This disclosure relates generally to attic ventilation and more specifically to shingle-over vents for installation along a hip and/or along a ridge of a shingled roof.
Ridge vents and hip vents for ventilating a shingled roof have been known and used for many years. Such vents generally are installed along a ridge or along a hip of a roof covering a pre-cut ventilation slot to the attic below. It is inherently more difficult to seal a hip slot against ingress of blowing rain and snow because, among other reasons, of the angled nature of the hip and the angled down-slope directions away from the hip. Hip vents available in the past have had various inherent problems in this regard, particularly when it comes to their ability to prevent water infiltration beneath the vent and into a ventilation slot below.
One prior art hip vent for instance features an intricate baffle and foam insert design to block weather from entering the hip slot. Due to its intricate design and water protection features, it provides for low ventilation of the attic space below. Also, during installation of the vent, large gaps can result between the vent and the varying profile of hip cap and adjacent shingles. This is particularly true for roofs covered with architectural shingles, which are highly textured and exhibit large variations in thickness. According to the prior art, these gaps must be filled with caulking to provide a sufficient seal between the plastic base of the hip vent and the shingles in order to prevent water infiltration. For hip roofs shingled with high profile thick shingles, the amount of caulking required to seal the system can be very large and can actually promote leakage over time or if not carefully applied and maintained. Also, the high profile (i.e. the thickness) of this prior art vent does not provide for an aesthetically pleasant hip roof.
Another prior art hip vent features a blade or fin arrangement intended to provide seal between the vent and the underlying shingles along the hip of a roof. However, the fins alone do not completely seal between the hip vent and the shingles below and extensive amounts of caulking can still be required to obtain a good seal. A third prior art hip vent features a design that allows for little ventilation of attic space below due to its having very limited NFA (Net Free Area). This design also requires large amounts of caulking to prevent water infiltration into a hip slot beneath the hip vent.
A need exists for an attic vent usable along the hip of a hip roof that is easily installable without the need for caulking, even for roofs with thick profiled architectural shingles; that provides for a low profile (i.e. a thinner) aesthetically pleasing vent when installed; and that effectively redirects wind-blown water and snow thereby preventing water and snow penetration beneath the vent, even during blowing rain or blowing snow. It is to the provision of such a hip vent, which also may be used as a ridge vent if desired, that the present invention is primarily directed.
A low-profile shingle-over hip vent is disclosed for installation along the hips of a hip roof covering a ventilation slot cut along the hip to the attic space below. The hip vent and ventilation slot below provide attic ventilation on hip roofs where there are no or inadequate horizontal ridges along the top of the roof to provide the desired ventilation. The hip vent includes baffle arrays, filler strips, and a weather filter that provide maximum resistance to infiltration of rain and snow while the hip vent itself remains thin and aesthetically pleasing on the finished roof. The need for extensive caulking is eliminated, which reduces further the chances of leakage if the calking is not applied correctly or deteriorates over time. These and other features, aspects, and advantages will become more apparent upon review of the detailed description set forth below taken in conjunction with the accompanying drawing figures, which are briefly described as follows.
Reference will be made throughout the following detailed description to the annexed drawing figures that are briefly described above.
The hip vent of the present invention is configured to be installed along the hips 14 covering a hip slot formed therealong to provide ventilation of an attic space below the roof.
The bottom view of
Each baffle array 17 is bounded at its upslope end by a barrier wall 20 and bounded at its downslope end by a barrier wall 20, each of which extends generally transversely relative to the hip vent. These barrier walls enhance the structural integrity to the hip vent, provide wind brakes between the baffle arrays, and help to support the vent and prevent it from collapsing when installed on a hip roof with nails or other fasteners. Each of the barrier walls 20 comprises an inner portion adjacent the center of the central panel and an outer portion adjacent the edges of the central panel. The inner and outer portions of the barrier walls are separated by gaps 30 for purposes described in more detail below.
The outermost and lowermost vane 29 of each baffle array in this embodiment has an arcuate portion 31 that is oriented substantially transverse to the orientations of the arcuate vanes 26 and a straight portion 32 that extends from the inner end of the arcuate portion 31 to connect integrally to the barrier wall 20. This insures that there is no free path for water to be blown beneath the hip vent along the upslope sides of the barrier walls. The downslope sides of the barrier walls have arcuate vanes 27 integrally connected to and extending therefrom so that no path for water is formed along the downslope sides of the barrier walls either.
namely, a pair of filler strips 37 is attached to and extend along the bottoms of the baffle arrays. The filler strips are constructed of a spongy conformable material such as a mat of non-woven polymer strands, foam, or other material that is sufficiently conformable to a surface. When installing the hip vent 15 along the hip of a roof, gaps can result between the shingles of the roof and the bottoms baffle arrays. This is particularly true for roofs shingled with highly textured and layered architectural shingles, which are popular among homeowners. Rainwater and snow can be blown through these gaps and can leak through the hip slot into the attic below. The filler strips 37 address this issue by conforming to the uneven top surfaces of the shingles on either side of the hip when the hip vent is installed. Any would-be gaps are thus filled by the filler strips to block rainwater from seeping through. An additional advantage of the filler strips is that, unlike prior art hip vents, no caulking is required during installation to fill gaps between the hip vent and the shingles of the roof. This eliminates installation errors and erosion over time that can result in leaks.
As perhaps best shown in
The weather filter 36 is particularly effective for stopping wind-blown snow.
Snowflakes behave differently than rainwater in that they can be blown around the arcuate vanes of the baffle arrays and make their way toward the hip slot. With the weather filter 36 in place, any snowflakes that make it through the baffle arrays of the outer region are entangled and trapped within the material of the weather filter and do not penetrate through the baffle arrays of the inner region. Eventually these snowflakes melt and drain away from the hip of the roof. In addition, some snowflakes are redirected away from the vent by the aerodynamic shape of the arcuate vanes in the outer region. This combination has proven to provide a robust and reliable barrier against infiltration of wind-blown snow into an attic space below.
The hip vent 15 shown in
The invention has been described above within the context of preferred embodiments and methodologies considered by the inventors to represent the best modes of carrying out the invention. It will be understood by the skilled artisan, however, that a wide array of additions, deletions, and modifications, both subtle and gross, might be made to the example embodiments without departing from the scope of the invention itself. For instance, while the vent has been described as a hip vent for use along the hips of hip roofs, which is its intended use, there is no reason why it would not function perfectly well along the ridge of a gable or other type roof. The vanes of the baffle arrays in the preferred embodiment are circular arcs in shape. However, other shapes such as V-shaped, polygonal shaped, chevron shaped, spiral shaped, or other shapes might be used to obtain equivalent results. The disclosed hip vent may be used with or without the weather filter and with or without the filler strips depending upon application. For example, the weather filter may not be needed in areas of the country that do not experience snow storms or high velocity rain storms. The filler strips may not be needed when installing the hip vent on roofs with flat non-textured shingles (although filler strips are still considered by the inventors to be advisable). Further, the filler strips may be attached to the bottoms of hip vents either in the factory or in the field as needed. If installed in the field, they need only be attached with adhesive along the bottoms of the outer (and/or inner) wind baffle zones. As an alternative to the weather filter disclosed in the preferred embodiment, an air permeable insert may be formed and installed within and along the gap between the wind baffle zones. Such an insert may be made of recycled fibers, polymeric fibers, co-mingled fibers, natural fibers, mixtures of the forgoing, and layered or dual density material. Such inserts also may be formed with holes, passageways, or slots that allow air to flow but form barriers to windblown rain, snot, and insects. Finally, the hip vent of the preferred embodiment is made of injection molded plastic. It will be understood, however, that other materials such as metal may be substituted without departing from the spirit and scope of the invention. These and other modifications are possible, and all are intended to fall within the scope of the present invention.
The present Patent Application is a continuation of previously filed, co-pending U.S. patent application Ser. No. 14/561,432, filed Dec. 5, 2014, which priority is hereby claimed to the filing date of U.S. Provisional Patent Application Number 61/912,823 entitled Hip Vent, which was filed on Dec. 6, 2013. U.S. patent application Ser. No. 14/561,432, filed Dec. 5, 2014 and U.S. Provisional Patent Application No. 61/912,823, filed Dec. 6, 2013, are specifically incorporated by reference herein as if set forth in their entireties.
Number | Date | Country | |
---|---|---|---|
61912823 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14561432 | Dec 2014 | US |
Child | 16943192 | US |