The present invention generally relates to window coverings that use continuous loop operators such as cords and chains, and, more specifically, to hold down devices that are used with such window coverings for securing the remote end of the looped operator, whether the operator is a cord or beaded chain.
Some types of window coverings use a continuous loop operator for opening and closing the window covering or for causing other adjustments of the window covering. Horizontal blinds, Roman shades and other window coverings can be operated with a continuous loop cord or a continuous loop beaded chain that is rotated through operating mechanism in the head rail to cause the desired adjustment of the window treatment. Such continuous loop operators are well known in the industry, having had application and use for many years.
It is known to use a chain or cord hold down device to control the continuous loop operator of a shade or blind. Uncontrolled continuous loop operators can be unsightly, difficult to use and can pose certain risks. The hold down device is secured to the floor, wall or window frame and captures the remote end of the continuous loop operator, thereby holding the operator substantially flat against the window frame or wall, and keeping the continuous loop operator relatively taut. In the past, the hold down devices have been open, allowing the cord to run freely their through even if the hold down device is not properly mounted or secured to the floor, wall or window frame. More recently, it is known to use hold down devices that securely grasp the cord or chain when not installed, thereby significantly minimizing the distance through which the looped operator can be moved without properly securing the hold down device. The cord or chain will operate only until the hold down device secured thereto advances to and lodges against the head rail.
Many different designs are known whereby the hold down device is loosened from the cord or bead chain automatically as the hold down device is installed in a proper manner. Springs and crimping mechanisms are known for use in such devices; however, the overall mechanisms therefor can be relatively complex. With numerous parts requiring assembly and significant manufacturing time required, known hold down devices have been expensive to manufacture and assemble. Some are difficult to install, and some are easily defeated whereby the hold down device can be loosened from the cord even when the hold down device is not properly installed. For some, installation can be quite difficult for one installer alone, and installing the hold down device as a retrofit in a pre-existing installation can be difficult.
To encourage proper use of the hold down device, it is desirable to have a hold down device that can capture a cord or beaded chain securely, and that is not easily defeated. However, the device should be relatively easy to install by an untrained individual. Further, a device easily installed as a retrofit of a continuous loop operator is desirable. Providing the hold down device as a simple construction not requiring assembly of the device itself, only installation on the cord or chain, reduces cost and provides further advantages.
The hold down device disclosed herein is formed as a monolithic body of suitable injection molded plastic material and utilizes the natural springiness of the material to effect grasping of the cord or chain. A basic clamshell type structure is used whereby the cord or chain is grasped securely by the device when the device is spread wide in its natural, relaxed state, and that can be secured with the two halves closed against one another and the cord or chain loosened therefrom for relatively free operation there through.
In one aspect of a form thereof, the hold down device is easy to install on the continuous loop operator and easy to mount within the window covering installation by a single individual with minimal skills.
In another aspect of a form thereof, the hold down device engages a cord or bead chain securely and naturally, and cannot be defeated easily without properly installing the hold down device within the window covering installation.
In another aspect of a form thereof, the hold down device is provided as a monolithic body of injection molded plastic that is manufactured easily, simply and inexpensively.
Other features and advantages of the invention will become apparent to those skilled in the art upon review of the following detailed description, claims and drawings in which like numerals are used to designate like features.
Before the embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use herein of “including”, “comprising” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof, as well as additional items and equivalents thereof.
Referring now more particularly to the drawings and to
Hold down device 100 has a generally overall clamshell or V-shaped configuration including first and second arms 102, 104 interconnected by an integral connecting web 106. Hold down device 100 is made of molded plastic that is rigid and firm, yet yielding for providing spring-like characteristics in connecting web 106 such that, in a relaxed state of hold down device 100, arms 102, 104 are remote from one another as depicted in
Arms 102, 104 include confronting mounting blocks 108, 110 on the inwardly facing surfaces of arms 102, 104 respectively. Mounting blocks 108, 110 are positioned to be aligned with one another when the hold down device is fully mounted and installed within window covering installation 50. Mounting blocks 108, 110 define holes 112, 114, respectively, for receiving a mounting screw 116 for the final mounting of hold down device 100 within window covering installation 50, as will be described subsequently herein.
Arms 102, 104 further include offset heads 118, 120, respectively, also on the inwardly facing surfaces of arms 102, 104 at the distal ends of arms 102, 104. Heads 118, 120 are offset relative to one another, to slide past one another and overlie one another in the final mounting depicted in
Bead chain continuous loop operator 54 is a common configuration, well-known to those skilled in the art, and includes beads 58 connected in a continuous strand by links 60. Bead chain continuous loop operator 54 further includes a connector of well-known configuration by which an elongated strand of interconnected beads 58 and links 60 can be connected end to end to form a continuous loop bead chain. Accordingly, the continuous loop can be disconnected such that bead chain continuous loop operator 54 can be threaded through apertures 122, 124 as depicted in
Hold down device 100 is mounted in window covering installation 50 after head rail 52 is installed in the window opening. Arms 102, 104 are urged toward one another so that mounting blocks 108, 110 engage one against the other. Heads 118, 120 slide past one another such that the heads overlie one another and apertures 122, 124 align. Mounting screw 116 is inserted through aligned holes 112, 114 and secured within a base 70 that can be a portion of a window frame on which window covering installation 50 is installed, a wall adjacent the window or some suitable structure nearby. Fastening screw 116 to base 70, with screw 116 inserted from the outside arm 102, 104 through the inside arm 102, 104 draws the arms together and against base 70. Blocks 108, 110 are drawn against one another when heads 118, 120 are positioned adjacent one another, and apertures 122, 124 align. In this position, which may be considered a “closed” position of hold down device 100, notches 126, 128 are no longer exposed, each being covered along one side by solid portions of the now adjacent head 118 or head 120. Accordingly, bead chain continuous operator 54 can slide freely through aligned apertures 122, 124 without catching on notches 126, 128. The position at which hold down device 100 is mounted is such as to hold bead chain continuous loop operator 54 in a relatively taut condition. With hold down device 100 thus installed, apertures 122, 124 aligned one with the other and notches 126, 128 no longer exposed, bead chain continuous loop operator 54 can rotate freely through hold down device 100 for adjusting shade panel 56 by operating apparatus within head rail 52 well known to those skilled in the art.
A hold down device also can be provided suitable for use with a cord instead of a bead chain used as the continuous operator in a window covering.
Hold down device 200 has a generally overall clamshell or V-shaped configuration including first and second arms 202, 204 interconnected by an integral connecting web 206. Hold down device 200 is made of molded plastic that is rigid and firm, yet yielding for providing spring-like characteristics in connecting web 206 such that, in a relaxed state, arms 202, 204 are remote from one another as depicted in
Arms 202, 204 include confronting mounting blocks 208, 210 respectively that are positioned to abut one against the other when hold down device 200 is in its mounted condition. Mounting blocks 208, 210 are provided on the inwardly facing surfaces of arms 202, 204. Arms 202, 204 also define holes 212, 214 there through, respectively, for receiving a mounting screw 216. Arms 202, 204 further include offset heads 218, 220, respectively, on the inwardly facing surfaces, at the distal ends thereof. Heads 218, 220 slide past one another so as to overlie one another in the final installation depicted in
Cord continuous loop operator 154 is of a common configuration, such as a braided cotton cord. Cord continuous loop operator 154 does not need to be disassembled, cut or otherwise disrupted to install hold down device 200 thereon. One-way channels 230, 232 are provided from the perimeters of heads 218, 220 through to apertures 222, 224 in heads 218, 220. One-way channels 230, 232 are wider at the outer ends thereof and narrower at the inner ends thereof than the diameter of cord continuous loop operator 154. The innermost ends of one-way channels 230, 232 are provided with pairs of inwardly angled projections into apertures 222, 224; including projections 234 at opposite sides of one-way channel 230 and projections 236 at opposite sides of one-way channel 232. Accordingly, cord continuous loop operator 154 passes easily from outside apertures 222, 224 to inside apertures 222, 224 by compressing the cord in the progressively narrowing channel, and/or by deflecting inwardly angled projections 234, 236. However, moving continuous cord operator 154 from inside apertures 222, 224 is obstructed first by the inwardly angled projections 234, 236, and thereafter by the narrow ends of channels 230, 232.
Hold down device 200 is installed on cord continuous loop operator 154 as shown in
With hold down device 200 installed on cord continuous loop operator 154, and inward pressure against arms 202, 204 subsequently being released, cord continuous loop operator 154 angles between the then misaligned apertures 222, 224 and against serrated portions 226, 228. Serrated portions 226, 228 engage and embed into cord continuous loop operator 154 such that hold down device 200 is held securely at its position along the length of cord continuous loop operator 154. Hold down device 200 securely engages cord continuous loop operator 154 and is not easily dislodged there from. Hold down device 200 renders the window covering inoperable in that the continuous loop operator 154 can be advanced only until hold down device 200 encounters head rail 152.
Hold down device 200 is mounted in its final position within window covering installation 150 after head rail 152 is installed in the window opening. Arms 202, 204 are urged toward one another so that mounting blocks 208, 210 engage one against the other. Heads 218, 220 slide past one another such that the heads overlie one another and apertures 222, 224 align. Mounting screw 216 is inserted through aligned holes 212, 214 and secured within a base 170 that can be a portion of a window frame on which window covering installation 150 is installed, a wall adjacent the window or some suitable structure nearby.
Fastening screw 216 to base 170, with screw 216 inserted from the outside arm 202, 204 through the inside arm 202, 204 draws the arms together and against base 170. Blocks 208, 210 are drawn against one another when heads 218, 220 are positioned adjacent one another, and apertures 222, 224 align. In this position, which may be considered a “closed” position of hold down device 200, serrated portions 226, 228 are no longer exposed, each being covered along one side by solid portions of the now adjacent head 218 or head 220. Accordingly, cord continuous loop operator 154 can slide freely through aligned apertures 222, 224 without catching on serrated portions 226, 228. The position at which hold down device 200 is mounted is such as to hold cord continuous loop operator 154 in a relatively taut condition, away from projections 234, 236. With hold down device 200 thus installed, apertures 222, 224 aligned one with the other and serrated portions 226, 228 no longer exposed, cord continuous loop operator 154 can rotate freely through hold down device 200 for adjusting shade panel 156 by operating apparatus within head rail 152 well known to those skilled in the art.
Variations and modifications of the foregoing are within the scope of the present invention. It is understood that the invention disclosed and defined herein extends to all alternative combinations of two or more of the individual features mentioned or evident from the text and/or drawings. All of these different combinations constitute various alternative aspects of the present invention. The embodiments described herein explain the best modes known for practicing the invention and will enable others skilled in the art to utilize the invention. The claims are to be construed to include alternative embodiments to the extent permitted by the prior art.
Various features of the invention are set forth in the following claims.
The present application is a continuation application of U.S. application Ser. No. 14/478,956, filed on Sep. 5, 2014 and entitled “HOLD DOWN DEVICE FOR WINDOW COVERING LOOPED OPERATOR”, which is a national stage entry of international Patent Application No. PCT/US2013/029634, filed on Mar. 7, 2013 and entitled “HOLD DOWN DEVICE FOR WINDOW COVERING LOOPED OPERATOR”, which claims priority to U.S. Provisional Application No. 61/607,847, filed Mar. 7, 2012 and entitled “HOLD DOWN DEVICE FOR WINDOW COVERING LOOPED OPERATOR”, the contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1229855 | Alexander | Jun 1917 | A |
2554303 | Longhenrich | May 1951 | A |
4270491 | Cox | Jun 1981 | A |
5163492 | Remington et al. | Nov 1992 | A |
5193252 | Svehaug | Mar 1993 | A |
5203056 | Funk | Apr 1993 | A |
5562140 | Biba | Oct 1996 | A |
5592983 | Sartini | Jan 1997 | A |
6085824 | Cadorette | Jul 2000 | A |
6305053 | Galbreath | Oct 2001 | B1 |
7318567 | Mori | Jan 2008 | B2 |
7415750 | Kinebuchi | Aug 2008 | B2 |
7841376 | Lin | Nov 2010 | B2 |
8695174 | Cheng | Apr 2014 | B1 |
20010010110 | Matsushima | Aug 2001 | A1 |
20060196995 | Mori et al. | Sep 2006 | A1 |
20070157438 | Judd | Jul 2007 | A1 |
20100219311 | Ng | Sep 2010 | A1 |
20110036517 | Chen | Feb 2011 | A1 |
20120000036 | Wen | Jan 2012 | A1 |
Entry |
---|
PCT/US2013/029634 International Search Report dated Jun. 12, 2013 (2 pages). |
Number | Date | Country | |
---|---|---|---|
20170260805 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
61607847 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14478956 | Sep 2014 | US |
Child | 15605385 | US | |
Parent | PCT/US2013/029634 | Mar 2013 | US |
Child | 14478956 | US |