The present disclosure relates to a hoist assembly. More particularly, the present disclosure relates to a hoist assembly that can be used to raise and lower a load, specifically in a theatrical setting.
Live performances in a theater typically employ a number of curtains and backdrops to convey to the audience different settings, environments, moods, and the like. These curtains and backdrops must be changed throughout the course of a performance within a fairly short timeframe without interrupting the performance. Typically this is done by raising a particular backdrop above the stage and out of sight of the audience when it is not being used. When a particular backdrop is needed, it is lowered into place on the stage.
Theatrical backdrops and curtains are typically suspended from battens, which are pipes or trusses that span the width of the stage. Battens can be 50 feet or more in length, depending on the size of the stage. As should be apparent, the weight of the battens and the items suspended from them can have substantial weight. More power is required the heavier the load being raised or lowered. Counterweights are employed to balance the load of the batten and its associated load. Battens and their associated counterweights are manually lifted and lowered. In these types of systems, a rope is tied to a counterweight and the batten is manually raised or lowered, then tied off to a pin rail mounted to a wall adjacent the stage area. However, if the load is not closely balanced, excessive energy may be required to move the load, or the system may get out of control, dropping the load or the counter-weight, causing injury, death and/or collateral damage.
Typical motorized hoists and winches have a grooved drum for winding and unwinding the cable attached to the battens. The cable leaves the drum and passes over one or more sheaves to change the orientation of the cable from the drum to the batten. The angle at which the cable pays off the drum is the fleet angle, defined as the angle between the centerline of the groove on the drum and the cable coming off the drum. The fleet angle should be kept to a minimum because increasing the fleet angle results in increased wear on the cable and drum. Therefore it is desirable to minimize the fleet angle to prolong cable and drum life.
The present disclosure is for a hoist assembly for raising and lowering a load, especially in a theater or about a stage environment. The present disclosure provides a modular hoist that can be adapted to various configurations. Furthermore, the hoist of the present disclosure provides for a compact arrangement allowing for installation in places where space is limited.
The hoist is used for raising and lowering a load having a frame with a gear motor mounted thereon, a drive shaft coupled to the gear motor, a drum attached to the drive shaft, with at least one cable wound about the drum and a head block for receiving the cable as it leaves the drum maintained in position to be substantially aligned with the cable take-off point.
Additional features and embodiments will become apparent to those skilled in the art upon consideration of the following detailed description of drawings.
The present disclosure will be described hereafter with reference to the attached drawings which are given as a non-limiting example only, in which:
The present disclosure relates to a hoist assembly for raising and lowering theater and stage scenery, lighting, and drapery. An embodiment of the present disclosure is mounted to structural support members above the stage area. In
An embodiment of the present disclosure has a support frame 25 for the components of the assembly. The frame is composed of a number of support members forming a truss structure for mounting the components of the assembly. A first head block guide track 5, and second head block guide track 29 are attached to the upper portion of the frame. In this embodiment, each guide track is formed from a pair of tubular steel members 5a, 5b and 29a, 29b respectively. The guide tracks are positioned horizontally in the direction of the long axis of the assembly and offset to one side of the drum as shown generally in
A gear motor 1 is located at one end of the support frame 25. The gear motor 1 is attached to the frame 25 by a gear motor mounting bracket 26. The gear motor mounting bracket 26 shown is a steel plate attached to the support frame 25 as shown in
The gear motor 1 is coupled to a drive shaft 4 which drives one or more wrap-up drums 2. The drum 2 receives lifting cables 24 that are attached to the load for raising and lowering. The drum 2 has a double score, that is, a pair of grooves wherein two cables 24 are wound about the drum 2 such that the pair of cables wind and unwind together. The grooves are configured in a spiral arrangement about the outer surface of the drum, and therefore having a predetermined pitch along the length of the drum. Multiple pairs of cables 24 may be wound about a drum 2 depending on the size of the drum and the weight of the load to be raised and lowered.
In an embodiment of the present disclosure, the drum may be constructed from typical 8 inch schedule 80 steel pipe. The pipe is machined to an 8½ inch outside diameter with the double grooves having a pitch diameter of 8 5/16 inch. The grooves are machined 2 grooves per inch with a pitch of ½ inch. Galvanized steel cables 3/16 inch in diameter are wound about the drum and travel at speeds approaching 200 to 300 feet per minute. As should be apparent, proper cable size selection is dependent on the total load and number of cables and is intended to be exemplary and in no way limiting with respect to the scope of the disclosure.
The embodiment of the disclosure shown in
A head block housing drive assembly 20 is attached to the end of the shaft 4 opposite to the gear motor 1. As shown in
Head block housing drive assembly 20 has an input shaft 37 coupled to the drive shaft 4 at the shaft end of the hoist assembly 31. The input shaft 37 drives a first differential 39, which transfers the rotational motion of the drive shaft 4 to an intermediate shaft 41. The intermediate shaft 41 is coupled to a second differential 43. The second differential 43 drives an output shaft 45 coupled to the head block drive screw 19. The first and second differentials 39, 43 each have a 1:1 gear ratio to maintain the same rotation between the drive shaft 4 and drum 2 and the head block drive screw 19. However, it should be apparent to one skilled in the art that the gear ratio of the head block housing drive assembly 20 may be varied as long as the pitch of the head block drive screw 19 is also adjusted such that the head blocks are aligned with the take-off points during operation.
For example, in the embodiment shown, the drum 2 has two grooves per inch for receiving lifting cables 24 with a pitch of ½ inch. For each drum revolution, the cable take-off point moves 1 inch. Therefore, to minimize the fleet angle, the head blocks are moved by the thread of the drive screw 19 to correspond with the cable take-off points. By minimizing the fleet angle in this manner results in reduced wear on the cable.
The head blocks 14, 15, 17, and 18 are aligned horizontally but positioned in a vertically stepped arrangement to avoid interference between the cables 24. As shown in the embodiment of
As shown in
Referring to
A head block shaft 10 extends between the first and second side plates 7a, 7b. Mounted to the head block shaft 10 is a bearing assembly 9 which allows a sheave 8 to rotate about the head block shaft 10.
The sheave 8 has a first groove and a second groove. The grooves in the sheave receive lifting cables 24 as they leave the drum 2 and redirect the lifting cables from a generally vertical orientation to a generally horizontal orientation. Although the embodiment shown depicts a double-grooved sheave having both grooves at the same distance from the sheave center, it should be understood that a dual-diameter sheave having grooves at different distances is also within the scope of the present disclosure. The dual-diameter sheave allows the two cables to be positioned relative to each other and the other components to minimize interference with the cables.
A head block guide 6 is attached to each head block housing 7. In the embodiment shown, the head block guide 6 includes a front wheel assembly and a rear wheel assembly. Each of the front and rear wheel assemblies are attached to the head block by an axle 33 that extends through the first and second side plates 7a, 7b. A ball bearing wheel 35 is attached to each end of the axle. The ball bearing wheels 35 cooperate with the head block guide tracks 5 and 29 to allow the head block to move back and forth along the head block guide track.
To avoid interference between the cables 24 as the cables are turned horizontally around the head block sheaves 8, the head block guides 6 are attached at progressively higher elevations on the head block 7, causing the head block sheaves 8 to be positioned progressively lower and thus avoid interference between the cables. Referring to
A drive screw transfer block assembly 13 is attached to the housing of head blocks 14 and 15. The transfer block assembly 13 engages the screw threads on the drive screw 19 to move the head block. The drive screw 19 in cooperation with the drive screw transfer block assembly 13 on each of head blocks 14 and 15 are designed to substantially align the head blocks with the take-off points on the drum 2 where the cables 24 are wound or unwound. In doing so, the fleet angle is maintained essentially at zero and, therefore, is minimized to reduce wear on the cables and drum.
A head block transfer arm 16 may be included for embodiments having multiple drums 2, and therefore multiple sets of head blocks. Head block transfer arm 16 is attached to head block 15 which also has a drive screw transfer block assembly 13 for engagement with the head block drive screw 19. The linear motion imparted to head block 15 by the drive screw 19 is also imparted to head blocks 17 and 18, which are connected to the transfer arm 16.
Referring again to
Each of the cables 24 leaves the drum 2 and passes about an associated head block sheave 8. The head block sheaves 8 guide the cables 24 and turn each cable 24 from a vertical orientation to a horizontal orientation. Each of the cables then runs horizontally back towards the motor end of the hoist assembly 31. At the motor end of the assembly is a master head block 23 that aligns all the cables horizontally so that the cables do not interfere with each other. In another embodiment of the disclosure, the master head block may act as a diverter block or combination block to horizontally align some of the cables and redirect some of the cables vertically in the direction of the load.
In an alternate embodiment, the drive head block may be positioned to receive the lifting cables 27 from the drum and turn them towards the aft end of the assembly, see
While an embodiment has been illustrated and described in the drawings and foregoing description, such illustrations and descriptions are considered to be exemplary and not restrictive in character, it being understood that only an illustrative embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected. The applicant has provided description and figures which are intended as an illustration of certain embodiments of the disclosure, and are not intended to be construed as containing or implying limitation of the disclosure to those embodiments. There are several advantages of the present disclosure arising from various features set forth in the description. It will be noted that alternative embodiment of the disclosure may not include all of the features described yet still benefit from at least some of the advantages of such features. Those of ordinary skill in the art may readily devise their own implementations of the disclosure and associated methods that incorporate one or more of the feature of the disclosure and fall within the spirit and scope of the present disclosure as defined by the impendent claims.
This application claims the benefit of co-pending U.S. Provisional Application Ser. No. 60/686,246 filed Jun. 1, 2005.
Number | Name | Date | Kind |
---|---|---|---|
4061311 | Yamasaki et al. | Dec 1977 | A |
4062519 | Jacobs | Dec 1977 | A |
4334670 | Kawabe | Jun 1982 | A |
4347680 | Kaestner | Sep 1982 | A |
5106057 | Feller et al. | Apr 1992 | A |
5361565 | Bayer | Nov 1994 | A |
6520485 | Soot | Feb 2003 | B1 |
6634622 | Hoffend, Jr. | Oct 2003 | B1 |
6691986 | Hoffend, Jr. | Feb 2004 | B2 |
7364136 | Hossler | Apr 2008 | B2 |
20070181862 | Hossler | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
1038561 | Sep 2000 | EP |
2348151 | Sep 2000 | GB |
Number | Date | Country | |
---|---|---|---|
20060284151 A1 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
60686246 | Jun 2005 | US |