The invention relates to a hob having at least one heating zone and a temperature sensor according to the preamble of claim 1 and to a method for operating a hob according to the preamble of claim 8.
A hob having a heating zone and a temperature sensor located in the center of the heating zone is known from DE 10 2006 057 885 A1. A method is described by which an instant at which the liquid in the cookware element reaches a boiling point is predicted as accurately as possible. The cookware contents are prevented from boiling by reducing the supply of heating energy before boiling point is reached. Predicting is based on evaluating characteristic temperature curves recorded in the past.
Different liquids' boiling points can, though, in practice differ greatly depending on, for instance, their composition and/or the prevailing atmospheric pressure. The same applies to the shape of temperature curves, which is unpredictable for the hob's control units also through the addition of ingredients during the heating-up process. However, precisely predicting the boiling point is important for realizing an effective simmer operation of the hob during which the contents of the cookware element are kept at a temperature just below boiling point. A large amount of energy can be saved by simmering compared with vigorous boiling because the evaporation energy released as a result of boiling can be very high. If, though, the temperature of what is being cooked is too low and the difference between said temperature and boiling point is too great, the cooking process will be protracted and/or lead to undesired results.
The object of the invention is hence in particular to enable an energy-saving simmer operation at a target temperature precisely coordinated with the cookware contents' boiling point. Said object is achieved in particular by means of the features of the independent claims. Advantageous embodiments and developments of the invention will emerge from the subclaims.
The invention proceeds in particular from a hob having at least one heating zone, a temperature sensor for detecting the temperature of a cookware element placed on the heating zone, and a control unit for operating the heating zone. The control unit is designed so that in at least one operating mode it will heat up the cookware element during a heating-up phase and regulate the cookware element's temperature to a target temperature during a holding phase.
It is proposed for the control unit to be designed to detect a boiling point of the liquid in the cookware element during the heating-up phase and determine the target temperature as a function of the boiling point. The purpose is accordingly for the boiling point to be measured during the heating-up phase itself and not, say, in a series of complex trials with different cookware contents. Detecting the boiling point directly will make it possible to dispense with error-prone predictions and estimations of the boiling point. The heating-up phase will accordingly last at least until the boiling point has been reached. The boiling point will be determined very precisely because errors in predicting or estimating it can be avoided through measuring it directly. The target temperature during the heating phase, which can in particular be a simmer temperature, can thus be precisely determined as a function of the boiling point.
In particular the target temperature can be selected as being a predefined temperature difference lower than the boiling point. The energy consumption accompanying vigorous boiling can be avoided thereby and a fast cooking process ensured. The temperature difference can be in particular between 2° and 7° C.
For detecting the boiling point the control unit can record a temperature curve of the cookware element particularly during the heating-up phase and detect a substantially constant section along the temperature curve. The temperature of the cookware contents will not increase further on reaching the boiling point, which will result in a constant temperature on the outside of the cookware. A temperature averaged within the constant section can be used as the measurement value for the boiling point. The temperature sensor's signal can be filtered and/or averaged or subjected to suitable scale transforming generally in a manner appearing appropriate to a person skilled in the relevant art.
For detecting the constant section of the temperature curve the control unit can in particular form a gradient of the temperature curve. The temperature curve can be classified as “substantially constant” if the gradient is below a specific threshold.
Safety shutdown can be ensured if the control unit is designed to deactivate the operating mode and produce a warning signal if the temperature registered by the temperature sensor exceeds a maximum value. Said maximum value can be for example approximately 150° C. Exceeding the maximum value indicates that the cookware element is empty so that boiling cannot take place.
Another aspect of the invention relates to a method for operating a hob having at least one heating zone, a temperature sensor for detecting the temperature of a cookware element placed on the heating zone, and a control unit. In at least one operating mode the cookware element is heated up during a heating-up phase and the cookware element's temperature is regulated to a target temperature during a holding phase.
It is inventively proposed for a boiling point of the liquid in the cookware element to be detected during the heating-up phase and the target temperature to be determined as a function of the boiling point.
Further advantages and characteristic features of the invention will emerge from the following description of the figures. An exemplary embodiment of the invention is shown in the figures. The drawings, the description, and the claims contain numerous features in combination. A person skilled in the relevant art will expediently also consider said features individually and combine them further to purposeful effect.
Temperature sensor 12 is an infrared temperature sensor that projects tower-like beyond the topside of cover plate 18 and detects infrared radiation being emitted from a side wall of cookware element 14. The signal detected by sensor 12 is processed by a sensor read-out unit 24 and forwarded to control unit 16. Sensor read-out unit 24 can perform, for example, low-pass filtering and/or scale-transforming.
In contrast to cover plate 18 having a tower-like temperature sensor, other exemplary embodiments of the invention are conceivable in which the temperature sensor is embodied as being an NTC element located beneath cover plate 18 or as being an infrared sensor located beneath the cover plate. It is also conceivable for temperature sensor 12 to be fixed directly to the wall of cookware element 14.
Control unit 16 is a universally programmable computing unit that performs a software-implemented method for operating the hob. The method has different operating modes. In a special operating mode, which could also be called a simmer mode, cookware element 14 is heated up during a heating-up phase 26 until a liquid 28 in cookware element 14 reaches its boiling point TB.
Control unit 16 keeps cookware element 14 at boiling point TB only until said point has been determined with sufficient accuracy. Control unit 16 then switches from heating-up phase 26 to a holding phase 32 during which the temperature of cookware element 14 or, as the case may be, liquid 28 will be regulated to a target temperature TS. The feedback from temperature sensor 12 is used for forming a closed control loop.
The correlation between the temperature of liquid 28 and the temperature of cookware element 14 or, as the case may be, the temperature of the radial outer wall of cookware element 14 can be ascertained by way of an empirically determined function. The outer wall's radiation losses as a rule result in there being a proportionality between the wall temperature of cookware element 14 and the temperature of liquid 28, which proportionality can be expressed by a constant factor. For the invention it is of secondary importance what value the boiling point TB of liquid 28 itself has. What matters is to precisely determine what the external temperature of cookware element 14 is when boiling point TB has been reached. Both temperatures TB, TS can be used equivalently owing to their proportionality.
Control unit 16 determines the target temperature by subtracting a predefined stored value from the previously detected boiling point TB. This subtracted temperature difference can be, for instance, 5° C. so that for pure water at standard atmospheric pressure the target temperature will be 95° C. Food is cooked in substantially the same way at 95° C. as in water that is vigorously boiling at 100° C. so that evaporation energy can be saved with little adverse effect on the cooking process.
Emergency shutdown (not shown) will take place if a temperature that is above a maximum temperature is detected at step S5.
If it is established at step S5 that boiling point TB has been reached, control unit 16 will at a step S6 compute target temperature TS for liquid 28 and proceed at a step S7 to holding phase 32. In a closed control loop the temperature of cookware element 14 is measured at a step S8, the temperature of liquid 28 is computed from the temperature of cookware element 14 at a step S9, and the heating power is regulated at a step S10 as a function of the result. If the temperature of liquid 28 is above the target temperature, the heating power of inductor 20 will be reduced by varying the frequency of inverter 22. The heating energy of inductor 20 will be increased if the temperature is below target temperature TS. The method will branch back to step S8 when the heating energy has been adjusted.
Number | Date | Country | Kind |
---|---|---|---|
200930236 | Jun 2009 | ES | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/057323 | 5/27/2010 | WO | 00 | 2/15/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/139598 | 12/9/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4493980 | Payne et al. | Jan 1985 | A |
6118105 | Berkcan et al. | Sep 2000 | A |
6462316 | Berkcan et al. | Oct 2002 | B1 |
6818867 | Kressmann | Nov 2004 | B2 |
8097834 | Scott et al. | Jan 2012 | B2 |
20050286609 | Smolenski et al. | Dec 2005 | A1 |
20060081607 | Niiyama et al. | Apr 2006 | A1 |
20070062930 | Swan et al. | Mar 2007 | A1 |
20070228031 | Alves et al. | Oct 2007 | A1 |
20090294433 | Thimm et al. | Dec 2009 | A1 |
20090302025 | Corkin | Dec 2009 | A1 |
20110114632 | Paderno et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
1243688 | Feb 2000 | CN |
1728019 | Feb 2006 | CN |
19821439 | Nov 1999 | DE |
Entry |
---|
International Search Report PCT/EP2010/057323. |
National Search Report ES P200930236. |
Report of Examination CN 201080024112.0 dated Feb. 18, 2013. |
Number | Date | Country | |
---|---|---|---|
20120168425 A1 | Jul 2012 | US |