The invention relates to a hold-open arrester arrangement having a hold-open function to hold a door open. The hold-open arrester is arranged to be installed to a slide rail, which is in connection with a door closer through an arm of the door closer and a sliding block. The hold-open function is formed when the sliding block is in a locking connection with the hold-open arrester. Especially, the invention relates to a hold-open arrester having also an electric release arrangement. The release arrangement is arranged to release the hold-open function in a fire alarm situation
Hold-open arresters are devices, which are used with door closers to hold doors open. Doors may be desired to keep open on daytime in hospitals, schools, libraries etc. The hold-open arrester is installed to a slide rail in a fixed manner. The hold-open arrester is in connection with a door closer through an arm of the door closer and a sliding block. When opening the door, the sliding block moves along the slide rail until it meets the hold-open arrester. The attachment between the sliding block and the hold-open arrester is made. Therefore, the sliding block cannot slide back due to the force of the door closer, and the door is hold open. So, the sliding block is in a locking connection with the hold-open arrester.
U.S. Pat. Nos. 4,286,412, 4,750,236 and EP 2434078 show hold-open arresters installed to a slide rail, which embodiments have also a solenoid. DE 102017210363 shows a hold-open arrester for a slide rail. This arrester has a mechanical holding and releasing function utilizing a guide track.
In fire situations doors should be closed in order to prevent propagation of the fire. Therefore, there are hold-open arresters having an electric release arrangement. The electric release arrangement is arranged to release the hold-open function in a fire alarm situation. When the hold-open function is released the sliding block can move back to a position where the door is closed, and therefore the door is closed when the fire situation is detected.
Although, the known solutions work as designed they can be still improved, like power consumption and lifetime of a possible battery with the hold-open arrester.
The object of the invention is to provide an alternative hold-open arrester arrangement. The object is achieved in a way described in the independent claim.
Dependent claims illustrate different embodiments of the invention. The inventive arrangement has a low power consumption, and therefore a battery lifetime is long in the embodiments of the invention utilizing the battery. The door can also be turned fully opened passing the opening angle of the door where the hold-open arrester arrangement is arranged to keep the door open.
An embodiment according to the invention has a hold-open arrester arrangement having a hold-open function to hold a door open, and also having an electric release arrangement. The electric release arrangement is arranged to release the hold-open function in a fire alarm situation. The inventive arrangement comprises a sliding block 5 and an arrester unit 6, the sliding block 5 being connectable with a slide rail 4 in a sliding manner and also pivotable connectable to an arm 3 of a door closer. The arrester unit 6 is connectable to the slide rail 4 and has a body 6B, the electric release arrangement, and said hold-open function with the sliding block 5. The body has a front end 6D and a rear end 6E.
The sliding block 5 comprises a support surface 11 and a pivoted lever 12 having a front surface 13 and a back surface 15. The pivoted lever is spring biased towards a locking position where the front surface 13 is in contact with the support surface 11.
The arrester unit 6 comprises a locking lever 19 having a cam 20. The arrester unit comprises also a slide element 14 being spring-biased towards an arresting position of the slide element 14. The slide element 14 at the arresting position is arranged to keep the locking lever 19 at a holding location. The cam 20 is out of the body 6B at the holding location.
The pivoted lever 12 is arranged to turn due to the cam 20 when the sliding block 5 is passing the arrester unit 6 towards the rear end 6E of the arrester unit. The pivoted lever is also arranged to turn back to the locking position after passing the cam 20 whereby the arrester unit 6 provides said hold-open function due to the cam 20 being out of the body 6B. The sliding block 5 is also capable to pass the rear end 6E of the arrester unit 6. So, the door can also be turned fully opened passing the opening angle of the door where the hold-open arrester arrangement is arranged to keep the door open.
The electric release arrangement is arranged to move the slide element 14 towards the rear end 6E in case of fire alarm whereby releasing said locking lever 19 from the holding location allowing the sliding block 5 to move away from the arrester unit 6 by passing the front end 6D of the arrester unit.
The arrester unit 6 further comprises an overload lever 21 being arranged to turn from its normal position in case a force from the sliding block 5 affecting to the overload lever 21 via the locking lever 19 is greater than a threshold force value. The turning of the overload lever 21 allows the locking lever 19 to move towards a front end 6D of the arrester unit, and to turn out of way of the sliding block. Thereby the movement of the sliding block 5 is allowed away from the arrester unit 6. The threshold force value is depending on a holding spring 28 that is arranged to bias the overload lever 21 to the normal position.
In the following, the invention is described in more detail by reference to the enclosed drawings, where
An arrester unit 6 has also been installed in the slide rail 4 in a fixed manner. It provides a hold-open function in order to hold the door open. The place of the installed arrester unit is selected so that hold-open arrester arrangement is going to hold the door open at the desired opening angle of the door.
When the door 7 is opened from the closed position, the door closer 2 tensions for closing the door after the opening. At the same time the arm 3 pivots, and the sliding block 5 moves along the to slide rail 4 towards the arrester unit 6 and the hinge side 7A of the door. When the door has been opened so that the sliding block 5 passes the arrester unit 6, the hold-open function is formed between the sliding block 5 and the arrester unit 6 in order to hold the door open. More specifically, the hold-open function is performed between the pivoted lever 12 of the sliding block 5 and the cam 20 of the locking lever 19 in the arrester unit 6, which is described in more detail below.
So, an example of the inventive embodiment has a hold-open arrester arrangement having a hold-open function to hold a door open. The arrangement has also an electric release arrangement, which is arranged to release the hold-open function in a fire alarm situation. The arrangement comprises also a sliding block 5 and an arrester unit 6. The sliding block 5 is connectable with a slide rail 4 in a sliding manner and also pivotable connectable to an arm 3 of a door closer. The arrester unit 6 is also connectable to the slide rail 4 and it has a body 6B, the electric release arrangement, and said hold-open function with the sliding block 5. The body has a front end 6D and a rear end 6E.
In
The sliding block 5 is also capable to pass the rear end 6E of the arrester unit 6.
The electric release arrangement is arranged to move the slide element 14 towards the rear end 6E in case of fire alarm whereby releasing said locking lever 19 from the holding location allowing the sliding block 5 to move away from the arrester unit 6 by passing the front end 6D of the arrester unit. This action of the electric release arrangement is illustrated in
The arrester unit 6 further comprises an overload lever 21 being arranged to turn from its normal position in case a force from the sliding block 5 affecting to the overload lever 21 via the locking lever 19 is greater than a threshold force value. The turning of the overload lever 21 allows the locking lever 19 to move towards a front end 6D of the arrester unit, and to turn out of way of the sliding block. Thereby the movement of the sliding block 5 is allowed away from the arrester unit 6, and towards the lock side 7B of door (away from the hinge side of the door). The threshold force value is depend on a holding spring 28 that is arranged to bias the overload lever 21 to the normal position.
The embodiment of the invention illustrated in the figures has the electric release arrangement comprising an electric drive 26 and a force transmitting mechanism 23, 24, 25 between the electric drive 26 and the slide element 14. The fire alarm can be detected from a fire alarm interface 38. The fire alarm interface provides fire alarm. The fire alarm interface can be a sensor or a connection to an external fire alarm arrangement. The arrester unit has a circuit board or the like 39, which is connected to the fire alarm interface 38 and arranged to control the electric drive 26 so that in case of fire alarm the electric drive moves the slide element 14 towards the rear end.
When the hold-open function has been released by said electric release arrangement due to the fire alarm, i.e. fire situation. The arrester unit does not hold the door open, and the door closer turns the door to be closed. The door can still be opened by people who escape out because of the fire. The cam 20 does not hold the sliding block 5 because the locking lever 19 can turn out of way of the sliding block, so the door closer turns the door to the closed position. The slide element 14 is kept at the position illustrated in
After the fire alarm when the slide element 14 has moved away from the arresting position, the slide element is kept away of the arresting position. This function is achieved by a self-locking feature of the electric release arrangement. The self-locking feature is released by said starting movement of the slide element, which is created electrically.
The end of the fire situation can be detected via the fire alarm interface 38. A signal indicating the end of the fire situation is received through the fire alarm interface 38, and as response to this signal the electric release arrangement is arranged to create electrically the starting movement of the slide element 14. The starting movement is enough strong to release the self-locking feature. After the self-locking has been released the spring-biasing moves the slide element to the arresting position.
The embodiment showed in the figures has the electric release arrangement comprises an electric drive 26 and a force transmitting mechanism 23, 24, 25, between the electric drive 26 and the slide element 14. The electric drive 26 can be an electric motor or a solenoid. The electric motor could be more convenient in many embodiments but the selection between the motor or the solenoid depends on many factors like costs, manufacturing reasons etc. The force transmitting mechanism can comprise a spring support part 23, a toothed bar 24, and worm gear 25, as in the embodiment of the figures. The spring support part 23 is attached to the toothed bar 24, and slideable connected with the slide element 14. It can also be seen in the figures that a bias spring 22 is between the slide element 14 and the toothed bar 24. The worm gear is in force transmitting connection to the toothed bar and the electric drive 26. The force transmitting connection between the worm gear and the electric drive 26 is direct or through a gear arrangement 27. In the direct connection the axis of the electric drive can be directly connected to the worm gear. If the gear arrangement 27 is used the axis of the electric drive is connected to the gear arrangement and another axis 25A connects the gear arrangement and the worm gear. The worm gear forms the self-locking feature with the toothed bar. It may also be possible that in embodiments using the gear arrangement 27, the gear arrangement forms the self-locking feature. The toothed bar 24 and the spring support part 23 fixed to the bar are arranged to be moveable in the body 6B, in a slideable manner.
The electric release arrangement can be constructed in many ways. For example, in a case where the electric drive is the solenoid having a plunger, the force transmitting mechanism may comprise a bar arrangement between the plunger and the slide element 14. The self-locking feature can be achieved by the gear arrangement or a bent axle, for example.
The hold-open arrester arrangement according to the invention comprises a power source 40 for the electric drive. The power source can be a battery or power interface for external power. The battery can be situated inside the arrester unit 6 or outside it, like in the slide rail 4. The external power source can be an electric power network.
Power for the electric drive, like the motor or the solenoid, is controlled by the circuit board comprising suitable switching functions and switches. As said the power source can be the battery or the electric power network for example. When the fire alarm is detected by a fire alarm interface 38, the circuit board or the like (integrated circuit board etc.) as response to the detection of the fire alarm provides power to the electric drive 26. The power to the electric drive controlled by the circuit board can be a relatively short power pulse, which is enough to move slide element 14 against the spring-biasing force. When the fire situation is ended it can be detected by the fire alarm interface 38 as well or by another interface. So, the inventive arrangement may have several interfaces for receiving different signals. As response of the detection of the end of the fire situation, the circuit board or the like can provide power to the electric drive in order to create electrically said starting movement of the slide element 14. This power for the starting movement can also be a relatively short power pulse.
As can be noted, the inventive arrangement is very power efficient since only short (in time) energy pulses are required with fire alarm situations and when setting the arrangement to a normal operation after the end of the fire situations. The normal operation occurs when there is no fire alarm/fire situation. During the normal operation when holding the door open, electric power is not used.
It can be seen in the figures that arrester unit 6 comprises space for the locking lever 19 to be at the holding location or away from the holding location. The slide element 14 has a slope 17 for guiding the locking lever 19 to the holding location and away from the holding location. In addition, the slide element can further comprise a holding surface 16 next to the slope 17. The holding surface is arranged to hold the locking lever 19 at the holding location, in the embodiment of the figures, but it should be noted that the slope 17 for guiding the circled detent can be arranged to hold the circled detent at the holding location.
In addition, it is also possible that the inventive arrangement comprises a sliding piece 18 between the slide element 14 and the body 6B. There can also be more than one sliding piece. The sliding piece 18 can be a ball or a roll. The sliding piece provides an easier movement of the slide element, and it is situated near the slope 17 and/or the possible holding surface 16 next to the slope 17. In this way the energy needed to move to slide element can be relatively minor when the fire alarm occurs or when the fire situation has been ended.
In order to have said spring-biasing of the slide element, the inventive embodiment comprises a bias spring 22, and the slide element 14 comprises a rod 14A. The rod has the attachment part 23A. The attachment part restricts the movement of the slide element 14 and the movement of a spring support part 23.
The bias spring 22 provides said spring-biasing of the slide element 14 towards the arresting position. The bias spring is between the main body of the slide element 14 and the spring support part 23. So, the tension of the spring occurs between the slide element 14 and the spring support part 23. The spring support part 23 is fixed to the toothed bar 24. The bias spring is on the rod 14A in the embodiment of the figures. As illustrated in the figures, the rod 14A may be moveable via a hole on the spring support part 23. The bias spring also protects the toothed bar 24 and the gear 25 and the motor 26 in cases of powerful movements of the door, which could break said parts of the arrester unit.
The sliding block 5 can also comprise space for the pivoted lever 12. See
As can be seen the arrester unit 6 comprises a control screw 34 in order to adjust tension of the holding spring 28. The tension of the spring 28 affects to said threshold force value. So, the threshold value force depends on the holding spring 28 and its control screw 34.
Further as illustrated in the figures, the arrester unit 6 comprises a return spring 35 in order to guide the locking lever 19 towards the holding location. The holding location of the locking lever 19 can be seen in
The invention can be used with fire doors and also any other doors for preventing expansion of fire. The fire doors have been specifically designed to prevent expansion of fire. When fire alarm occurs the door/fire door can be closed automatically as described above. When there is no fire alarm it is possible to keep the door open. The door can also be open more than what the holding angle of the door is by the installed hold-open arrester arrangement. As said the power for the functions in case of the fire alarm or after the end of the fire for achieving back the hold-open function of the inventive arrangement, is supplied by external power supply, a supercapacitor or the battery, or a combination of these means. The battery can be rechargeable. The inventive arrangement can also be arranged so that in a power break down situation where voltage drops, the hold-open function is released, so the door is closed automatically. Further in cases of communication fails (for example with a fire alarm system or a security system) too long communication access time can cause the hold-open function to be released, and therefore closing the door automatically. So, the electric release arrangement can also be arranged to move the slide element 14 towards the rear end 6E in case of a fault situation (voltage drop, power failure, communication break etc.) whereby releasing said locking lever 19 from the holding location allowing the sliding block 5 to move away from the arrester unit 6 by passing the front end 6D of the arrester unit.
As can be noted the invention can be made in many different ways, It is evident from the above that the invention is not limited to the embodiments described in this text but can be implemented in many other different embodiments within the scope of the independent claim.
Number | Date | Country | Kind |
---|---|---|---|
20209670.7 | Nov 2020 | EP | regional |