1. Field of the Invention
The present invention relates to a hold-down spring unit for top nozzles of nuclear fuel assemblies which are used in nuclear reactors, the hold-down spring unit having an improved hold-down performance to prevent the nuclear fuel assembly from uplifting, and a top nozzle for nuclear fuel assemblies having the hold-down spring unit.
2. Description of the Related Art
As is well known to those skilled in the art, a nuclear reactor is a device in which the fission chain reaction of fissionable materials is controlled for the purpose of generating heat, producing radioactive isotopes and plutonium, or forming a radiation field.
Generally, in light-water reactor nuclear power plants, enriched uranium which is increased in the ratio of uranium-235 to 2% through 5% is used. To process enriched uranium into nuclear fuel to be used in nuclear reactors, a forming process by which uranium is formed into a cylindrical pellet having a weight of about 5 g is conducted. Several hundreds of these pellets are retained into a bundle and inserted into a zirconium tube under vacuum conditions. A spring and helium gas are supplied into the tube and a cover is welded and sealed onto the tube, thus completing the fuel rod. A plurality of fuel rods constitutes a nuclear fuel assembly and is burned in a nuclear reactor by nuclear reaction.
As shown in
To assemble the nuclear fuel assembly having the above-mentioned construction, lacquer is applied to the surfaces of the fuel rods to prevent the fuel rods from being scratched and prevent springs provided in the support grids 10 from being damaged. Thereafter, the fuel rods are inserted through the support grids 10 and then the top and bottom nozzles 30 and 16 are coupled to the fuel rods, thus completing the assembly of the nuclear fuel assembly. The assembled nuclear fuel assembly is tested for distances between the fuel rods, distortion, dimensions including the length, etc. after the lacquer is removed. When the results of the test are normal, the nuclear fuel assembly is installed in a core of a nuclear reactor in which nuclear fission is caused, as disclosed in U.S. Pat. No. 5,213,757.
In the nuclear fuel assembly installed in the core, hydraulic uplift force which is generated by the flow of coolant during the operation of the nuclear reactor is applied to the top and bottom nozzles 30 and 16. Hereby, the nuclear fuel assembly is lifted or vibrated. Furthermore, thermal expansion attributable to an increase in temperature, irradiation growth of the nuclear fuel tube due to neutron irradiation for a long period of time, or axial length variation owing to creep may be induced. Therefore, the top nozzle 30 is configured to ensure the mechanical and structural stability of the nuclear fuel assembly with respect to axial movement or axial length variation of the nuclear fuel assembly.
As shown in
As shown in
The hold-down spring units 32 which are provided on the top nozzle 30 provide elastic force to the nuclear fuel assembly in response to axial movement or variation in the length of the nuclear fuel assembly so as to ensure the mechanical-structural stability of the nuclear fuel assembly. The first neck part 32a′ of the first spring 32a is inserted into an insert slot 41 formed in a corresponding upper plate 40 of the top nozzle 30 in order to guide the operation of the hold-down spring unit 32 and prevent a loss of an element when the first, second or third spring 32a, 32b or 32c is damaged.
As shown in
Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide a hold-down spring unit for a top nozzle of a nuclear fuel assembly which is configured such that the hold-down spring unit has the minimum hold-down margin under hot full power conditions, thus preventing the top nozzle from applying excessive resistance force to the nuclear fuel assembly, thereby enhancing the mechanical and structural stability of the nuclear fuel assembly, and a top nozzle for a nuclear fuel assembly having the hold-down spring unit.
In order to accomplish the above object, the present invention provides a hold-down spring unit coupled to an upper end of a top nozzle of a nuclear fuel assembly, including: a first spring acting against a hold-down force with respect to the nuclear fuel assembly under start-up conditions or hot full power conditions of a nuclear reactor; and a second spring acting against a hold-down force with respect to the nuclear fuel assembly under start-up conditions of the nuclear reactor.
In order to accomplish the above object, the present invention provides a top nozzle for a nuclear fuel assembly, including: a coupling plate coupled to a guide thimble of the nuclear fuel assembly; a perimeter wall protruding upwards from a perimeter of the coupling plate, with a spring clamp provided on an upper surface of the perimeter wall; and a hold-down spring unit mounted to the upper surface of the perimeter wall. The hold-down spring unit include: a first spring acting against a hold-down force with respect to the nuclear fuel assembly under start-up conditions or hot full power conditions of a nuclear reactor; and a second spring acting against a hold-down force with respect to the nuclear fuel assembly under start-up conditions of the nuclear reactor.
The first spring may have a first ramp, and a first neck part extending downwards from an upper end of the first ramp. The second spring may have a second ramp, a neck part insert slot formed through an upper end of the second ramp so that the first neck part of the first spring is inserted through the neck part insert slot, and a second neck part extending downwards from the upper end of the second ramp, the second neck part being shorter than the first neck part of the first spring.
The hold-down spring unit may further include at least one intermediate spring provided under a lower surface of the first spring. The intermediate spring may have an intermediate ramp, and an intermediate neck part insert slot formed through an upper end of the intermediate ramp so that the first neck part of the first spring is inserted through the intermediate neck part insert slot.
The first spring, the second spring and the intermediate spring may respectively include a first support part, a second support part and an intermediate support part. The first support part, the second support part and the intermediate support part may be respectively formed by bending the lower ends of the first ramp, the second ramp and the intermediate ramp in the horizontal direction. A first pin hole, a second pin hole and an intermediate pin hole may be respectively formed through the first support part, the second support part and the intermediate support part.
The first spring, the intermediate spring and the second spring may have plate spring shapes.
The above and other objects, features and advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
FIGS. 4A through 4C′ are perspective views illustrating elements of a hold-down spring unit of a top nozzle for a nuclear fuel assembly, according to an embodiment of the present invention;
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the attached drawings.
FIGS. 4A through 4C′ are exploded perspective views illustrating a hold-down spring unit 100 used in a top nozzle 30′:
As shown in FIGS. 4A through 4C′, the hold-down spring unit 100 includes the first spring 110, the second spring 130 and the intermediate spring 120.
The first spring 110 includes a first ramp 110′ which is a plate spring, a first support part 111 which is provided on a lower end of the first ramp 110′, and a first neck part 112 which is bent downwards from an upper end of the first ramp 110′ and extends a predetermined length. A first pin hole 111a is formed through the first support part 111, so that a fastening pin 33 is inserted through the first pin hole 111a. A first neck part slot 113 is formed in the lower end of the first neck part 112 and extends a predetermined length in the vertical direction along the central axis of the first neck part 112. First neck part hooks 114 protrude outwards from the lower end of the first neck part 112 on opposite sides of the first neck part slot 113.
The intermediate spring 120 includes an intermediate ramp 120′, an intermediate support part 121 which is provided on the lower end of the intermediate ramp 120′. A neck part insert slot 125 is formed through the upper end of the intermediate ramp 120′. An intermediate pin hole 121a is formed through the intermediate support part 121 so that the fastening pin 33 is inserted through the intermediate pin hole 121a.
The second spring 130 includes a second ramp 130′ which is a plate spring, a second support part 131 which is provided on the lower end of the second ramp 130′, and a second neck part 132 which is bent downwards from the upper end of the second ramp 130′ and extends a predetermined length. The second neck part 132 is shorter than the first neck part 112. A second pin hole 131a is formed through the second support part 131 so that the fastening pin 33 is inserted through the second pin hole 131a. A neck part insert slot 135 is formed through the upper end of the second ramp 130′. Second neck part hooks 134 protrude outwards from opposite sides of the lower end of the second neck part 132.
As shown in
As shown in
As shown in
The lower end of the first neck part 112 which is inserted through the intermediate spring 120 and the second spring 130 is inserted into and locked to an insert slot 41 of a corresponding upper plate 40 which is provided on the perimeter wall 20. The lower end of the second neck part 132 is also inserted into and locked to the insert slot 41. Here, the first neck part slot 113 makes it possible to reduce the width of the lower end of the first neck part 112, thus facilitating the insertion of the first neck part 112 into the insert slot 41. The first neck part hooks 114 which are provided on opposite sides of the first neck part 112 and the second neck part hooks 134 which are provided on opposite sides of the second neck part 132 are inserted into the insert slot 41 and locked to the lower surface of the upper plate 41, thus preventing the first neck part 112 and the second neck part 132 from being undesirably removed from the insert slot 41. Separate locking pins may be locked to the first neck part hook 114 and the second neck part hook 134 so as to more reliably prevent the first neck part 112 and the second neck part 132 from being removed from the insert slot 41.
In the hold-down spring unit 100 having the above-mentioned construction, the second neck part 134 is locked to the insert slot 41 and thus functions to prevent a loss of an element when the first or second spring 110 or 130 or the intermediate spring 120 is damaged.
Furthermore, the hold-down spring unit 100 of the present invention functions to reduce hold-down margins within ranges of the positive values with respect to demand hold-down forces under hot full power conditions and start-up conditions when the unclear reactor is operated.
In the graph of
As shown in
Under the start-up conditions, after the first spring 110 and the intermediate spring 120 have entered the hold-down state, the second spring 130 also suffers hold-down force along with the first spring 110 and the intermediate spring 120. Thus, the hold-down margin (SPM) is equal to or less than that of the conventional technique.
Therefore, the hold-down spring unit 100 of the present invention minimizes the hold-down margin in a section of the hot full power conditions which occupies most of the entire operating section of the nuclear reactor. In addition, under the start-up conditions, the hold-down spring unit 100 acts such that hold-down force having the hold-down margin equal to or less than that of the conventional technique is generated. Thus, optimal hold-down force can be applied to the nuclear fuel assembly. Thereby, when the nuclear reactor is in operation, excessive resistance force is prevented from being applied to the nuclear fuel assembly by the hold-down spring units 100. Hence, during the operation of the nuclear reactor, the top nozzle 30′ provides optimal hold-down force in response to variation of the length of the nuclear fuel assembly, thus preventing the nuclear fuel assembly from being bent, and maintaining the position of the nuclear fuel assembly stably. As a result, the mechanical and structural stability of the nuclear fuel assembly can be enhanced.
As described above, the present invention minimizes the hold-down margin under hot full power conditions of a nuclear reactor, thus preventing resistance force from being excessively applied to a nuclear fuel assembly from a top nozzle when the nuclear reactor is in operation.
Furthermore, in the present invention, during the operation of the nuclear reactor, the top nozzle provides appropriate hold-down force in response to variation of the length of the nuclear fuel assembly, thus maintaining the position of the nuclear fuel assembly more stably, and preventing the nuclear fuel assembly from being bent, thereby ensuring the mechanical and structural stability of the nuclear fuel assembly.
Moreover, the present invention is configured such that under start-up conditions of the nuclear reactor, the hold-down margin is equal to or less than the desired hold-down margin to provide sufficient hold-down force, and under hot full power conditions, the hold down margin is minimized. Thereby, the present invention prevents excessive hold-down force from being applied from the top nozzle to the nuclear fuel assembly when the nuclear reactor is in operation, thus enhancing the mechanical and structural stability of the nuclear fuel assembly in the entire operating section of the nuclear reactor.
In addition, in the present invention, even if a hold-down spring unit is damaged, a loss of an element can be prevented by a neck part of a second spring.
Although the preferred embodiment of the present invention has been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0006471 | Jan 2010 | KR | national |