The invention relates generally to load hoisting, and more particularly to a hoist for hoisting a load by means of a cable.
Hoists for hoisting loads by means of a cable have long existed. Generally, the principle of operation of a hoist is based on the cable being driven by adherence of the cable to the drum of the hoist. The drum holds the cable by friction, which operates as the principal power means for drawing in the cable for winding around the drum. As tension that is applied to the cable increases, the cable stretches and its linear speed decreases accordingly.
There are various types of hoists, which include winches and capstans. A winch is used to wind up a cable in which one end of the cable is fixed and the cable is generally stored on the drum of the winch. Besides industrial applications, for example on lifting cranes, winches are also used on vehicles for towing cars and boats. Winches are widely used for hoisting loads as they provide mechanical advantage to users. However, a drawback of using a winch to hoist a load is that sufficient tension must be constantly maintained on the turns for the cable to be suitably wound and stored on the drum. Typically, a guide mechanism is used for progressively guiding the cable across the length of the drum as the cable is being wound onto the drum.
Capstans are similar to winches with the exception that the cable is not stored on the drums. Hence, capstans do not have the problem of constantly maintaining sufficient tension on the turns for the cable to be suitably wound and stored on the drums. Capstans are rotating machines used to apply force to another element and are typically used on board ships and on dock walls for heaving or veering ropes, cables and hawsers. When a capstan is in operation, only a portion of the cable is wound around the drum of the capstan. A load can be attached to one of the free ends for the capstan to hoist the load. However, as the cable is driven by adherence of the cable to the drum of the capstan, sufficient frictional force is needed between the cable and the drum for operation of the capstan.
Japanese Patent Application Number 20040163404 to Fumiaki discloses an endless type winch having a configuration capable of towing and driving a winch without winding a rope by utilising a part around a driving mechanism of an existing winch as it is. The endless type winch comprises a winding drum having a rope channel at the outer periphery, a pair of rope gripping guide sheaves and a supporting frame. The pair of rope gripping guide sheaves is arranged in positions where the rope winds around the rope channel of the winding drum so as to increase contact frictional force of the rope for the rope channel. However, as the rope elastically contracts due to its tension diminishing in passing through the endless type winch, the length of the rope changes continuously. The rope slides against the rope channel of the winding drum for accommodating the changing rope length, which results in wear and tear of the rope. Further, the sliding of the rope against the rope channel increases slippage of the rope between the drum and the rope gripping guide sheave.
Therefore, there is a need for a hoist, which addresses at least one of the aforementioned problems.
The present embodiment of the invention disclosed herein provides a hoist for hoisting a load by means of a cable.
In accordance with a first aspect of the invention, a hoist comprising a drum, a biasing mechanism and at least one guide is disclosed. The drum comprises a drum surface for supporting a cable thereon and the cable has an anchored end. The at least one guide is coupled to the biasing mechanism and the biasing mechanism is for biasing the at least one guide towards the drum for clasping at least one portion of the cable between the at least one guide and the drum. This is to substantially adhere the clasped at least one portion of the cable to the drum surface. When a portion of the cable extending between the anchored end and the drum is in tension, slippage between the drum surface and the clasped at least one portion of the cable is substantially impeded and the drum is rotationally displaceable for displacing the clasped at least one portion of the cable away from the at least one guide.
In accordance with a second aspect of the invention, a hoist comprising a drum, a plurality of guides, a guide support and a biasing device is disclosed. The drum comprises a drum surface for supporting a cable thereon and the cable has an anchored end. The guide support is for inter-coupling the plurality of guides. The biasing device cooperates with the guide support for biasing the plurality of guides towards the drum for clasping at least one portion of the cable between the plurality of guides and the drum. This is to substantially adhere the clasped at least one portion of the cable to the drum surface. When a portion of the cable extending between the anchored end and the drum is in tension, slippage between the drum surface and the clasped at least one portion of the cable is substantially impeded and the drum is rotationally displaceable for displacing the clasped at least one portion of the cable away from the plurality of guides.
In accordance with a third aspect of the invention, a cable adherence apparatus comprising a plurality of guides, a guide support and a biasing device is disclosed. The guide support is for inter-coupling the plurality of guides and is coupled to the biasing device. The biasing device is couplable to a drum assembly that comprises a drum. The drum has a drum surface for supporting a cable thereon and the cable has an anchored end. The biasing device is for cooperating with the guide support for biasing the plurality of guides towards the drum for clasping at least one portion of the cable between the plurality of guides and the drum. This is to substantially adhere the clasped at least one portion of the cable to the drum surface. When a portion of the cable extending between the anchored end and the drum is in tension, slippage between the drum surface and the clasped at least one portion of the cable is substantially impeded and the drum is rotationally displaceable for displacing the clasped at least one portion of the cable away from the plurality of guides.
In accordance with a fourth aspect of the invention, a hoist comprising a drum and a plurality of guide members is disclosed. The drum has a drum surface for supporting a cable thereon and the cable has an anchored end. The plurality of guide members are one of biasable toward and displaceable away from the drum surface. The plurality of guide members comprise a first guide member and second guide members. The first guide member guides the cable to the drum and the second guide members clasp at least one portion of the cable between the second guide members and the drum. Guidance of the cable via the first guide member biases the second guide members toward the drum surface to substantially adhere the clasped at least one portion of the cable to the drum surface. When a portion of the cable extending between the anchored end and the drum is in tension, slippage between the drum surface and the clasped at least one portion of the cable is substantially impeded and the drum is rotationally displaceable for displacing the clasped at least one portion of the cable away from the plurality of guide members.
In accordance with a fifth aspect of the invention, a hoist comprising a drum, a plurality of guide members and a biasing device is disclosed. The drum has a drum surface for supporting a cable thereon and the cable has an anchored end. The plurality of guide members are one of biasable toward and displaceable away from the drum surface. The plurality of guide members comprise a first guide member and second guide members. The first guide member guides the cable to the drum and the second guide members clasp at least one portion of the cable between the second guide members and the drum. The biasing device cooperates with the plurality of guide members whereby biasing of the second guide members toward the drum surface releases tension in the biasing device and the displacement of the second guide members away from the drum surface producing tension in the biasing device. When a portion of the cable extending between the anchored end and the drum is in tension, slippage between the drum surface and the clasped at least one portion of the cable is substantially impeded and the drum is rotationally displaceable for displacing the clasped at least one portion of the cable away from the second guide members.
An embodiment of the invention is described hereinafter with reference to the following drawings, in which:
A hoist for hoisting a load by means of a cable is described hereinafter for addressing at least one of the aforementioned problems.
For purposes of brevity and clarity, the description of the invention is limited hereinafter to applications relating to hoists. This however does not preclude various embodiments of the invention from other applications. The fundamental concepts of the embodiments of the invention shall remain common throughout the various embodiments.
A first embodiment of the invention described in the detailed description provided hereinafter is in accordance with
With reference to
Furthermore, the drum 12 preferably comprises a groove (not shown) formed on the drum surface 20 that spirals a number of times around the drum 12. The groove is for locating the cable 22 within the groove when the cable 22 is being wound around the drum 12. This is for impeding lateral slippage or travel of the cable 22 off the drum surface 20 when the drum 12 is rotationally displaced. Additionally, the groove is preferably coated with a layer of material for hardening the surface of the groove. The surface of the groove after coating is preferably smooth for reducing friction between the cable 22 and the groove, thus reducing wear and tear of the cable 22, when the drum 12 is rotationally displaced.
Alternatively, the groove formed on the drum surface 20 spirals only once around the drum 12 for locating the cable 22 within the groove. The cable 22 is thus wound around the drum 12 only once.
The guide support 18, such as a chain or roller chain, comprises a first end 28 and a second end 30, and is preferably elongated. The guide support 18 is for inter-coupling the guides 16. Preferably, each of the guides 16 is a roller being rotatably coupled to the guide support 18.
The guide support 18 is further coupled to the biasing device 14. The biasing device 14 is preferably an assembly of one or more springs made from a coil of wire or elastic materials such as polyurethane. The biasing device 14 is coupled to the guide support 18 at the first end 28 and the second end 30 for biasing the first end 28 away from the second end 30. The biasing mechanism is coupled to and supported by the housing 19, which is coupled to the drum 12. Alternatively, the housing 19 is coupled to a frame (not shown) instead of the drum 12. Operatively, the biasing device 14 is for cooperating with the guide support 18 for biasing the guides 16 towards the drum 12 for clasping a portion of the cable 22 between the guides 16 and the drum 12. This is to substantially adhere the clasped portion of the cable 22 to the drum surface 20.
Additionally, more than one portion of the cable 22 is claspable between the guides 16 and the drum 12. To clasp more than one portion of the cable 22, more than one biasing device 14 and one guide support 18 are needed. As illustrated in
Preferably, the biasing mechanism comprises the biasing device 14 and the guide support 18 for biasing the guides 16 towards the drum 12. Alternatively, another type of biasing mechanism comprising a plurality of biasing arms such as lever arms (not shown) can be provided for biasing the guides 16 towards the drum 12. Each of the guides 16 is coupled to each of the biasing arms and each of the biasing arms is for biasing each of the guides towards the drum 12.
A hoist (not shown) according to a second embodiment of the invention comprises the drum 12, the biasing device 14, the guide support 18 and the housing 19, in which the biasing device 14 and the guide support 18 form a biasing mechanism, as in the hoist 10 of
Alternatively, instead of providing the biasing mechanism comprising the biasing device 14 and guide support 18 for biasing the guide 16 towards the drum 12, another type of biasing mechanism comprising a biasing arm (not shown) for coupling the guide 16 thereto, is provided for biasing the guide 16 towards the drum 12.
Additionally, it is known in the art that besides the biasing mechanism described in each of the first and second embodiments of the invention, other types of biasing mechanism for biasing the guides 16 towards the drum 12 are implementable. Further, the preferred embodiment of the invention is the hoist 10 as described according to the first embodiment of the invention, which comprises the guides 16 and the type of biasing mechanism that comprises the biasing device 14 and the guide support 18.
Referring back to
A hoist 40 according to a third embodiment of the invention is shown in
Referring to
The first and second guide support members 18a/18b and the lever member 42 are preferably inter-coupled by a first coupling member 48a. The lever member 42 is preferably further coupled, by a second coupling member 48b, to a common structure 50. The second coupling member 48b is preferably a pivot point about which the lever member 42 pivots. Preferably, the first stopper member 46a is also coupled to the common structure 50.
The pressure rollers 44 are coupled to the drum 12, along its periphery. Each of the pressure rollers 44 is preferably individually coupled to the periphery of the drum 12. Alternatively, each of the pressure rollers 44 is inter-coupled to another to form a pressure roller unit (not shown) prior to being coupled along the periphery of the drum 12. Each of the pressure rollers 42 are inter-coupled to each other by, for example, a chain or roller chain. In one variation, each of the pressure rollers 44 has a substantially smooth surface. In another variation, each of the pressure rollers 44 comprises a plurality of grooves (not shown) such that each of the pressure rollers 44 has a grooved surface.
The second guide members 16b are rotatable and a portion of the cable 22 is clasped between the second guide members 16b and the drum 12. The clasped portion of the cable 22 is substantially adhered to the drum surface 20. In an event where the clasped portion of the cable 22 is not fully adhered to the drum surface 20, the pressure rollers 44 serve to further adhere the clasped portion of the cable 22 to the drum surface 20.
In one example, the first and second guide support members 18a/18b and the lever member 42 form a biasing mechanism. In another example, the biasing device 14, the first and second guide support members 18a/18b, the lever member 42 and the first and second stopper members 46a/46b form a biasing mechanism. The biasing device 14 is, for example, a spring member and tension is provided by the biasing mechanism upon the biasing device 14 being compressed.
In a first exemplary operation where the biasing mechanism comprises the first and second guide support members 18a/18b and the lever member 42, the second guide members 16b are biased toward the drum surface 20 of the drum 12, prior to introduction of the cable 22 to the drum 12 by, for example, gravity. In this instance the biasing mechanism is substantially tensionless.
Upon introduction of the cable 22 to the drum 12 via the first guide member 16a, the lever member 42 pivots about the second coupling member 48b. The cable 22 is preferably introduced via the first guide member 16a such that the cable 22 presses against the first guide member 16a. As the cable 22 presses against the first guide member 16a, the second guide members 16b are further biased toward the drum surface 20 of the drum 12.
The cable 22 can be pressed against the first guide member 16a by, for example, loading and biasing the cable 22 towards the first guide member 16a via a pulley (not shown).
The cable 22 contacts the second guide members 16b so that the second guide members 16b are displaced away from the drum surface 20 of the drum 12. Therefore tension is provided by the biasing mechanism, further adhering the clasped portion of the cable 22 to the drum surface 20.
In a second exemplary operation where the biasing mechanism of the first exemplary operation further comprises the biasing device 14 and the first and second stopper members 46a/46b, the second stopper member 46b is moved towards the first stopper member 46a as the lever member 42 is pivoted such that the second guide members 16b are displaced away from the drum surface 20 of the drum 12. The biasing device 14 is consequently compressed between the first and second stopper members 46a/46b. As the basing device 14 is compressed, tension is provided by the biasing mechanism.
As mentioned earlier, the tension provided serves to further adhere the clasped portion of the cable 22 to the drum surface 20. Apparent from the above, the second guide members 16b can function as a fulcrum for the lever member 42. The amount of tension provided is controllable by adjusting displacement of the fulcrum and the second coupling member 48b.
Each of the hoist 10 and the hoist 40 is implementable in several ways with three exemplary configurations described hereinafter for hoisting the load (all not shown). In each of the exemplary configurations, the load is a gondola suspendable and positionable along a face of a fixed structure such as a building. The exemplary configurations are described hereinafter with respect to the hoist 10. It can be appreciated that the hoist 40 can also be implemented similarly to the hoist 10.
In a first exemplary configuration for implementing the hoist 10, the anchored end 24 is anchored to the top of a structure, for example a building, with the hoist 10 being mounted to the gondola.
In a second exemplary configuration for implementing the hoist 10, the anchored end 24 is anchored to the gondola with the hoist 10 being mounted to the top of the building.
In a third exemplary configuration for implementing the hoist 10, both the anchored end 24 and the hoist 10 are respectively anchored and mounted to the top of the building. The portion of the cable 22 extending between the anchored end 24 and the drum 12 forms a loop with a pulley being mounted to a portion thereof. The pulley is mounted to the gondola for connecting the gondola with the hoist 10 by means of the cable 22.
In each of the three exemplary configurations, when the hoist 10 is in operation, the gondola is positionable along the face of the building for lifting or lowering objects or individuals contained in the gondola.
In the foregoing manner, a hoist for hoisting a load is described according to embodiments of the invention for addressing at least one of the foregoing problems. Although only a few embodiments of the invention are disclosed, the invention is not to be limited to specific forms or arrangements of parts so described and it will be apparent to one skilled in the art in view of this disclosure that numerous changes and/or modification can be made without departing from the scope and spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
200800847-6 | Jan 2008 | SG | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SG2009/000038 | 1/30/2009 | WO | 00 | 7/28/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/096906 | 8/6/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1782358 | Lang | Nov 1930 | A |
1973446 | Resenquist | Sep 1934 | A |
2926867 | Nardone | Mar 1960 | A |
3231240 | Naito | Jan 1966 | A |
3717325 | Peterson | Feb 1973 | A |
3721426 | Kaufer | Mar 1973 | A |
3794233 | Dykmans | Feb 1974 | A |
3836123 | Bausenbach et al. | Sep 1974 | A |
3843094 | Watts | Oct 1974 | A |
3927867 | Herchenroder | Dec 1975 | A |
3944185 | Evans | Mar 1976 | A |
3966170 | McKenna | Jun 1976 | A |
4057202 | Carr, Jr. | Nov 1977 | A |
4139178 | Hippach | Feb 1979 | A |
4611787 | May et al. | Sep 1986 | A |
4620615 | Morris et al. | Nov 1986 | A |
4634078 | Kaufmann et al. | Jan 1987 | A |
4634102 | Appling et al. | Jan 1987 | A |
4706940 | Harig | Nov 1987 | A |
4721285 | McMichael | Jan 1988 | A |
4795108 | Appling | Jan 1989 | A |
4827752 | Alcock et al. | May 1989 | A |
4909482 | Hofmann et al. | Mar 1990 | A |
4921219 | Ottemann et al. | May 1990 | A |
4953829 | Knaack et al. | Sep 1990 | A |
5002238 | Inhofer et al. | Mar 1991 | A |
5129626 | Koludzki | Jul 1992 | A |
5482219 | Tcholakov | Jan 1996 | A |
5626081 | Kuryu | May 1997 | A |
6095500 | McVaugh | Aug 2000 | A |
6435447 | Coats et al. | Aug 2002 | B1 |
7448597 | Jacobson et al. | Nov 2008 | B2 |
7527243 | Blasek | May 2009 | B2 |
8720811 | Zink | May 2014 | B2 |
20060207829 | Mauthner | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
2548982 | May 2003 | CN |
2550335 | May 2003 | CN |
2771168 | Apr 2006 | CN |
05-338994 | Dec 1993 | JP |
10-036084 | Feb 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20100314594 A1 | Dec 2010 | US |