HLS-Small Molecule Discovery at Novel Target for Fetal Hemoglobin Induction

Information

  • Research Project
  • 9128707
  • ApplicationId
    9128707
  • Core Project Number
    R43HL124897
  • Full Project Number
    5R43HL124897-02
  • Serial Number
    124897
  • FOA Number
    PA-14-071
  • Sub Project Id
  • Project Start Date
    9/1/2015 - 9 years ago
  • Project End Date
    7/31/2017 - 7 years ago
  • Program Officer Name
    HANSPAL, MANJIT
  • Budget Start Date
    8/1/2016 - 8 years ago
  • Budget End Date
    7/31/2017 - 7 years ago
  • Fiscal Year
    2016
  • Support Year
    02
  • Suffix
  • Award Notice Date
    7/25/2016 - 8 years ago

HLS-Small Molecule Discovery at Novel Target for Fetal Hemoglobin Induction

? DESCRIPTION (provided by applicant): Inherited beta-globinopathies, including sickle cell disease (SCD) and ?-thalassemia (HLS13-04), are chronic blood disorders resulting from defects in hemoglobin (Hb) structure or synthesis. These diseases affect an estimated 70,000 people in the U.S. alone and much larger numbers in Africa, Europe, India, the Middle East and the Caribbean. The complications of SCD, by far the most common beta-globin disorder, include hemolytic anemia, painful ischemic crises, bacterial infections, stroke, and chronic lung and kidney disease. The major therapies for SCD and ?-thalassemia include lifelong blood transfusions, treatment with hydroxyurea-a cytotoxic agent that modestly induces fetal hemoglobin (HbF, ?2?2)-or high risk transplantation of hematopoietic cells. Elevation of HbF is considered the most promising approach to treat SCD or to effect a remission or cure. A benign condition, hereditary persistence of fetal hemoglobinemia (HPFH), dramatically ameliorates or even prevents the symptoms of ?-thalassemia and SCD. Significantly, in one form of HPFH, naturally-occurring mutations in the gene promoters of the fetal ?-globin chains A? and G? induce HbF to 10- 30% of the level of ?-globin in every red blood cell, sufficient to inhibit SCD.It has long been suggested that a pharmacological agent that replicates pancellular HbF induction could transform current therapy. The goal of this Phase I SBIR proposal is to identify small molecule ligands to a transcription factor, an orphan nuclear receptor (NR), that has a central role in silencing embryonic and fetal ?-globin expression in the adult, by binding to the promoters of the fetal ?-globin genes. To date, no valid ligands have been described for this target. Assay development and structural analysis also show that the NR target is likely to function similarly to other NRs, such as the steroid, retinoid, and thyroid receptors, by allosteri modulation of peptide affinity in response to ligand. We developed a cell-free high throughput screening (HTS) assay for this receptor that measures interaction with a short peptide derived from a transcriptional cofactor, a putative corepressor for this orphan NR. Our objective is to identify small molecules that disrupt corepressor peptide interaction with the orphan NR and to evaluate whether these negative modulators can derepress fetal ?-globin expression. In Aim 1 we will screen diverse compound libraries in the biochemical HTS assay to identify small molecule ligands that disrupt the interaction between the orphan NR and corepressor peptide. We will then determine in Aim 2 whether, in addition to regulating binding of corepressors, the ligands identified in Aim 1 also regulate corepressor interactions via the target receptor in cell culture. We also propose to increase ligand affinity (IC50 < 0.5 µM) by purchase and synthesis of analogs to initial hits. Finally, in Aim 3, we will test the ability of the identified ligands to ativate ?-globin expression in hematopoietic cells cultured in vitro. This pharmacological evaluation will enable more intensive drug discovery with SBIR Phase II support leading to testing of lead compounds in animal models of the ?-globin disorders.

IC Name
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
  • Activity
    R43
  • Administering IC
    HL
  • Application Type
    5
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    160677
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    837
  • Ed Inst. Type
  • Funding ICs
    NHLBI:160677\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    ORPHAGEN PHARMACEUTICALS
  • Organization Department
  • Organization DUNS
    103462128
  • Organization City
    SAN DIEGO
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    921211318
  • Organization District
    UNITED STATES