Replacement devices such as artificial joints in general and especially those for the hip have been known for many years. Such replacement devices include substitute members for the two parts of the natural joint, namely the femoral head, which is joined to the femur, and the hip socket, which receives and cooperates with the head to provide a natural universal joint.
Replacement of the natural hip joint parts is necessary when deterioration has occurred to one or both of the natural femoral head and socket. Ideally, the replacement members should reproduce the structure and function of the original members. For example, it is important that the femoral head be securely attached to the femur, that the head be received within the socket and that the resulting joint be produced with the desirable degree of resilience or cushioning.
All known prior art, for example U.S. Pat. No. 4,770,661 and U.S. Pat. No. 4,159,544 disclose a system associated with resorption of bone tissue, protrusion of the bottom of acetabulum, and loosening of the stem due to a relatively high pressure upon the bone. Furthermore, localized pressure generated by the prosthesis parts causes greater than naturally occurring displacement of the stem from its initial position. Particularly, in the upper part, the stem tends to move medially, while in the lower part, it moves outwardly laterally.
Currently used endoprosthesis models typically take into consideration the biomechanics of the femur, which is rather similar to a console. This view is applied both to normal hip joints and total joint replacements and is usually realized by a system configured to rigidly fix the stem of endoprosthesis to the surrounding bone. Typically, to further this goal, the stem may have various geometrical forms for compressive fixation; alternatively or in addition to the specifically designed forms, it is not uncommon to cement the stem to the bone.
The clinical practice and numerous data show that this approach may not fully take into consideration the following:
Thus, a primary object of the present invention is to improve the stability of hip joint endoprosthesis.
A further object of the present invention is to substantially reduce and eventually to completely eliminate complications associated with at least some of the currently used endoprosthesis models.
Still a further object is to provide the recipients of the inventive hip joint endoprosthesis with a fully functional life.
As a consequence, while in the known prior art structures, such a direct contact would rather rapidly wear out the bond between the housing and stem, the inventive structure avoids such a drawback exhibiting a long functional life.
Yet the ability of the inventive structure to withstand numerous loads is not compromised due an elongated outer housing extending beyond the distal (lower) end of the stem and reliably coupled to the bone. Such a coupling is ensured by a plurality of holes formed in the outer housing and allowing bone tissue to penetrate through the holes and bond with the outer housing. Furthermore, the holes provide for the circulation of the tissue fluid indispensable for maintaining the ingrown tissue.
In accordance with a further aspect of the invention, the endoprosthesis includes a sleeve made from porous material and located between the stem and outer housing. Accordingly, the sleeve reduces the friction during rotation of the stem and outer housing relative to one another, which in turn minimizes formation of granules typically originated during such a friction and known to weaken the bone. Material of the sleeve also plays an important role in maintaining the circulation of the tissue fluids within the inventive prosthesis.
Still another aspect of the invention is directed to further minimizing frictional forces between the neck portion of the stem, which extends angularly from the stem towards the bone's head, and the housing. Formed with a supporting anchor and a neck inserted into the head of femur, the neck portion experiences even greater loads then the stem. In particular, the supporting anchor has a region extending laterally from the stem and pressing against a supporting surface of the housing, which also extends laterally from the body of the housing. Since the stem, supporting anchor and neck typically constitute a one-piece component, the lateral surfaces of the supporting anchor and housing are in continuous frictional contact during the movement of the stem and housing relative to one another. To minimize deterioration of these surfaces, the inventive structure includes at least one plate inserted into one of the lateral surfaces of the supporting anchor and housing. Said at least one plate made of material with a low friction coefficient.
The above and other objects, features and advantages of the present invention will become more clearly understood from the following description referring to the accompanying drawings.
a is a longitudinal partially sectional view of an embodiment of the
b is a partial view from arrow B of the
c is a partial sectional view of the region C of an embodiment of the
Referring to
As follows from the clinical practice, loading of the prosthesis cup leads to the greatest bone resorption of the femur diaphysis in its upper medial part 34, as this is where the most of the body weight load is applied. The prosthesis stem 13 and particularly its distal end 37, are pushed laterally away form the median plane 39 (
If the prosthesis were constructed in accordance with the convenient practice as a console model, displacement of the bone 35 would gradually destroy cement typically bonding the stem and bone 35. In contrast, the inventive prosthesis 100 is configured as a lever of the first kind with an axis 2 of the lever characterized by a substantial degree of freedom between the stem 13 and the bone 35. As a result, the bone 35 is free to follow its natural pattern of rotation, and the bond between a housing 14 of the prosthesis 100 and the bone 35 is not affected.
The pressure by the prosthesis stem 13 on the lateral side of the femur diaphysis channel is increased by the physiological abduction of the femur bone (incline to the medial), equal 8 degrees relative to the vertical body axis.
Placement of the endoprothesis 100 into the bone 35 is realized by severing its neck along a plane extending substantially perpendicular to the medial plane MP. Of course, small deviations from the perfectly perpendicular plane ranging within a few degrees would not drastically reduce the effectiveness of the prosthesis. To completely remove the damaged hip joint, the cup of the bone is removed from the bone's head. As a result, upon milling the channel 36 for the stem 13 (
Rigidly coupling the cup 7 to the bone 35's head while coupling the housing 14 to the bone 35 completes the replacement procedure. Coupling the housing 14 to the bone 35 is realized by the inventive configuration of the housing 14 provided with a plurality of holes 15, 151 (
A flange 21 of the housing 14 (
The diameter of the stem 13 is dimensioned somewhat smaller than the inner surface of the housing 14 to prevent direct contact between these components of the prosthesis 100. When the cup 7 is rigidly coupled to the bone 35's head, displacement of the stem 13 does not directly affect displacement of the housing 14 pivoting along with the bone 35. Accordingly, these components pivot independently from one another in a rather natural manner.
To reinforce the stem/housing combination, the prosthesis 100 further includes a sleeve 16 (
The proximal end of the sleeve 16 is provided with a collar 17 abutting a lower portion of the stem 13 near a heel 22 to ensure proper positioning of the sleeve within the housing 14.
The collar 17 made from Teflon™ (polytetrafluoroethylene) and the sleeve 16 is made of Teflon fabric, for example from medical felt from ftoroplast 4″ (produced with this name in Russia) and having porous structure. The sleeve 16 is not affected by the ingrown tissue and is resistant to tissue fluid that is normally is secreted. Most importantly, the sleeve 16, having a thickness of about 1–1.5 mm, has a low friction coefficient and does not greatly inhibit the movement of the housing 14.
The neck portion 12 of the prosthesis 100 (
As a consequence, unless dealt with, the contact region between the flange 21 and the heel 22 of the lower portion 20 have the opposing surfaces of the flange 21 and heel 22 extended substantially perpendicular to the longitudinal body of the housing 14 may inhibit the independent rotation of the stem 13 and the housing 14 relative to one another. To minimize this unavoidable friction, at least one of the juxtaposed surfaces of these components has spaced recesses 23 (
The endoprosthesis cup 7 (
The stem 13 and the neck portion 12 define a one-piece component made preferably from Titanium or Titanium alloys. Advantageously, the housing 14 is manufactured from biologically friendly material including, but not limited to, various metals as stainless steel, Tantalum.
The endoprosthesis stem 13 is subjected to the lesser load from the medial then from the lateral side. This created an opportunity of making a trough 18 (
The surgery directed to the installlation of the endoprosthesis 100 is performed regularly. After accessing the hip joint, transverse osteotomy of the neck 12 and the head 11, of the femur is performed, moving to the base of the greater trochanter, but not including the great trochanter itself. The acetabulum and the femoral channel are milled, the prosthesis cup is inserted into the acetabulum, pressing the crown 8 of the cup tightly and fixing it with surgical screws through the blades 10 to fix the cup 7 tightly and support it by the outside edges of the acetabulum. The metal housing 14 is inserted into the femoral channel. The stem 13, wrapped into the teflon sleeve 16 is inserted into the casing 14 in such a way that the anchor support 20 of the neck 12 rests on the polished surface 25 of the casing rim 14. Manipulating the patient's extremity, the head of the prosthesis is inserted into the cup 7. This ends the technical part of the hip replacement procedure.
Hemostasis is performed, the drainage is created, and muscles are reattached (depending on the technique), wound closure is performed. This ends total hip replacement procedure.
Having described the preferred embodiments of the invention by referring to the accompanying drawings, it should be understood that present invention is not limited to this precise embodiment but various changes and modifications thereof could be made by one skilled in the art without departing from the spirit or scope of the invention as defined in the appended claims.
| Number | Name | Date | Kind |
|---|---|---|---|
| 4159544 | Termanini | Jul 1979 | A |
| 4770661 | Oh | Sep 1988 | A |
| 5021063 | Tager | Jun 1991 | A |
| 5389107 | Nassar et al. | Feb 1995 | A |
| 5571203 | Masini | Nov 1996 | A |
| 5725597 | Hwang | Mar 1998 | A |
| 5876459 | Powell | Mar 1999 | A |
| 5906644 | Powell | May 1999 | A |
| 6085476 | Jantzi et al. | Jul 2000 | A |
| 6302913 | Ripamonti et al. | Oct 2001 | B1 |
| 6355068 | Doubler et al. | Mar 2002 | B1 |
| 6425922 | Pope | Jul 2002 | B1 |
| 6488716 | Huang et al. | Dec 2002 | B1 |
| 6682568 | Despres et al. | Jan 2004 | B2 |
| 6692530 | Doubler et al. | Feb 2004 | B2 |
| 6899736 | Rauscher et al. | May 2005 | B1 |
| 7033399 | Doubler et al. | Apr 2006 | B2 |
| 7044975 | Cheal et al. | May 2006 | B2 |
| 7097664 | Despres et al. | Aug 2006 | B2 |
| 20010014829 | Yoon | Aug 2001 | A1 |
| 20020004685 | White | Jan 2002 | A1 |
| 20030074078 | Doubler et al. | Apr 2003 | A1 |
| 20030171816 | Scifert et al. | Sep 2003 | A1 |
| 20040054419 | Serra et al. | Mar 2004 | A1 |
| 20040107001 | Cheal et al. | Jun 2004 | A1 |
| 20040243248 | Despres et al. | Dec 2004 | A1 |
| 20060064169 | Ferree | Mar 2006 | A1 |
| Number | Date | Country |
|---|---|---|
| 2223068 | Feb 2004 | RU |
| 1572604 | Dec 1987 | SU |
| Number | Date | Country | |
|---|---|---|---|
| 20050261778 A1 | Nov 2005 | US |