The present invention is generally directed to holders for concrete anchors for positioning the anchors on a concrete form surface prior to pouring concrete and concrete anchor assemblies including holders.
The present invention provides a holder for a concrete anchor to be embedded in concrete, comprising base portion; a first sleeve portion vertically disposed above the base portion; post portions including vertical openings, the post portions including respective top edges for providing a shoulder to engage the nail heads when the nails are installed in the vertical openings.
The present invention also provides a concrete anchor assembly for being embedded in concrete, the assembly comprising a holder; and an anchor body held by the holder, the anchor body including a rod portion and a head portion. The holder includes a sleeve portion and a base portion, the sleeve portion being vertically disposed above the base portion. The holder includes vertical openings and top edge. Nails are disposed in the respective vertical openings, the nails extending through the base portion. The nails include respective nail heads extending over and engaging the top edge. The head portion of the anchor body extends laterally from the rod portion, the head portion including an underside in direct contact with the nail heads.
The present further provides a concrete anchor assembly, comprising a housing having a top opening, the housing including a bottom wall with a bottom opening; the bottom wall including a ramp surface extending upwardly and away from the bottom opening; and a split nut disposed on the bottom wall and over the bottom opening. A spring is biased to force the split nut toward a bottom of the ramp surface.
A concrete anchor assembly 2 embodying the present invention is disclosed in
The concrete anchor assembly 2 comprises a holder 4 and an anchor body 6. The anchor body 6 includes a cylindrical rod portion 8 and a head portion 10 that extends outwardly of the cylindrical rod portion 8, as best shown in
An internal threaded bore 14 is disposed at a bottom end of the rod portion 8. Another threaded bore 16 having a smaller diameter than the threaded bore 14 may be included above the threaded bore 14. Still another threaded bore 18 may be provided through the head portion 10. The threaded bores 14, 16 and 18 are preferably co-axial. The threaded bore 18 may be used to attach another anchor body, such as a threaded bolt, to increase the load capacity of the anchor body 6. The threaded bore 18 may also be used to attach a threaded rod, which is to be extended outside of the concrete mass, as for example disclosed in WO 2010/090748, hereby incorporated by reference. The threaded bore 18 preferably does not communicate with the threaded bores 14 and 16 to keep them sealed from the concrete slurry in case the threaded bore is not used. The smaller diameter threaded bore 16 may be used for lighter load with a smaller diameter threaded rod while the larger diameter threaded bore 14 may be used for larger diameter threaded rod for higher loads. The threaded rods are used to support loads, such as pipes hung from the ceiling of a concrete deck, anchor a wall section, etc.
An anchor body 20 without the threaded bore 18 is shown in
The bottom edge 22 of the rod portion 8 is beveled to provide sealing contact against a confronting surface in the holder 4, as would be further explained below.
The anchor body 6 is embedded in concrete in such a way that the threaded bores 14 and 16 will be accessible for attachment of a threaded rod. The smaller threaded bore 14 or the larger threaded bore 16 may be used, depending on the load requiring a smaller or larger diameter threaded rod. The head portion 10 provides the anchoring function of the anchor body 6. For additional anchoring capacity, another anchor body, such as a standard bolt, may be attached to the threaded bore 18 prior to concrete pour. The threaded bore 18 may also be used to attach a threaded rod prior to concrete pour to support a load in the opposite direction from the load that may be supported by the threaded bore 14 or 16.
The holder 4 advantageously positions the anchor body 6 on a wood formboard such that after the concrete has cured and the formboard is removed, threaded bores 14 and 16 are accessible for attaching a threaded rod. See, for example, U.S. application Ser. No. 13/424,082.
Referring to
Referring to
Referring to
Preferably, three nails are used for stability during installation, but a different number may be used. The nails may or may not be pre-installed in the holder. The nails may be provided separate from the holder so that an installer will have to insert the nails in the respective holes prior to installation.
Referring to
The concrete anchor assembly 2 is attached to the wood formboard by hammering the head portion 10. The hammering forces are then transmitted to the nail heads 42 by virtue of direct contact of the nail heads 42 with head portion 10, thereby driving the nails 40 into the formboard. Providing the concrete anchor assembly 2 complete with holder, anchor body and attaching nails in one package advantageously makes for an efficient installation.
Referring to
The bottom surface 50 of the plug portion 26 includes a circumferential V-shaped projection 52 disposed around the opening 53 that digs into the formboard surface when the concrete assembly 2 is installed, thereby sealing the bores 14 and 16 from the concrete slurry during concrete pour.
Referring to
Another embodiment of a concrete anchor assembly 58 is disclosed in
The head portion 66 may include a threaded bore 76 for connection to another anchor body, such as a standard bolt, or to a threaded rod for connection to a load outside the concrete mass in which the anchor assembly 58 is embedded. A nut 78 may be attached to the anchor body 62 via the outside thread 70 and the inside thread 71 after the concrete has cured and the formboard to which the anchor assembly 58 was attached has been removed, thereby making accessible the outside thread 70. The nut 78 includes another thread 80 having a diameter larger than the diameter of the inner thread 74. The use of the nut 78 gives the anchor body 62 the capability to accept one of three different sized threaded rods. This gives the anchor assembly 58 maximum flexibility for supporting different loads requiring different diameter threaded rods from the anchor body 62.
The head portion 66 extends outwardly and transversely from the rod portion 64 to provide the anchorage function within the concrete mass in which the anchor assembly 58 is embedded.
Referring back to
Referring back to
Referring to
Referring to
Referring to
The housing 112 has an opening 122 and a bottom wall 124 for supporting the split nut 114. The bottom wall 124 has an internal ramp surface 126 on which the split nut 114 will rise up when a threaded rod is axially forced into the split nut 114 through the opening 122. The cover 122 is threaded into the housing 112 to bias the spring 118 against the washer 116 to thereby bias or force the split nut 114 unto the bottom of the ramp surface 126. The housing 112 includes a circumferential flange portion 128 that extends outwardly and transversely from a vertical cylindrical wall portion 130 of the housing 112. The flanged portion 128 provides the anchorage function of the anchor assembly 106 when embedded in concrete.
The wall portion 130 has an upper cylindrical portion 132 provided with thread 134. A lower portion 136 of the wall portion 130 may be of a smaller diameter than the upper wall portion 132 such that a shoulder 138 is created.
The bottom peripheral edge of the opening 122 includes a bevel surface 140 that mates with a corresponding surface on the holder 110.
The holder 110 includes a base portion 142, a plug portion 144 attached to the base portion 142, a sleeve portion 146 and a plurality of post portion 148 with vertical openings 149. The plug portion 144 includes an opening 150 that lines up with the opening 122 in the housing 112. The bottom peripheral edge of the opening 150 may include the projection 52 or the O-ring 54 to seal the interior of the plug portion 144 from the concrete slurry during concrete pour. A top edge 152 of the plug portion 144 includes a beveled surface 154 that mates with the corresponding beveled surface 140 on the housing 130 to provide sealing contact to minimize or prevent entry of the concrete slurry into the housing 130 during concrete pour. The sleeve portion 146 includes a single turn segmented thread 156 for cooperating with the thread 134 on the housing 112. Shoulders 158 at a bottom portion of the sleeve portion 146 are provided as a stop to engage the shoulder 138 on the housing 112 when the housing 112 is screwed into the holder 110. The vertical openings 149 locate the nails 160 vertically. The nail heads 162 extend over the top edge 161 of the post portions 148 that act as stops for the nail head 162. The top edges 161 preferably are on the same level as the top edges 163 of the sleeve portion 146 such that the top of the nail heads will always engage the undersurface 164 of the flanged portion 128. With this arrangement, the nail heads 162 will be in direct contact with flange portion 128 when the housing 112 is screwed into the holder 110.
To attach the assembly 106 to a formboard, the cap 120 is struck with a hammer, whereby the impact forces are transmitted to the nail heads 162, which are in direct contact with the underside 164 of the flanged portion 128. The anchor assembly 106 may also be attached to the formboard by removing the anchor body assembly 108 from the holder 110, thereby exposing the nail heads 162, which are struck by a hammer to drive the nails 160 into the formboard. Positioning the nail heads 162 on the top edges 161 insures that the nail heads 162 will remain exposed above the sleeve portion 146 during installation.
Another embodiment of a concrete anchor assembly 166 is disclosed in
The anchor body assembly 168 includes a housing 172, a split nut 174, a washer 178, a spring 180, a washer 182 and a C-shaped spring clip 184.
The housing 172 includes a bottom wall 186 with a ramp surface 188 on which the split nut 174 rises upwardly when a threaded to be attached to the split nut 174 is pushed upwardly through an opening 190 after the concrete has cured, the formboard is removed to expose the holder 170 and the holder is removed. The spring clip 184 is disposed in a groove 192 inside the housing 172. The spring 180 is under tension to urge the split nut 174 towards the bottom of the ramp surface 188.
The housing 172 has cylindrical wall 187 with a circumferential flange portion 206 that extends outwardly transversely from the wall 187.
The holder 170 includes a base portion 194 and a threaded projection 196 that attaches to the split nut 174. A plurality of nails 200 are carried by the base portion 194 through respective vertical holes 202. The nails 200 extend vertically downwardly from the base portion 194. The nail head 204 are advantageously disposed underneath the bottom wall 186 and are in direct contact therewith so that hammer blows to the circumferential flange portion 206 are transmitted directly to the nails heads 204 thereby to drive the nails 200 into the formboard, which forms part of the concrete form. After the concrete dries, the formboard is removed, exposing the bottom of the base portion 194 and the protruding nails 200. A rib member 208 and recesses 210 advantageously allow a rotary powered tool, such as a drill with a yoke bit, to engage the rib member 208 and unscrew the holder 178 and remove it from the split nut 174.
The housing 172 has a top opening 212 which may be closed off by a tape 214 or other standard means.
A split nut 216 with different diameter threads 218 and 219 is disclosed in
When a threaded rod is axially pushed into the opening 236 at the bottom wall 232, the split nut will be pushed up on the ramp surface 230, further compressing the spring 226 and enlarging the threaded openings 218 and 219. When the upward force on the threaded rod ceases, the spring 226 will force the split nut downwardly along the ramp surface 230 to thereby close around and engage the thread of the threaded rod.
Further, the various features described in one embodiment may be applied to the other holder embodiments disclosed herein. Referring to
Referring to
Referring to
It should be understood by a person skilled in the art that the various features described in one embodiment may be applied to the other embodiments disclosed herein.
While this invention has been described as having preferred design, it is understood that it is capable of further modification, uses and/or adaptations following in general the principle of the invention and including such departures from the present disclosure as come within known or customary practice in the art to which the invention pertains, and as may be applied to the essential features set forth, and fall within the scope of the invention or the limits of the appended claims.
This is a divisional of application Ser. No. 13/959,799, filed Aug. 6, 2013, which is nonprovisional of Provisional Application Ser. No. 61/679,985, filed Aug. 6, 2012, both of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
991517 | Kennedy | May 1911 | A |
1045562 | Kennedy | Nov 1912 | A |
1185765 | Brooks | Jun 1916 | A |
1264189 | Keator | Apr 1918 | A |
1447515 | Miller | Mar 1923 | A |
1940545 | Holmes | Dec 1933 | A |
2689987 | Berger | Sep 1954 | A |
3157215 | Zahodiakin | Nov 1964 | A |
3157966 | Sherburne | Nov 1964 | A |
3224591 | Sawyer | Dec 1965 | A |
3391514 | Hall, Jr. | Jul 1968 | A |
3405497 | McNair | Oct 1968 | A |
3426816 | McIntire, Jr. | Feb 1969 | A |
3443351 | Michio | May 1969 | A |
3509670 | Boll et al. | May 1970 | A |
3514917 | Merritt, Sr. | Jun 1970 | A |
3517470 | Luebkeman | Jun 1970 | A |
3540762 | Dunlap | Nov 1970 | A |
3579938 | Hanson | May 1971 | A |
3782061 | Minutoli et al. | Jan 1974 | A |
3867804 | Wilson | Feb 1975 | A |
3884004 | Douma et al. | May 1975 | A |
3927497 | Yoshinaga et al. | Dec 1975 | A |
3935685 | Howlett | Feb 1976 | A |
4169569 | Riegler et al. | Oct 1979 | A |
4195709 | Gianotti et al. | Apr 1980 | A |
4211048 | Naka | Jul 1980 | A |
4239489 | Ellmas et al. | Dec 1980 | A |
4250681 | Helderman | Feb 1981 | A |
4287807 | Pacharis et al. | Sep 1981 | A |
4325575 | Hott et al. | Apr 1982 | A |
4408940 | Fischer | Oct 1983 | A |
4650276 | Lanzisera et al. | Mar 1987 | A |
4812096 | Peterson | Mar 1989 | A |
4945704 | Brown, Jr. | Aug 1990 | A |
5081811 | Sasaki | Jan 1992 | A |
5085547 | Vanotti | Feb 1992 | A |
5118237 | Wright | Jun 1992 | A |
5205690 | Roth | Apr 1993 | A |
5375384 | Wolfson | Dec 1994 | A |
5468105 | Iwamoto | Nov 1995 | A |
5641256 | Gundy | Jun 1997 | A |
5653078 | Kies | Aug 1997 | A |
5653563 | Ernst et al. | Aug 1997 | A |
5740651 | Vanotti | Apr 1998 | A |
5772372 | Lins et al. | Jun 1998 | A |
5957644 | Vaughan | Sep 1999 | A |
6135687 | Leek et al. | Oct 2000 | A |
6161339 | Cornett et al. | Dec 2000 | A |
6195949 | Schuyler | Mar 2001 | B1 |
6240697 | Thompson | Jun 2001 | B1 |
6309158 | Bellinghausen | Oct 2001 | B1 |
6341452 | Bollinghaus | Jan 2002 | B1 |
6350093 | Petersen et al. | Feb 2002 | B1 |
6513300 | James | Feb 2003 | B1 |
6904728 | Stutts | Jun 2005 | B2 |
7093400 | Thompson et al. | Aug 2006 | B1 |
7144530 | Ward et al. | Dec 2006 | B2 |
7150132 | Commins | Dec 2006 | B2 |
7174679 | Mueller | Feb 2007 | B1 |
7296382 | Sack | Nov 2007 | B2 |
7445192 | Gridley et al. | Nov 2008 | B2 |
7744322 | Taneichi | Jun 2010 | B2 |
7752824 | Brown et al. | Jul 2010 | B2 |
7766299 | Titus et al. | Aug 2010 | B2 |
7946086 | Hammer et al. | May 2011 | B2 |
7971411 | Commins | Jul 2011 | B2 |
8136318 | Espinosa | Mar 2012 | B2 |
8590247 | Cooke | Nov 2013 | B2 |
8708629 | Smith | Apr 2014 | B2 |
20020037205 | Taneichi | Mar 2002 | A1 |
20020189175 | Lancelot et al. | Dec 2002 | A1 |
20050055897 | Commins | Mar 2005 | A1 |
20100290859 | Noce et al. | Nov 2010 | A1 |
20110041449 | Espinosa | Feb 2011 | A1 |
20110041450 | Espinosa | Feb 2011 | A1 |
20110192111 | White et al. | Aug 2011 | A1 |
20140026515 | Espinosa | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2010090736 | Aug 2010 | WO |
2010090748 | Aug 2010 | WO |
Entry |
---|
Chainring Construction Products LLC, www.ptanchor.com, Copyright 2009 Home, PT Anchor, Concept and Cut Sheet pages. |
Number | Date | Country | |
---|---|---|---|
20170022701 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
61679985 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13959799 | Aug 2013 | US |
Child | 15057948 | US |