerants for Single-parcel Shipments”, published Mar. 13, 2007, 19 pgs.
Tera-Pak; Article entitled: “Insulated Shipping Containers”, located at <http://www.tera-pak.com/>, accessed on Mar. 20, 2017, 3 pgs.
UN Packaging; Article entitled: “CooLiner® Insulated Shipping Bags”, available at <http://www.chem-tran.com/packaging/supplies/cooliner-insulated-shipping-bags.php>, accessed on Aug. 30, 2017, 2 pgs.
weiku.com; Article entitled: “100% Biodegradable Packing materials Green Cell Foam Stock Coolers”, located at <http://www.weiku.com/products/18248504/100_Biodegradable_Packing_materials_Green_Cell_Foam_Stock_Coolers.html>, accessed on Sep. 28, 2017, 7 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/951,465, filed Nov. 18, 2020, dated Aug. 18, 2022, 20 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 17/493,449, filed Oct. 4, 2021, dated Jul. 14, 2022, 110 pgs.
Benezet, et al.; Article entitled: “Mechanical and physical properties of expanded starch, reinforced by natural fibres”, Industrial Corps and Products 37 (2012) 435-440, available online Oct. 4, 2011, 6 pgs.
Collison, Alan B.; Office Action for Mexico patent application No. MX/a/2019/005376, dated Mar. 1, 2022, 5 pgs.
Collison, Alan B.; Office Action for Chinese patent application No. 2021107289972, filed Nov. 7, 2017, dated May 7, 2022, 20 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 17/127,060, filed Dec. 18, 2020, dated Oct. 19, 2023, 44 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 17/127,102, filed Dec. 18, 2020, dated Oct. 20, 2023, 10 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 17/497,054, filed Oct. 8, 2021, dated Nov. 28, 2023, 26 pgs.
Collison, Alan B.; Final Office Action for U.S. Appl. No. 17/688,356, filed Mar. 7, 2022, dated Nov. 21, 2023, 29 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 17/536,878, filed Nov. 29, 2021, dated Oct. 20, 2023, 29 pgs.
Sollie, Greg; Requirement for Restriction/Election for U.S. Appl. No. 18/140,641, filed Apr. 28, 2023, dated Nov. 8, 2023, 5 pgs.
Anagnostopoulos, John; Final Office Action for U.S. Appl. No. 17/666,206, filed Feb. 7, 2022, dated Oct. 2, 2023, 32 pgs.
paperweb.com, 2006, downloaded online Sep. 26, 2023 from archive.org (Year: 2006), 1 pg.
Sollie, Greg; Examination Report for Australian application No. 2018260918, filed Nov. 8, 2018, dated Oct. 13, 2023, 5 pgs.
Sollie, Greg; Examination Report for Australian application No. 2018260918, filed Nov. 8, 2018, dated Dec. 2, 2023, 5 pgs.
Sollie, Greg; Examination Report for Australian patent application No. 2018260919, filed Nov. 8, 2018, dated Oct. 16, 2023, 4 pgs.
Sollie, Greg; Examination Report for Australian patent application No. 2018260919, filed Nov. 8, 2018, dated Dec. 5, 2023, 4 pgs.
Jun. 21, 2023 Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 17/127,060, filed Dec. 18, 2020, dated Jun. 21, 2023, 159 pgs.
Jul. 6, 2023 Waltermire, Jamie; Final Office Action for U.S. Appl. No. 17/127,102, filed Dec. 18, 2020, dated Jul. 6, 2023, 35 pgs.
Mar. 8, 2020 Moo-Tun, et al., Article entitled: “Assessing the effect of PLA, cellulose microfibers and CaCO3 on the properties of starch-based foams using a factorial design”, Polymer Testing 86 (2020) 106482, available on Mar. 8, 2020, 10 pgs.
Aug. 15, 2007 Salgado, et al.; Article entitled: “Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process”, Journal of Food Engineering 85 (2008) 435-443, available online Aug. 15, 2007, 9 pgs.
Jan. 2010 Schmidt, et al.; Article entitled: “Characterization of Foams Obtained from Cassava Starch, Cellulose Fibres and Dolomitic Limestone by a Thermopressing Process”, Brazilian Archives of Biology and Technology vol. 53, n. 1, pp. 88-192, Jan.-Feb. 2010, 8 pgs.
2011 Avella, et al.; Article entitled: “Biodegradable PVOH-based foams for packaging applications”, Journal of Cellular Plastics 2011, 47:271, 12 pgs.
Oct. 4, 2011 Benezet, et al.; Article entitled: “Mechanical and physical properties of expanded starch, reinforced by natural fibres”, Industrial Corps and Products 37 (2012) 435-440, available online Oct. 4, 2011, 6 pgs.
Mar. 1, 2022 Collison, Alan B.; Office Action for Mexico patent application No. MX/a/2019/005376, dated Mar. 1, 2022, 5 pgs.
Waltermire, Jamie; Certificate of Correction for U.S. Appl. No. 15/482,186, filed Apr. 7, 2017, dated Dec. 29, 2020, 1 pg.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 15/482, 186, filed Apr. 7, 2017, dated Aug. 20, 2019, 81 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 15/482,186, filed Apr. 7, 2017, dated Mar. 5, 2020, 29 pgs.
Waltermire, Jamie; Requirement for Restriction/Election for U.S. Appl. No. 15/482,186, filed Apr. 7, 2017, dated Apr. 17, 2019, 7 pgs.
Waltermire, Jamie; Applicant-Initiated Interview Summary for U.S. Appl. No. 16/526,511, filed Jul. 30, 2019, dated Jun. 12, 2020, 5 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 16/526,511, filed Jul. 30, 2019, dated May 19, 2020, 39 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/526,511, filed Jul. 30, 2019, dated Dec. 9, 2019, 55 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/526,511, filed Jul. 30, 2019, dated Jul. 10, 2020, 23 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 16/526,511, filed Jul. 30, 2019, dated Sep. 14, 2020, 18 pgs.
Carlson, Dave; Article entitled: “FBA Updates Voluntary Standard for Recyclable Wax Alternatives”, dated Aug. 14, 2013, Fiber Box Association (Year: 2013), 2 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 17/079,437, filed Oct. 24, 2020, dated Feb. 24, 2022, 24 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 17/079,437, filed Oct. 24, 2020, dated Sep. 20, 2021, 108 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 17/079,437, filed Oct. 24, 2020, dated Jun. 2, 2022, 21 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 15/482,200, filed Apr. 7, 2017, dated Jan. 2, 2019, 23 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 15/482,200, filed Apr. 7, 2017, dated Jun. 11, 2018, 36 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 15/482,200, filed Apr. 7, 2017, dated May 14, 2019, 25 pgs.
Waltermire, Jamie; Applicant-Initiated Interview Summary for U.S. Appl. No. 16/530,045, filed Aug. 2, 2019, dated Jun. 15, 2020, 3 pgs.
Waltermire, Jamie; Certificate of Correction for U.S. Appl. No. 16/530,045, filed Aug. 2, 2019, dated Mar. 28, 2023, 1 pg.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 16/530,045, filed Aug. 2, 2019, dated Nov. 24, 2020, 40 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 16/530,045, filed Aug. 2, 2019, dated Jun. 9, 2022, 20 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/530,045, filed Aug. 2, 2019, dated Dec. 20, 2019, 61 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/530,045, filed Aug. 2, 2019, dated Feb. 10, 2022, 82 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/530,045, filed Aug. 2, 2019, dated May 27, 2020, 38 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 16/530,045, filed Aug. 2, 2019, dated Oct. 5, 2022, 14 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/164,933, filed Oct. 19, 2018, dated Nov. 18, 2020, 104 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 16/164,933, filed Oct. 19, 2018, dated May 14, 2021, 24 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 16/164,933, filed Oct. 19, 2018, dated Aug. 9, 2021, 10 pgs.
Waltermire, Jamie; Corrected Notice of Allowance for U.S. Appl. No. 15/590,345, filed May 9, 2017, dated Feb. 18, 2020, 9 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 15/590,345, filed May 9, 2017, dated Mar. 19, 2019, 42 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 15/590,345, filed May 9, 2017, dated Aug. 24, 2018, 41 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 15/590,345, filed May 9, 2017, dated Oct. 1, 2019, 28 pgs.
Waltermire, Jamie; Supplemental Notice of Allowance for U.S. Appl. No. 15/590,345, filed May 9, 2017, dated Jan. 9, 2020, 8 pgs.
Waltermire, Jamie; Supplemental Notice of Allowance for U.S. Appl. No. 15/590,345, filed May 9, 2017, dated Dec. 3, 2019, 14 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/721,995, filed Dec. 20, 2019, dated Dec. 27, 2021, 133 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/721,995, filed Dec. 20, 2019, dated Jul. 5, 2022, 28 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 16/721,995, filed Dec. 20, 2019, dated Dec. 5, 2022, 22 pgs.
Waltermire, Jamie; Requirement for Restriction/Election for U.S. Appl. No. 16/721,995, filed Dec. 20, 2019, dated Aug. 13, 2021, 6 pgs.
Waltermire, Jamie; Applicant-Initiated Interview Summary for U.S. Appl. No. 15/590,349, filed May 9, 2017, dated Dec. 3, 2019, 3 pgs.
Waltermire, Jamie; Certificate of Correction for U.S. Appl. No. 15/590,349, filed May 9, 2017, dated Jun. 1, 2021, 1 pg.
Waltermire, Jamie; Corrected Notice of Allowance for U.S. Appl. No. 15/590,349, filed May 9, 2017, dated Nov. 2, 2020, 9 pgs.
Waltermire, Jamie; Corrected Notice of Allowance for U.S. Appl. No. 15/590,349, filed May 9, 2017, dated Dec. 22, 2020, 9 pgs.
Waltermire, Jamie; Corrected Notice of Allowance for U.S. Appl. No. 15/590,349, filed May 9, 2017, dated Feb. 5, 2021, 9 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 15/590,349, filed May 9, 2017, dated Jan. 6, 2020, 26 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 15/590,349, filed May 9, 2017, dated May 9, 2019, 31 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 15/590,349, filed May 9, 2017, dated Nov. 5, 2018, 41 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 15/590,349, filed May 9, 2017, dated Jun. 12, 2020, 30 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 15/590,349, filed May 9, 2017, dated Sep. 5, 2019, 25 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 15/590,349, filed May 9, 2017, dated Oct. 20, 2020, 20 pgs.
Waltermire, Jamie; Requirement for Restriction/Election for U.S. Appl. No. 15/590,349, filed May 9, 2017, dated Aug. 30, 2018, 10 pgs.
Waltermire, Jamie; Certificate of Correction for U.S. Appl. No. 16/293,716, filed Mar. 6, 2019, dated Aug. 30, 2022, 1 pg.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 17/891,565, filed Aug. 19, 2022, dated Sep. 6, 2023, 115 pgs.
Waltermire, Jamie; Requirement for Restriction/Election for U.S. Appl. No. 17/173,293, filed Feb. 11, 2021, dated Aug. 30, 2023, 6 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 17/127,050, filed Dec. 18, 2020, dated Aug. 7, 2023, 14 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 17/497,054, filed Oct. 8, 2021, dated Aug. 3, 2023, 24 pgs.
Waltermire, Jamie; Certificate of Correction for U.S. Appl. No. 17/497,057, filed Oct. 8, 2021, dated Sep. 5, 2023, 1 pg.
Sollie, Greg; Certificate of Correction for U.S. Appl. No. 16/951,465, filed Nov. 18, 2020, dated Aug. 1, 2023, 1 pg.
Collison, Alan B.; Advisory Action for U.S. Appl. No. 17/688,356, filed Mar. 7, 2022, dated Jul. 25, 2023, 6 pgs.
Collison, Alan B.; Non-Final Office Action for U.S. Appl. No. 17/688,356, filed Mar. 7, 2022, dated Jul. 31, 2023, 18 pgs.
Solie, Greg; Certificate of Correction for U.S. Appl. No. 16/280,595, filed Feb. 20, 2019, dated Sep. 12, 2023, 2 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 17/679,772, filed Feb. 24, 2022, dated Aug. 30, 2023, 12 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 17/901,558, filed Sep. 1, 2022, dated Aug. 21, 2023, 25 pgs.
Sollie, Greg; Certificate of Correction for U.S. Appl. No. 17/493,449, filed Oct. 4, 2021, dated Aug. 15, 2023, 1 pg.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 18/094,806, filed Jan. 9, 2023, dated Jul. 21, 2023, 12 pgs.
Sollie, Greg; Certificate of Correction for U.S. Appl. No. 17/493,474, filed Oct. 4, 2021, dated Aug. 1, 2023, 3 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 18/095,310, filed Jan. 10, 2023, dated Jul. 28, 2023, 19 pgs.
Any Custom Box. Perforated Dispenser Boxes. Publication date unavailable. Visited May 2, 2022. https://anycustombox.com/folding-cartons/perforated-dispenser-boxes/, 9 pgs.
Massage Warehouse. Cando® Low Powder 100 Yard Perforated Dispenser. Publication date unavailable. Visited May 2, 2022. https://www.massagewarehouse.com/products/cando-perf-low-powder-1 DO-yd-dispenser/, 2 pgs.
Premier Storage. Oil & Fuel Absorbent Pads. Publication date unavailable. Visited May 2, 2022. https://www.premier-storage.co.uk/oil-and-fuel-absorbent-pads-bonded-and-perforated-double-weight.html, 1 pg.
Waltermire, Kamie; Non-Final Office Action for U.S. Appl. No. 17/127,102, filed Dec. 28, 2020, dated Jan. 12, 2023, 19 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 16/689,433, filed Nov. 20, 2019, dated Aug. 5, 2021, 23 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/689,433, filed Nov. 20, 2019, dated Feb. 23, 2021, 88 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 16/689,433, filed Nov. 20, 2019, dated Oct. 15, 2021, 14 pgs.
Waltermire, Jamie; Requirement for Restriction/Election for U.S. Appl. No. 16/689,433, filed Nov. 20, 2019, dated Oct. 16, 2020, 6 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 17/497,054, filed Oct. 8, 2021, dated Apr. 24, 2023, 33 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 17/497,054, filed Oct. 8, 2021, dated Nov. 15, 2022, 131 pgs.
Waltermire, Jamie; Requirement for Restriction/Election for U.S. Appl. No. 17/497,054, filed Oct. 8, 2021, dated Oct. 6, 2022, 8 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 17/497,057, filed Oct. 8, 2021, dated Oct. 19, 2022, 115 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 17/497,057, filed Oct. 8, 2021, dated Feb. 16, 2023, 25 pgs.
Waltermire, Jamie; Requirement for Restriction/Election for U.S. Appl. No. 17/497,057, filed Oct. 8, 2021, dated Sep. 15, 2022, 8 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 15/845,545, filed Dec. 18, 2017, dated Mar. 5, 2019, 41 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 15/845,545, filed Dec. 18, 2017, dated Jun. 19, 2019, 20 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/552,277, filed Aug. 27, 2019, dated Aug. 7, 2020, 19 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/552,277, filed Aug. 27, 2019, dated Jun. 3, 2020, 68 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 16/552,277, filed Aug. 27, 2019, dated Aug. 31, 2020, 6 pgs.
Sollie, Greg; Restriction Requirement for U.S. Appl. No. 16/552,277, filed Aug. 27, 2019, dated Apr. 20, 2020, pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/951,454, filed Nov. 18, 2020, dated Aug. 4, 2022, 165 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 16/951,454, filed Nov. 18, 2020, dated Nov. 15, 2022, 13 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 16/951,454, filed Nov. 18, 2020, dated May 2, 2023, 6 pgs.
Sollie, Greg; Restriction Requirement for U.S. Appl. No. 16/951,454, filed Nov. 18, 2020, dated Jun. 14, 2022, 14 pgs.
Sollie, Greg; Applicant-Initiated Interview Summary for U.S. Appl. No. 16/951,465, filed Nov. 18, 2020, dated Oct. 5, 2022, 2 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/951,465, filed Nov. 18, 2020, dated Dec. 13, 2022, 17 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/951,465, filed Nov. 18, 2020, dated May 13, 2022, 123 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 16/951,465, filed Nov. 18, 2020, dated Feb. 28, 2023, 12 pgs.
Sollie, Greg; Certificate of Correction for U.S. Appl. No. 15/845,540, filed Dec. 18, 2017, dated Jun. 1, 2021, 1 pg.
Sollie, Greg; Final Office Action for U.S. Appl. No. 15/845,540, filed Dec. 18, 2017, dated Oct. 30, 2019, 56 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 15/845,540, filed Dec. 18, 2017, dated Sep. 2, 2020, 28 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 15/845,540, filed Dec. 18, 2017, dated Feb. 19, 2020, 32 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 15/845,540, filed Dec. 18, 2017, dated Apr. 2, 2019, 50 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 15/845,540, filed Dec. 18, 2017, dated Sep. 17, 2020, 5 pgs.
Sollie, Greg; Certificate of Correction for U.S. Appl. No. 17/100,819, filed Nov. 21, 2020, dated Feb. 28, 2023, 2 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 17/100,819, filed Nov. 21, 2020, dated Apr. 13, 2022, 39 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 17/100,819, filed Nov. 21, 2020, dated Sep. 29, 2021, 107 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 17/100,819, filed Nov. 21, 2020, dated Sep. 7, 2022, 15 pgs.
“Green Cell Foam Shipping Coolers”, located at <https://www.greencellfoam.com/shipping-coolers>, accessed on Oct. 18, 2019, 4 pgs.
Collison, Alan B.; Applicant Interview Summary for U.S. Appl. No. 15/677,738, filed Aug. 15, 2017, dated Dec. 5, 2018, 4 pgs.
Collison, Alan B.; Applicant Interview Summary for U.S. Appl. No. 15/677,738, filed Aug. 15, 2017, dated Apr. 22, 2019, 4 pgs.
Collison, Alan B.; Corrected Notice of Allowance for U.S. Appl. No. 15/677,738, filed Aug. 15, 2017, dated Jul. 15, 2019, 7 pgs.
Collison, Alan B.; Final Office ACtion for U.S. Appl. No. 15/677,738, filed Aug. 15, 2017, dated Feb. 28, 2019, 14 pgs.
Collison, Alan B.; Non-Final Office Action for U.S. Appl. No. 15/677,738, filed Aug. 15, 2017, dated Oct. 23, 2018, 11 pgs.
Collison, Alan B.; Notice of Allowance for U.S. Appl. No. 15/677,738, filed Aug. 15, 2017, dated Oct. 29, 2019, 14 pgs.
Collison, Alan B.; Notice of Allowance for U.S. Appl. No. 15/677,738, filed Aug. 15, 2017, dated Jun. 19, 2019, 10 pgs.
Collison, Alan B.; Requirement for Restriction/Election for U.S. Appl. No. 15/677,738, filed Aug. 15, 2017, dated Jul. 3, 2018, 8 pgs.
Collison, Alan B.; Requirement for Restriction/Election for U.S. Appl. No. 15/677,738, filed Aug. 15, 2017, dated Jul. 31, 2018, 8 pgs.
Collison, Alan B.; Supplemental Notice of Allowance for U.S. Appl. No. 15/677,738, filed Aug. 15, 2017, dated Dec. 10, 2019, 4 pgs.
CooLiner® Insulated Shipping Bags, available at <http://www/chem-tran.com/packaging/supplies/cooliner-insulated-shipping-bags.php>, accessed on Oct. 18, 2019, 4 pgs.
Voluntary Standard for Repulping and Recycling Corrugated Fiberboard Treated to Improve Its Performance in the Presence of Water and Water Vapor. (revises Aug. 16, 2013) Fibre Box Association (FBA), Elk Grove Village, IL, 1-23, Retrieved from http://www.corrugated.org/wp-content/uploads/PDFs/Recycling/Vol_Std_Protocol_2013. pdf.
Collison, Alan B.; Advisory Action for U.S. Appl. No. 16/658,756, filed Oct. 21, 2019, dated Sep. 25, 2020, 4 pgs.
Collison, Alan B.; Applicant Interview Summary for U.S. Appl. No. 16/658,756, filed Oct. 21, 2019, dated May 6, 2020, 3 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 16/293,716, filed Mar. 6, 2019, dated Oct. 29, 2020, 19 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 16/293,716, filed Mar. 6, 2019, dated Sep. 10, 2020, 24 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/293,716, filed Mar. 6, 2019, dated Feb. 5, 2021, 18 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/293,716, filed Mar. 6, 2019, dated May 5, 2020, 70 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/293,716, filed Mar. 6, 2019, dated Jul. 26, 2021, 26 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 16/293,716, filed Mar. 6, 2019, dated Nov. 3, 2021, 20 pgs.
Waltermire, Jamie; Requirement for Restriction/Election for U.S. Appl. No. 16/293,716, filed Mar. 6, 2019, dated Feb. 26, 2020, 6 pgs.
Waltermire, Jamie; Certificate of Correction for U.S. Appl. No. 16/526,555, filed Jul. 30, 2019, dated Nov. 16, 2021, 1 pg.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 16/526,555, filed Jul. 30, 2019, dated Mar. 8, 2021, 25 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/526,555, filed Jul. 30, 2019, dated Oct. 27, 2020, 39 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/526,555, filed Jul. 30, 2019, dated Apr. 2, 2020, 63 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 16/526,555, filed Jul. 30, 2019, dated May 21, 2021, 32 pgs.
Waltermire, Jamie; Requirement for Restriction/Election for U.S. Appl. No. 16/526,555, filed Jul. 30, 2019, dated Jan. 17, 2020, 7 pgs.
Waltermire, Jamie; Supplemental Notice of Allowance for U.S. Appl. No. 16/526,555, filed Jul. 30, 2019, dated Jun. 8, 2021, 13 pgs.
Waltermire, Jamie; Supplemental Notice of Allowance for U.S. Appl. No. 16/526,555, filed Jul. 30, 2019, dated Aug. 11, 2021, 8 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 17/127,050, filed Dec. 18, 2020, dated Apr. 26, 2023, 32 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 17/127,050, filed Dec. 18, 2020, dated Dec. 2, 2022, 22 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 17/127,050, filed Dec. 18, 2020, dated Jun. 17, 2022, 147 pgs.
Waltermire, Jamie; Requirement for Restriction/Election for U.S. Appl. No. 17/127,050, filed Dec. 18, 2020, dated Apr. 14, 2022, 5 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 17/127,060, filed Dec. 18, 2020, dated Jun. 21, 2023, 159 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 15/663,905, filed Jul. 31, 2017, dated Aug. 22, 2019, 23 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 15/663,905, filed Jul. 31, 2017, dated Jun. 25, 2019, 66 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 15/663,905, filed Jul. 31, 2017, dated Nov. 4, 2019, 18 pgs.
Waltermire, Jamie; Requirement for Restriction/Election for U.S. Appl. No. 15/663,905, filed Jul. 31, 2017, dated Mar. 21, 2019, 8 pgs.
Waltermire, Jamie; Advisory Action for U.S. Appl. No. 16/381,678, filed Apr. 11, 2019, dated Feb. 26, 2020, 3 pgs.
Waltermire, Jamie; Corrected Notice of Allowance for U.S. Appl. No. 16/381,678, filed Apr. 11, 2019, dated Aug. 9, 2021, 8 pgs.
Waltermire, Jamie; Examiner-Initiated Interview Summary for U.S. Appl. No. 16/381,678, filed Apr. 11, 2019, dated Aug. 30, 2021, 2 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 16/381,678, filed Apr. 11, 2019, dated Oct. 19, 2020, 24 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 16/381,678, filed Apr. 11, 2019, dated Dec. 30, 2019, 17 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 16/381,678, filed Apr. 11, 2019, dated Jun. 16, 2020, 8 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 16/381,678, filed Apr. 11, 2019, dated Aug. 20, 2020, 21 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/381,678, filed Apr. 11, 2019, dated Mar. 5, 2021, 36 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/381,678, filed Apr. 11, 2019, dated Apr. 17, 2020, 30 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/381,678, filed Apr. 11, 2019, dated Sep. 9, 2019, 50 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 16/381,678, filed Apr. 11, 2019, dated Jun. 3, 2021, 14 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 16/381,678, filed Apr. 11, 2019, dated Jul. 30, 2020, 15 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 16/561,203, filed Sep. 5, 2019, dated Sep. 10, 2020, 25 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/561,203, filed Sep. 5, 2019, dated May 6, 2020, 59 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 16/561,203, filed Sep. 5, 2019, dated Nov. 3, 2020, 14 pgs.
Waltermire, Jamie; Requirement for Restriction/Election for U.S. Appl. No. 16/561,203, filed Sep. 5, 2019, dated Feb. 26, 2020, 5 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 16/689,407, filed Nov. 20, 2019, dated Apr. 23, 2021, 18 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 16/689,407, filed Nov. 20, 2019, dated Jan. 8, 2021, 92 pgs.
Waltermire, Jamie; Notice of Allowance for U.S. Appl. No. 16/689,407, filed Nov. 20, 2019, dated Jul. 19, 2021, 12 pgs.
Waltermire, Jamie; Requirement for Restriction/Election for U.S. Appl. No. 16/689,407, filed Nov. 20, 2019, dated Oct. 29, 2020, 6 pgs.
Waltermire, Jamie; Advisory Action for U.S. Appl. No. 17/127,102, filed Dec. 18, 2020, dated Dec. 7, 2022, 4 pgs.
Waltermire, Jamie; Applicant-Initiated Interview Summary for U.S. Appl. No. 17/127,102, filed Dec. 18, 2020, dated Oct. 31, 2022, 2 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 17/127,102, filed Dec. 18, 2020, dated Oct. 5, 2022, 31 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 17/127,102, filed Dec. 18, 2020, dated Jul. 6, 2023, 35 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 17/127,102, filed Dec. 18, 2020, dated Jun. 27, 2022, 128 pgs.
Waltermire, Jamie; Requirement for Restriction/Election for U.S. Appl. No. 17/127,102, filed Dec. 18, 2020, dated Apr. 14, 2022, 6 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 15/988,550, filed May 24, 2018, dated Aug. 14, 2019, 19 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 15/988,550, filed May 24, 2018, dated Aug. 27, 2020, 27 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 15/988,550, filed May 24, 2018, dated Oct. 9, 2019, 17 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 15/988,550, filed May 24, 2018, dated Mar. 11, 2020, 35 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 15/988,550, filed May 24, 2018, dated May 29, 2019, 48 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 15/988,550, filed May 24, 2018, dated Apr. 13, 2021, 21 pgs.
Sollie, Greg; Advisory Action for U.S. Appl. No. 16/280,595, filed Feb. 20, 2019, dated Jul. 6, 2020, 3 pgs.
Sollie, Greg; Applicant-Initiated Interview Summary for U.S. Appl. No. 16/280,595, filed Feb. 20, 2019 dated May 6, 2020, 3 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/280,595, filed Feb. 20, 2019, dated Oct. 3, 2019, 19 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/280,595, filed Feb. 20, 2019, dated Dec. 30, 2020, 25 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/280,595, filed Feb. 20, 2019, dated Mar. 24, 2020, 20 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/280,595, filed Feb. 20, 2019, dated May 31, 2022, 27 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/280,595, filed Feb. 20, 2019, dated Aug. 16, 2021, 21 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/280,595, filed Feb. 20, 2019, dated Dec. 19, 2019, 23 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/280,595, filed Feb. 20, 2019, dated Dec. 8, 2021, 17 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/280,595, filed Feb. 20, 2019, dated Apr. 9, 2021, 20 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/280,595, filed Feb. 20, 2019, dated May 29, 2019, 60 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/280,595, filed Feb. 20, 2019, dated Aug. 28, 2020, 26 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/280,595, filed 2/20/20219, dated Sep. 16, 2022, 14 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 16/280,595, filed Feb. 20, 2019, dated Mar. 31, 2023, 27 pgs.
Sollie, Greg; Advisory Action for U.S. Appl. No. 16/530,052, filed Aug. 2, 2019, dated Mar. 9, 2022, 4 pgs.
Sollie, Greg; Advisory Action for U.S. Appl. No. 16/530,052, filed Aug. 2, 2019, dated Jun. 29, 2021, 15 pgs.
Sollie, Greg; Applicant-Initiated Interview Summary for U.S. Appl. No. 16/530,052, filed Aug. 2, 2019, dated Feb. 5, 2020, 2 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/530,052, filed Aug. 2, 2019, dated Dec. 27, 2019, 49 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/530,052, filed Aug. 2, 2019, dated Dec. 8, 2021, 17 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/530,052, filed Aug. 2, 2019, dated Apr. 20, 2021, 27 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/530,052, filed Aug. 2, 2019, dated Aug. 28, 2020, 29 pgs.
Sollie, Greg; Non-Final Ofice Action for U.S. Appl. No. 16/530,052, filed Aug. 2, 2019, dated Oct. 2, 2019, 12 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/530,052, filed Aug. 2, 2019, dated Dec. 18, 2020, 17 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/530,052, filed Aug. 2, 2019, dated Mar. 3, 2020, 24 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/530,052, filed Aug. 2, 2019, dated Aug. 13, 2021, 22 pgs.
Cellulose Material Solutions, LLC; Brochure for Infinity Care Thermal Liner, accessed on Oct. 22, 2018, 2 pgs.
Sollie, Greg; Applicant-Initiated Interview Summary for U.S. Appl. No. 16/401,603, filed May 2, 2019, dated May 15, 2020, 3 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/401,603, filed May 2, 2019, dated Jun. 30, 2020, 13 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/401,603, filed May 2, 2019, dated Mar. 10, 2020, 67 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 16/401,603, filed May 2, 2019, dated Aug. 31, 2020, 14 pgs.
Sollie, Greg; Requirement for Restriction/Election for U.S. Appl. No. 16/401,603, filed May 2, 2019, dated Feb. 18, 2020, 6 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 17/078,884, filed Oct. 23, 2020, dated Aug. 12, 2021, 105 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 17/078,884, filed Oct. 23, 2020, dated Nov. 22, 2021, 12 pgs.
Sollie, Greg; Applicant-Initiated Interview Summary for U.S. Appl. No. 17/078,891, filed Oct. 23, 2020, dated Oct. 25, 2021, 2 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 17/078,891, filed Oct. 23, 2020, dated Aug. 23, 2021, 104 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 17/078,891, filed Oct. 23, 2020, dated Dec. 1, 2021, 12 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 17/679,772, filed Feb. 24, 2022, dated Oct. 17, 2022, 108 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 17/679,772, filed Feb. 24, 2022, dated May 2, 2023, 29 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/401,607, filed May 2, 2019, dated Aug. 19, 2020, 88 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 16/401,607, filed May 2, 2019, dated Dec. 4, 2020, 12 pgs.
Uline; Article entitled: Corrugated Corner Protectors—4×4″, accessed on Oct. 25, 2018, 1 pg.
Sollie, Greg; Certificate of Correction for U.S. Appl. No. 17/187,239, filed Feb. 26, 2021, dated Apr. 26, 2022, 1 pg.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 17/187,239, filed Feb. 26, 2021, dated Sep. 21, 2021, 99 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 17/187,239, filed Feb. 26, 2021, dated Oct. 13, 2021, 5 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 17/536,878, filed Nov. 29, 2021, dated Apr. 12, 2023, 140 pgs.
DHL Express; Brochure for Dry Ice Shipping Guidelines, accessed on Oct. 26, 2018, 12 pgs.
Sollie, Greg; Corrected Notice of Allowance for U.S. Appl. No. 16/382,710, filed Apr. 12, 2019, dated Sep. 24, 2020, 9 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/382,710, filed Apr. 12, 2019, dated Apr. 6, 2020, 33 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/382,710, filed Apr. 12, 2019, dated Oct. 10, 2019, 49 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 16/382,710, filed Apr. 12, 2019, dated Oct. 21, 2020, 5 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 16/382,710, filed Apr. 12, 2019, dated Jun. 3, 2020, 12 pgs.
Sollie, Greg; Requirement for Restriction/Election for U.S. Appl. No. 16/382,710, filed Apr. 12, 2019, dated Jul. 15, 2019, 6 pgs.
Sollie, Greg; Certificate of Correction for U.S. Appl. No. 16/879,811, filed May 21, 2020, dated Feb. 8, 2022, 1 pg.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/879,811, filed May 21, 2020, dated Jun. 22, 2021, 93 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 16/879,811, filed May 21, 2020, dated Jul. 7, 2021, 5 pgs.
Sollie, Greg; Requirement for Restriction/Election for U.S. Appl. No. 16/879,811, filed May 21, 2020, dated Apr. 15, 2021, 6 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 17/492,285, filed Oct. 1, 2021, dated Jul. 11, 2022, 109 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 17/492,285, filed Oct. 1, 2021, dated Feb. 8, 2023, 25 pgs.
Sollie, Greg; Certificate of Correction for U.S. Appl. No. 16/567,192, filed Sep. 11, 2019, dated Feb. 16, 2021, 1 pg.
Sollie, Greg; Corrected Notice of Allowance for U.S. Appl. No. 16/567,192, filed Sep. 11, 2019, dated Oct. 20, 2020, 8 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/567,192, filed Sep. 11, 2019, dated Jun. 8, 2020, 20 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/567,192, filed Sep. 11, 2019, dated Dec. 10, 2019, 49 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 16/567,192, filed Sep. 11, 2019, dated Aug. 7, 2020, 14 pgs.
Thomas Scientific; Article entitled: “Thermosafe: Test Tube Shipper/Rack”, accessed on Oct. 26, 2018, 2 pgs.
Stinson, Elizabeth; Article entitled: “A Pizza Geek Discovers the World's Smartest Pizza Box”, published Jan. 17, 2014, 8 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/408,981, filed May 10, 2019, dated Dec. 29, 2020, 22 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 16/408,981, filed May 10, 2019, dated Feb. 24, 2020, 29 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/408,981, filed May 10, 2019, dated Aug. 20, 2019, 60 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/408,981, filed May 10, 2019, dated Sep. 16, 2020, 40 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 16/408,981, filed May 10, 2019, dated Feb. 23, 2021, 6 pgs.
Sollie, Greg; Certificate of Correction for U.S. Appl. No. 17/185,616, filed Feb. 25, 2021, dated Feb. 28, 2023, 2 pgs.
Sollie, Greg; Final Office Action for U.S. Appl. No. 17/185,616, filed Feb. 25, 2021, dated Jan. 28, 2022, 37 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 17/185,616, filed Feb. 25, 2021, dated Sep. 15, 2021, 103 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 17/185,616, filed Feb. 25, 2021, dated Jun. 17, 2022, 18 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 17/901,558, filed Sep. 1, 2022, dated Feb. 15, 2023, 128 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 16/886,040, filed May 28, 2020, dated Mar. 30, 2021, 89 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 16/886,040, filed May 28, 2020, dated Nov. 18, 2021, 10 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 16/886,040, filed May 28, 2020, dated Jul. 7, 2021, 12 pgs.
Sollie, Greg; Requirement for Restriction/Election for U.S. Appl. No. 16/886,040, filed May 28, 2020, dated Dec. 23, 2020, 6 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 17/493,449, filed Oct. 4, 2021, dated Oct. 13, 2022, 10 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 18/094,806, filed Jan. 9, 2023, dated Apr. 21, 2023, 118 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 17/493,474, filed Oct. 4, 2021, dated Jul. 11, 2022, 112 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 17/493,474, filed Oct. 4, 2021, dated Oct. 13, 2022, 15 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 18/095,310, filed Jan. 10, 2023, dated Apr. 24, 2023, 118 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 17/307,650, filed May 4, 2021, dated Nov. 30, 2022, 139 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 17/307,650, filed May 4, 2021, dated Mar. 9, 2023, 15 pgs.
Sollie, Greg; Requirement for Restriction/Election for U.S. Appl. No. 17/307,650, filed May 4, 2021, dated Oct. 28, 2022, 6 pgs.
Anagnostopoulos, John; Non-Final Office Action for U.S. Appl. No. 17/666,206, filed Feb. 7, 2022, dated Apr. 19, 2023, 139 pgs.
Avella, et al.; Article entitled: “Biodegradable PVOH-based foams for packaging applications”, Journal of Cellular Plastics 2011, 47:271, 12 pgs.
Moo-Tun, et al.; Article entitled: “Assessing the effect of PLA, cellulose microfibers and CaCO3 on the properties of starch-based foams using a factorial design”, Polymer Testing 86 (2020) 106482, available on Mar. 8, 2020, 10 pgs.
Salgado, et al.; Article entitled: “Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process”, Journal of Food Engineering 85 (2008) 435-443, available online Aug. 15, 2007, 9 pgs.
Schmidt, et al.; Article entitled: “Characterization of Foams Obtained from Cassava Starch, Cellulose Fibres and Dolomitic Limestone by a Thermopressing Process”, Brazilian Archives of Biology and Technology vol. 53, n. 1, pp. 88-192, Jan.-Feb. 2010, 8 pgs.
Waltermire, Jamie; International Preliminary Report on Patentability for PCT Application No. PCT/US18/65464, filed Dec. 13, 2018, dated Jun. 24, 2021, 8 pgs.
Waltermire, Jamie; International Search Report and Written Opinion for PCT Application No. PCT/US18/65464, filed Dec. 13, 2018, dated Mar. 11, 2019, 9 pgs.
Waltermire, Jamie; Final Office Action for U.S. Appl. No. 17/891,565, filed Aug. 19, 2022, dated Jan. 17, 2024, 77 pgs.
Waltermire, Jamie; Non-Final Office Action for U.S. Appl. No. 17/173,293, filed Feb. 11, 2021, dated Dec. 22, 2023, 168 pgs.
Waltermire, Jamie; Advisory Action for U.S. Appl. No. 17/127,060, filed Dec. 18, 2020, dated Dec. 21, 2023, 8 pgs.
Waltermire, Jamie; Advisory Action for U.S. Appl. No. 17/497,054, filed Oct. 8, 2021, dated Jan. 30, 2024, 11 pgs.
Sollie, Greg; Advisory Action for U.S. Appl. No. 17/536,878, filed Nov. 29, 2021, dated Jan. 12, 2024, 8 pgs.
Sollie, Greg; Non-Final Office Action for U.S. Appl. No. 18/140,641, filed Apr. 28, 2023, dated Dec. 27, 2023, 147 pgs.
Sollie, Greg; Advisory Action for U.S. Appl. No. 17/901,558, filed Sep. 1, 2022, dated Dec. 12, 2023, 3 pgs.
Sollie, Greg; Requirement for Restriction/Election for U.S. Appl. No. 18/208,704, filed Jun. 12, 2023, dated Jan. 9, 2024, 6 pgs.
Sollie, Greg; Notice of Allowance for U.S. Appl. No. 18/208,708, filed Jun. 12, 2023, dated Jan. 17, 2024, 142 pgs.
Anagnostopoulos, John; Advisory Action for U.S. Appl. No. 17/666,206, filed Feb. 7, 2022, dated Dec. 22, 2023, 4 pgs.
Related Publications (1)
Number Date Country
20230322468 A1 Oct 2023 US
Provisional Applications (1)
Number Date Country
63020346 May 2020 US
Divisions (1)
Number Date Country
Parent 17307650 May 2021 US
Child 18208709 US