The field of the present invention relates to hockey sticks and the blades thereof.
Generally, hockey sticks are comprised of a blade portion and a shaft or handle portion. Traditionally, these portions were permanently joined to one another. In more recent times, the blade and shaft have been constructed in a manner that facilitates the user's replacement of the blade (i.e. the blades can be removably detached from the shaft and another blade can be attached and the removed blade can be attached to another shaft). The blades and shafts have been constructed, in whole or in part, using a wide variety of materials, including wood, aluminum, plastic and composite materials such as carbon, graphite, aramid, polyethylene, polyester and glass fibers.
The blade portion is typically comprised of front and back faces, a hosel portion that extends longitudinally toward the shaft from the heel of the blade and a lower portion that extends generally perpendicular relative to the hosel portion away from the heel. In conventional construction, the hosel portion of the blade employs a continuously uniform or a continuously gradually tapering cross-sectional geometry relative to and along its longitudinal axis moving from the upper portion of the hosel near the shaft toward the heel. Consequently, a uniform or gradually tapering longitudinal bending stiffness in the hosel results.
The longitudinal bending stiffness of a member or a section of a member is the stiffness along a given longitudinal axis of the member relative to a defined direction. For example as illustrated in
The longitudinal bending stiffness in the X′ and Y′ directions may or may not be the same at a given section or region since the bending stiffness relates to the member's construction which is a function of the member's design, dimensions, geometry, and the properties of the materials employed. Thus, the longitudinal bending stiffness of a given member at a given position may vary depending on the direction in which the longitudinal bending stiffness is measured, and the stiffness at different positions may vary depending on the construction of the member at that position. As illustrated in
The “feel” of a hockey stick is a result of a myriad of factors including the type of materials employed in construction, the structure of the components, the dimensions of the components, the rigidity or bending stiffness of the shaft and blade, the weight and balance of the shaft and blade, the rigidity and strength of the joint(s) connecting the shaft to the blade, the curvature of the blade, etc. Experienced players and the public are often inclined to use hockey sticks that have a “feel” that is comfortable yet provides the desired performance. Moreover, the subjective nature inherent in this decision often results in one hockey player preferring a certain “feel” of a particular hockey stick while another hockey player preferring the “feel” of another hockey stick.
In order to modify the “feel” and/or performance of the hockey stick, the hosel portion of the blade can be uniquely modified in geometry and/or bending stiffness as described in more detail below.
The present invention relates to hockey sticks. A preferred embodiment relates to hockey stick blades comprising a face, an upper portion, and a lower portion. The upper portion having a longitudinal axis and being comprised of a defined region of reduced longitudinal bending stiffness in a direction that generally extends away from the face of the blade when measured relative to regions in the upper portion of the blade that border either side of the defined region along the longitudinal axis.
Another preferred embodiment relates to hockey sticks comprising a blade and a shaft. The blade is comprised of a face, an upper portion, a heel, and a lower portion. The upper portion having a longitudinal axis generally extending from the heel toward the shaft. The upper portion being comprised of a defined region of reduced longitudinal bending stiffness in a direction that generally extends away from the face of the blade when measured relative to regions in the upper portion of the blade that border either side of the defined region along the longitudinal axis. The blade and shaft are adapted to being joined to one another.
Another preferred embodiment relates to hockey stick blades comprising a face, an upper portion, and a lower portion. The upper portion having a longitudinal axis and being comprised of a defined region having a reduced width dimension in a direction that generally extends away from the face of the blade when measured relative to regions in the upper portion of the blade that border either side of the defined region along the longitudinal axis.
In yet another preferred embodiment relates to hockey sticks comprising a blade and a shaft. The blade is comprised of a face, an upper portion, a heel, and a lower portion. The upper portion having a longitudinal axis generally extending from the heel toward the shaft. The upper portion being comprised of a defined region having a reduced width dimension in a direction that generally extends away from the face of the blade when measured relative to regions in the upper portion of the blade that border either side of the defined region along the longitudinal axis. The blade and shaft are adapted to being joined to one another.
The accompanying drawings illustrate presently preferred embodiments of the invention and, together with the description, serve to explain various principles of the invention.
Reference will now be made to the construction and operations of preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. The following descriptions of the preferred embodiments of the present invention are only exemplary of the invention. The present invention is not limited to these embodiments, but may be realized by other embodiments.
In the preferred embodiment, the hockey stick 10 has a longitudinally extending axis 40 that extends from the top section 50 of the shaft 20 through the bottom section 70 of the shaft 20 and through the upper portion 90 of the blade 30 generally toward the heel 80. The upper member 90 further comprises a focused flex region 110, which is preferably comprised of a region of reduced longitudinal bending stiffness in a defined region of the upper portion 90 of the blade 30. The stick has a reduction in longitudinal bending stiffness—or a focused flex region 110—that gives it a higher flexibility about the axis line 200. The present invention is not directed to providing increased flexibility about the axis line 130, but rather in the direction of axis line 130. Put another way, stick of the present invention has a reduction in longitudinal bending stiffness—or a focused flex region 110—that modifies the ability of the stick to flex in the general direction that extends away from the face 120 of the blade 30 (i.e. in a direction generally normal to the plane defined by longitudinal axis 40 and transverse axis 200). The reduction of the bending stiffness is measured relative to the sections of the upper portion 90 of the blade 30 that immediately border either side of the focused flex region 110 moving along the longitudinal axis 40—that is, the sections above and below the focused flex region 110. Hence, the section of the upper portion 90 located above the focused flex region 110 as well as the section of the upper portion 90 of the blade 30 located below the focused flex region 110 have a longitudinal bending stiffness measured in a direction of axis line 130 that is greater than that in the focused flex region 110.
As best illustrated in
One advantage, however, that is associated with changing the outward geometry of the upper member 90 in the focused flex region 110 is that the focused flex region 110 would be more readily detectable to the consumer and therefore may be advantageous from a marketing perspective. In this regard, a modification in the outer dimensions or geometry of the upper portion 90 without change to the bending stiffness is also contemplated by the present invention. Furthermore, it should be understood that while the focused flex region 110 is depicted in
One advantage offered by the present invention is that it allows the stick designer to create a specific point, or area, where the stick will flex the most. This focused flex region 110 can be used to create a stick with a lower flex point than other sticks known in the art. This can be used to create a stick with different feel and an increased ability to generate lift on the puck—that is, to shoot the puck into the air.
The blade 30 may be constructed of a variety of materials including wood, plastic, and composite materials such as fiberglass, carbon fiber, Kevlar™, graphite fiber, foam and other materials known to those of ordinary skill in the art. As illustrated in FIGS. 8A-SC, when the blade 30 is formed of composite materials, the blade 30 may be manufactured by using a plurality of inner core pieces 160 composed preferably of compressed foam, such as polyurethane, however, other materials may also be employed such as wood, other foams and fiberglass. The inner core pieces 160 generally are dimensioned generally to have the external shape of the blade 30 when aligned with one another so as to be capable of fitting in a desired mold. Each inner core piece 160 is individually inserted into a first sleeve 170 preferably composed of a woven synthetic reinforcement material such as carbon fiber, fiberglass, Kevlar™ or graphite fiber materials. The inner core pieces 160, having been individually inserted into the woven fiber sleeves 170, are preferably also together enclosed into an additional woven fiber sleeve 180 preferably constructed of the same material as the first sleeve 170. An additional layer of woven fiber reinforcement material 190 may also be layered between the two sets of sleeves on the top section of the blade 30 to form part of walls 31 and 31a of the upper portion 90 and the top edge 150 of the blade 30. The section may be sized to form a portion of the front 120 and rear faces 140 of the blade 30. The blade assembly is then inserted into a mold having the desired shape of the blade 30. A suitable matrix material or resin is then injected into mold to impregnate the woven fiber materials 170, 180, 190 and the blade 30 is cured. In the illustrated preferred embodiment, the molding process together with the dimensions of the inner core pieces 160 define the unique shape of the focused flex region 110 on the upper portion 90 of the blade 30.
While there has been illustrated and described what are presently considered to be preferred embodiments and features of the present invention, it will be understood by those skilled in the art that various changes and modifications may be made, and equivalents may be substituted for elements thereof, without departing from the scope of the invention.
In addition, many modifications may be made to adapt a particular element, feature or implementation to the teachings of the present invention without departing from the central scope of the invention. Therefore, it is intended that this invention not be limited to the particular embodiments disclosed herein, but that the invention include all embodiments falling within the scope of the appended claims.
This application is a continuation of a pending U.S. patent application Ser. No. 11/318,326 filed on Dec. 23, 2005, which is a continuation of U.S. patent application Ser. No. 09/929,299 filed on Aug. 14, 2001, now abandoned, which is a continuation of U.S. patent application Ser. No. 09/479,429 filed on Jan. 7, 2000, now abandoned. Each of these applications is hereby incorporated in their entirety be reference. This application claims the benefit of priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 11/318,326 filed on Dec. 23, 2005, U.S. patent application Ser. No. 09/929,299 filed on November Aug. 14, 2001, now abandoned, and U.S. patent application Ser. No. 09/479,429 filed on Jan. 7, 2000, now abandoned.
Number | Date | Country | |
---|---|---|---|
Parent | 11318326 | Dec 2005 | US |
Child | 11484339 | Jul 2006 | US |
Parent | 09929299 | Aug 2001 | US |
Child | 11318326 | Dec 2005 | US |
Parent | 09479429 | Jan 2000 | US |
Child | 09929299 | Aug 2001 | US |