The present disclosure relates to robotic systems, and in particular to exoskeletons for use in connection with improving human capability.
This invention was made with government support under FA8606-19-C-0018 awarded by the Air Force Office of Scientific Research. The government has certain rights in the invention.
In a wide variety of situations, people of ordinary ability often consume a great deal of energy when walking and carrying a load. Research is being actively conducted into wearable robotics for a variety of applications, for example, enhancement of muscular power of disabled or elderly people to assist them with walking, rehabilitation treatment for people having diseases, and lifting and carrying of heavy loads for soldiers or industrial workers. Accordingly, improved wearable robotic and/or assistive devices remain desirable.
In an exemplary embodiment, a robotic device comprises a hip-mounted, powered exoskeleton, an adjustable vest coupled to the powered exoskeleton, a power source for powering the powered exoskeleton, and a computing device for controlling the robotic device and determining when to activate the powered exoskeleton.
In various embodiments, the powered exoskeleton is configured to provide unidirectional thrust to assist hip extension. In various embodiments, the powered exoskeleton provides unidirectional thrust on a portion of hip extension movement of a user. In various embodiments, the powered exoskeleton comprises a first and a second lateral pelvic plate. In various embodiments, the adjustable vest comprises one or more straps configured to reduce rotation of each lateral pelvic plate during activation of the powered exoskeleton. In various embodiments, the adjustable vest comprises a first strap extending horizontally between a first upper end of the first lateral pelvic plate and a second upper end of the second lateral pelvic plate. In various embodiments, the adjustable vest further comprises a second strap extending horizontally between a first lower end of the first lateral pelvic plate and a second lower end of the second lateral pelvic plate. In various embodiments, the adjustable vest further comprises a pair of adjustable shoulder straps.
In another exemplary embodiment, a back support device comprises a first and a second lateral pelvic plate and at least one strap configured to reduce rotation of each lateral pelvic plate and thus support the lumbar region of a user of the back support device.
In various embodiments, the back support device further comprises an adjustable vest coupled to the at least one strap. In various embodiments, the back support device further comprises a plurality of straps that form an adjustable vest. In various embodiments, the first and the second lateral pelvic plate are configured to support the use of a motor to assist a user of the back support device in lifting an object. In various embodiments, each lateral pelvic plate is configured to support the use of a motor to assist a user of the back support device in pushing an object. In various embodiments, each lateral pelvic plate is configured to be coupled to a passive exoskeleton. In various embodiments, the back support device further comprises a quasi-passive exoskeleton coupled to the first and the second lateral pelvic plate, wherein the quasi-passive exoskeleton comprises a power source that can be activated or deactivated.
In various embodiments, the back support device further comprises a powered exoskeleton coupled to the first and the second lateral pelvic plate, wherein the powered exoskeleton comprises a power source and an electric actuator. In various embodiments, the back support device further comprises a pair of motor units respectively coupled to the first and the second lateral pelvic plate. Each motor unit comprises a frame, a motor mounted to the frame, a screw rotatably mounted to the frame, a translating block threadingly coupled to the screw, and a lever arm pivotally coupled to the frame. The translating block is configured to contact the lever arm to rotate the lever arm about a pivot. In various embodiments, the translating block is configured to move from a first mode where the translating block engages the lever arm and a second mode where the lever arm is able to freely rotate about the pivot. In various embodiments, the back support device further comprises a leg brace coupled to the lever arm, wherein the leg brace is configured to rotate with the lever arm about the pivot.
In another exemplary embodiment, a method for using a wearable robotic device comprises positioning a first lateral pelvic plate at a first side of a user’s hip, positioning a second lateral pelvic plate at a second side of the user’s hip, positioning a first strap to extend horizontally between a first upper end of the first lateral pelvic plate and a second upper end of the second lateral pelvic plate, wherein the first strap extends across a user’s waist, adjusting a length of the first strap, positioning a second strap to extend horizontally between a first lower end of the first lateral pelvic plate and a second lower end of the second lateral pelvic plate, wherein the second strap extends across a user’s hip, adjusting a length of the second strap, contracting a user’s hips, and extending the user’s hips with the support of the wearable robotic device.
The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated herein otherwise. These features and elements as well as the operation of the disclosed embodiments will become more apparent in light of the following description and accompanying drawings.
The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the detailed description and claims when considered in connection with the drawing figures, wherein like numerals denote like elements.
The following description is of various exemplary embodiments only, and is not intended to limit the scope, applicability or configuration of the present disclosure in any way. Rather, the following description is intended to provide a convenient illustration for implementing various embodiments including the best mode. As will become apparent, various changes may be made in the function and arrangement of the elements described in these embodiments without departing from principles of the present disclosure.
For the sake of brevity, conventional techniques and components for wearable robotic systems may not be described in detail herein. Furthermore, the connecting lines shown in various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in exemplary hip exoskeleton systems and/or components thereof.
Principles of the present disclosure may be compatible with or complementary to principles disclosed in PCT Application No. PCT/US2021/017406 filed on Feb. 10, 2021, now publication WO2021163153 entitled “Hip Exoskeleton for Lifting and Pushing,” the contents of which are hereby incorporated by reference (except for any subject matter disclaimers or disavowals, and except to the extent of any conflict with the disclosure of the present application, in which case the disclosure of the present application shall control).
Wearable robotic systems assist workers to push and lift heavy objects, palletize, and perform tasks with less fatigue. Unfortunately, there is a limited pool of younger workers currently available and the existing workforce is older and aging. Thus, it is desirable to improve worker ergonomics, prevent injuries to reduce health-care costs, and improve worker wellness. For example, more U.S. healthcare dollars are spent treating back and neck pain than almost any other medical condition.
Prior approaches to wearable robotic systems have offered limited performance improvements, been unduly bulky, cumbersome, or heavy. Moreover, most exoskeleton devices do not allow for free motion and hinder walking and running gait. When wearing conventional exoskeleton devices, it feels like you are walking in a swimming pool. In contrast, in accordance with principles of the present disclosure, an exemplary hip exoskeleton can assist human movement, for example, when lifting an object in a squatting position, or when pushing an object, in each instance by assisting hip extension. By providing a system configured to assist with hip extension when lifting and pushing only, exemplary systems allow for free motion in other tasks, improving the user experience.
With reference now to
Prior exoskeleton structures were generally either too soft to resist hip motor torques or were too bulky, stiff, and heavy. Multiple designs have been developed; in some, a system consisting of lateral pelvic plates were used to comfortably resist hip torques. The system constrains the lateral sides of the trunk stabilizing the human core. When a person performs a squatting motion, the lower back is stabilized and good form is achieved.
In various exemplary embodiments, an exemplary unique design has removed the rigid brace at the hips and replaced it with a more comfortable and intuitive backpack-type strapping (for example, see
A first and a second lateral pelvic plate 110 may be provided, each lateral pelvic plate 110 configured to support the use of a dedicated motor to assist the user of the back support device in lifting an object. It will be appreciated that, in system 100, the lateral pelvic plates 110 constrain and hold the trunk and stabilize the core of the body. Prior approaches use hard structures along the spine which are uncomfortable. Additionally, as compared to prior approaches, system 100 is: light; comfortable and does not cover the lower back which can cause the user to sweat and overheat; designed to ensure that the user has a good posture when lifting and pushing; and easily adjusted.
System 100 further includes a hard leg brace 130 configured to surround at least a portion of the user’s leg. In this illustrated embodiment, leg brace 130 wraps around the front half of the user’s thigh. Leg brace 130 includes a vertical arm 132. Vertical arm 132 may be integrated into the leg brace 130 as a single, unitary member. Vertical arm 132 may be configured to rotate in the same axis as the user’s hip (sagittal plane).
System 100 further includes a power source 102, such as a battery, for powering the motor unit 150. Power source 102 may be supported at the user’s back by straps 120. Power source 102 may be activated or deactivated by the user.
With reference now to
Motor unit 150 further includes an lever arm 160 pivotally coupled to frame 158. Lever arm 160 may include a first arm 161 extending from the pivot 163 and configured to be attached to vertical arm 132 (see
By placing translating block 154 adjacent to second arm 162, the translating block may be moved out of the way when not in use (i.e., to the right in
With combined reference now to
In various embodiments, computing device 104 may implement a control schema to allow for different movement activities. A poorly executed system may tend to cause the system to move during the wrong motions potentially causing injury. To control the system 100, a redundant activity recognition algorithm may be implemented with a basic model and/or an AI trained model. Both models may operate on the white-list principle, in which the system will only activate when it is certain that a lift or push is taking place. For all others it will not engage, in various embodiments. Computing device 104 may utilize one or more inertial measurement units (IMUs) fitted in the control chip at the hip (e.g., 1 on each side), and rotation sensors about the axis of rotation (e.g., one on each side) to detect and/or determine when to activate the exoskeleton (e.g., to identify the signatures of squatting, sitting, pushing, walking, jogging, climbing stairs, vehicle entry/exit, etc.). Using sensor feedback, computing device 104 may selectively operate motor units 150 in the first mode to provide unidirectional thrust to assist hip extension or in the second mode to allow the user to freely extend or contract the hip.
With reference now to
Straps I* and J*, and E and F allow the shoulder straps to be adjusted. The shoulder straps keep the exoskeleton from moving vertically. Straps G and H allow the hip belt to be adjusted. Straps A and B allow the chest strap to be adjusted. Sizes of soft straps: The lengths of the straps in an exemplary embodiment are shown in Table 1.
While the principles of this disclosure have been shown in various embodiments, many modifications of structure, arrangements, proportions, the elements, materials and components, used in practice, which are particularly adapted for a specific environment and operating requirements may be used without departing from the principles and scope of this disclosure. These and other changes or modifications are intended to be included within the scope of the present disclosure.
The present disclosure has been described with reference to various embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present disclosure. Accordingly, the specification is to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present disclosure. Likewise, benefits, other advantages, and solutions to problems have been described above with regard to various embodiments. However, benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature or element.
As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Also, as used herein, the terms “coupled,” “coupling,” or any other variation thereof, are intended to cover a physical connection, an electrical connection, a magnetic connection, an optical connection, a communicative connection, a functional connection, and/or any other connection. When language similar to “at least one of A, B, or C” or “at least one of A, B, and C” is used in the specification or claims, the phrase is intended to mean any of the following: (1) at least one of A; (2) at least one of B; (3) at least one of C; (4) at least one of A and at least one of B; (5) at least one of B and at least one of C; (6) at least one of A and at least one of C; or (7) at least one of A, at least one of B, and at least one of C.
This application is a continuation of PCT Application Serial No. PCT/US2021/062081 filed on Dec. 6, 2021, now International Publication Number WO 2022/125476 entitled “HIP EXOSKELETON STRUCTURE FOR LIFTING AND PUSHING.” PCT Application Serial No. PCT/US2021/062081 claims priority to, and the benefit of, U.S. Provisional Pat. Application Serial No. 63/122,022, filed on Dec. 7, 2020 entitled “HIP EXOSKELETON STRUCTURE FOR LIFTING AND PUSHING.” The entirety of each of the foregoing applications is incorporated herein for all purposes by this reference (including but not limited to those portions that specifically appear hereinafter, but excepting any subject matter disclaimers or disavowals, and except to the extent that the incorporated material is inconsistent with the express disclosure herein, in which case the language in this disclosure shall control).
Number | Date | Country | |
---|---|---|---|
63122022 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2021/062081 | Dec 2021 | WO |
Child | 18329228 | US |