The invention relates to a holder for attaching an assembly, in particular for attaching a pump on a mount. The holder has a bracket and a damping element that partially comprise the assembly. The damping element has a recess that is provided for accommodating the assembly. Furthermore, the damping element has a contact surface for making contact with the bracket. The bracket is provided in order to attach the damping element on the mount.
An assembly is attached on a mount, preferably on an engine mount of a motor vehicle. In this case, the assembly is exposed to extreme conditions such as, for example, vibration loadings and temperatures that can result in damage to the assembly. A holder that is constructed from a bracket and a damping element is arranged for the purpose of attaching the assembly on the mount. The bracket is preferably made from sheet metal, and the damping element from rubber. Over its service life, the holder must fulfill the specifications and/or the conditions of use with regard to the oscillatory behavior and strength behavior. Furthermore, the natural frequency/resonant frequency of the individual components of a module differs depending on the different material dampings, stiffnesses and types of joint. In order in essence to be able to implement the required service life of the components, the natural frequency must as far as possible be avoided, or its amplitude must be damped.
It is an object of the invention to implement a holder for an assembly with improved oscillatory behavior and strength behavior.
A holder for attaching an assembly, in particular a pump, on a mount is provided in accordance with the invention. In this case, the holder has a bracket and a damping element, the damping element comprising a first recess that is provided for accommodating the assembly. Adjacent to the first recess the damping element has a second recess that supports a radially symmetrical deformation of the cross section of the first recess when the bracket is attached on the mount.
One advantage of the inventive holder consists in that the attachment of the assembly is improved. In particular, the vibration loadings are reduced because of the damping element. Owing to the second recess, the stiffness of the damping element is at least approximately constant over the periphery of the assembly, and this leads to a better clamping joint for the assembly.
In one embodiment of the invention, the second recess is designed as a slot, the diameter of the slots decreasing in the direction of a bracket end as a function of the position of the slots. A better hold can be ensured between the damping element and the assembly with the aid of the second recess. Furthermore, it is possible to ensure a better clamping joint for the assembly on the basis of an approximately constant stiffness of the damping element.
In a further embodiment of the invention, the damping element comprises a third recess as a cutout, the cross sectional area of the cutouts increasing as a function of the position of the first recess from the middle of the bracket up to the bracket end. It is thereby possible to achieve an increase in the surface area of the damping element, and thus a better heat dissipation. Furthermore, a smaller oscillation amplitude is achieved by the low mass of the damping element.
In accordance with a further embodiment of the invention, a fourth recess is provided as a hole in the damping element, at least two holes having a different diameter. Because of the holes in the damping element, it is possible to achieve a smaller oscillation amplitude of the damping element. Furthermore, the damping element provided with holes ensures a better heat dissipation, and an increase in the surface area of the damping element.
Furthermore, in accordance with a further embodiment of the invention, in a plane of the bracket the damping element is designed in the region of the contact surface as an edge widening in a wedge shape. A constant pressure between the damping element and the assembly can be ensured by compressing the edge of the damping element. The damping element can thereby be adapted to the contours of the assembly.
The invention is explained in more detail below with the aid of exemplary embodiments and with reference to the attached drawings, in which:
The damping element 13 preferably has a second recess 132 that is designed as a slot, the second recess 132 opening into the first recess 131. At least two slots are arranged in the inner region 14 of the damping element 13 with radial symmetry in relation to a midpoint of the first recess 131. The slots are provided between the bracket ends 111, 112, the diameter of the slots decreasing in the direction of a bracket end 111, 112 as a function of the position of the slots. Furthermore, the slot is of rectangular design, the narrower side of the slot opening into the first recess 131. The slot that is arranged between the bracket ends 111, 112 in the middle of the first recess 131 has the widest diameter. Starting therefrom, five slots are respectively arranged in the direction of a bracket end 111, 112. Alternatively, more or less slots can be arranged in the damping element 13. Because of the radially arranged slots, a better hold can be enabled between the damping element 13 and the pump 10. Furthermore, owing to the different diameters of the slots it is possible to achieve a stiffness of the damping element 13 in an at least approximately constant fashion over the entire periphery, and this leads to a improved clamping joint for the pump 10.
The damping element 13 comprises a third recess 133 that is designed as a cutout in an outer wall region 15 of the damping element 13. In this case, the outer wall region 15 of the damping element 13 is the region that faces the bracket 11. The third recess 133 is arranged in a plane of the bracket 11, at least two cutouts being arranged in the outer wall region 15 of the damping element 13. The cutouts are of semicircular design. The cross sectional area of the cutouts increases as a function of the position of the first recess 131 from the middle of the bracket 11 up to the bracket end 111, 112. Starting from the cutout in the middle of the bracket 11, two cutouts are respectively arranged on the sides of the outer wall region 15 up to the bracket end 111, 112. However, it is possible to provide more or fewer cutouts in the damping element 13.
In a plane of the bracket 11 a fourth recess 134 is provided in the damping element 13 as a hole in the region of the contact surface 130 in an unmounted state. However, at least two holes with a different diameter are arranged in the damping element 13. The hole that is arranged in the vicinity of the mount 12 is designed to be smaller than the hole that is arranged in the vicinity of the outer wall region 15. In the mounted state, the holes in the damping element 13 have an elliptical shape. It is possible by means of the third recess 133 and the fourth recess 134 to achieve in the damping element 13 an increase in the surface area of the damping element 13 so as to enable a better heat dissipation in the damping element 13. Furthermore, a small oscillation amplitude can be achieved owing to the low mass of the damping element 13.
In a plane of the bracket 11 the damping element 13 is designed in the region of the contact surface 130 to be wider in an unmounted state of the bracket 11 than the spacing of the bracket ends 111, 112 with a mounted bracket 11. Consequently, in the region of the contact surfaces 130 the damping element 13 is compressed by the bracket ends 111, 112 in the mounted state of the bracket 11. In a plane of the bracket 11 the damping element 13 is preferably designed in the region of the contact surface 130 as an edge 16 widening in a wedge shape in the direction of the bracket ends 111, 112 in the direction of the contact surface 130. The angle a of the edge 16 is, however, dependent on size so that, given a larger pump 10, the angle a of the edge 16 is also designed to be larger. The spacing a that is provided between the bracket 11 and the outer wall region 15 of the damping element 13 is of smaller design than the spacing b that is provided between the bracket ends 111, 112 and the contact surface 130. This gives rise to a difference in size that can be used to implement an axial clamping. As shown in
The damping element 13 is preferably constructed from an elastomer. Alternatively, however, it is also possible to use another material that is suitable for damping a pump 10. Furthermore, the outer wall region 15 of the damping element 13 is designed as a channel 17 as is shown in
Large axial forces caused by the threaded joint can be produced during the attaching of the damping element 13 between the bracket 11 and the mount 12. In consort with the angular geometry of the bracket 11, this distortion of the damping element 13 can lead to damage to the damping element 13. As is shown in
The invention is illustrated using the example of a pump 10. However, the invention can also be used for other assemblies that are attached on a mount 12. What is decisive here is the fact that adjacent to the first recess 131 the damping element 13 has the second recess 132, which supports a radially symmetrical deformation of the cross section of the first recess 131 during attachment of the bracket 11 to the mount 12. The desired service life of the pump 10 can thereby be implemented with the aid of the damping element 13. Furthermore, the damping element 13 can be adapted to the contours of the pump 10 owing to the second, third and fourth recesses 132, 133, 134.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 029 067.2 | Sep 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP10/60003 | 7/13/2010 | WO | 00 | 3/1/2012 |