The invention generally relates to lighting systems. More particularly but not exclusively, this invention relates to a light accessory holder for placing and interchanging multiple optical accessories in a lighting fixture.
In track lighting and other light fixture envelopes, it is beneficial to use diffusers, glass, or other items to change a beam pattern or a light color. These items, referred to as accessories, are required by some customers so they can have different light outputs from the same light fixture. In retail applications for example, customers will want specific accessory combinations for different displays within the store. Also in environments in which the lighting requirements change from time to time, for example, in theaters, galleries, museums, etc., it may be necessary to replace or exchange some or all of the accessory elements installed in a particular fixture. This creates a necessity to provide removal and/or exchange of accessory elements to meet the customers need. Mechanically holding these accessories in place becomes a challenge, as it is difficult to determine the number and type of accessories that will be wanted. Multiple mechanical pieces, or multiple holders may be necessary to solve this challenge using conventional means.
According to an aspect of the invention, a holder (e.g., removable, interchangeable and made by injection molding from a plastic material), in a lighting fixture for placing interchangeable optical accessories near a light source (e.g., one or more LEDs), comprising: one part, having a closed perimeter structure with a side wall crossing a perimeter (such as a circle, rectangle, ellipse, etc.) and perpendicular to a perimeter plane, the side wall being limited by bottom and top planes and having top and bottom openings (e.g., the bottom and top planes being parallel), the one part is configured to accommodate placing one or more optical accessories inside the side wall, where each of the one or more optical accessories matches internal dimensions of the side wall for smooth inserting to and for forming a close fit with internal surfaces of the side wall, the one part further comprises: multiple springs, spaced along the perimeter and vertically cut in the side wall from the top plane toward the bottom plane until a predefined distance from the bottom plane, where each spring originated near the bottom plane is tilted inward from the perimeter by a predefined extent, so that when each accessory of the one or more optical accessories is inserted into the one part through the top opening, at least one of the multiple springs is manually bent outward of the perimeter to allow the each accessory to slide down inside the side wall, and then, after the at least one spring being brought back to an original position by a spring effect, the multiple springs tightly hold the each optical accessory in place; and multiple ledges, spaced along the perimeter on the bottom plane and attached to the side wall, configured to keep optical accessories from falling down. Further, the holder with a circular perimeter can comprise a ring holder.
According further to the aspect of the invention, each of the multiple springs may comprise notches, parallel to the bottom plane, along the perimeter, at different distances from the bottom plane in order to push forward and hold the each inserted accessory in a desired position. Further the multiple springs can comprise three strings 120° apart.
According further to the aspect of the invention, the holder, when placed in a lighting fixture, may be held in place by a spring force generating by bended legs of the holder spaced along the perimeter and attached to a bottom surface of the side wall. Further, the bended legs may be 120° apart.
Still further according to the aspect of the invention, tan inside surface of the side wall may comprise at least two vertical grooves of different sizes for allowing only one direction of installation of corresponding optical accessories when inserted into the holder by matching with corresponding features complimenting the at least two vertical grooves on the corresponding optical accessories.
According further to the aspect of the invention, one of the one or more optical accessories may comprise a diffuser, an optical filter, and a Hexcel Louver.
These and other features and aspects of the present disclosure will become better understood when the following detailed description is read, with reference to the accompanying drawings, in which like characters represent like parts throughout the drawings, wherein:
A new light accessory holder, comprising only one part, for placing and interchanging multiple optical accessories in a lighting fixture near/in front of a light sources is presented. The holder can use multiple notched springs (e.g., three) to push accessories forward and holds them in place. The holder may be removable from the lighting fixture, so the user can load into the holder whatever accessories are needed, and then return the re-loaded holder into the light fixture. According to an embodiment described herein, multiple accessories form one to N (N is a finite number, e.g., N=3) can be placed in the holder near/in front of a light source. Accessories include but are not limited to diffusers, glass components (optical filers), Hexcel Louvers, snoots, or other objects that are intended to alter the color or shape of a light source.
According to an embodiment of the invention, a removable/interchangeable holder (in a lighting fixture) can comprise only one part, for placing interchangeable optical accessories near a light source (e.g., light emitting diode, LED). The one part holder may have a closed perimeter structure with a side wall crossing a perimeter/perimeter line (e.g., a circle, a rectangle, an ellipse or the like) and perpendicular to a perimeter plane comprising the perimeter/perimeter line. The side wall may be limited by bottom and top surfaces/planes (e.g., these surface/planes may be parallel to each other and to the perimeter plane) and having corresponding top and bottom openings. The one part may be configured to accommodate placing of one or more optical accessories inside of the side wall, where each of the one or more optical accessories matches internal dimensions of the side wall for smooth inserting to and for forming a close fit with the internal surfaces of the side wall.
The one part can further comprise multiple springs, spaced along the perimeter (e.g., three springs 120° apart) and vertically cut in the side wall from the top surface/plane toward the bottom surface/plane until a predefined distance from the bottom surface/plane, where each spring originated near the bottom plane is tilted inward from the perimeter (toward the top plane) by a predefined extent (angle/distance), so that when each accessory of the one or more optical accessories is inserted into the one part through the top opening, at least one of the multiple springs is manually bent outward of the perimeter to allow the each accessory to slide down inside the side wall, and then the multiple springs, after being back to original positions by a spring effect, tightly hold the each optical accessory in place. The one part can further comprise multiple ledges, spaced along the perimeter and attached to a bottom surface of the side wall for keeping optical accessories from falling down.
According to a further embodiment, each of the multiple springs may comprise notches (e.g., as shown in
According to another embodiment, the holder, when placed in a lighting fixture (as shown in FIG.1), can be held in place by a spring force generated by bended legs of the holder spaced along the perimeter and attached to a bottom surface of the side wall. For example, the bended legs may comprise three bended legs 120° apart. Moreover, the holder (comprising one part) can be removed from and interchanged in the lighting fixture without any additional lock feature, for loading different optical accessories.
According to further embodiments, surfaces of the one or more optical accessories, when placed in the holder, can be perpendicular to the side wall. Also, the holder and the inserted one or more optical accessories can have a common (central) optical axis parallel to the side wall.
Furthermore, an outside dimension of the one or more optical accessories and an inside dimension of the side wall may be matched, where the outside dimension of the one or more optical accessories is smaller than the inside dimensions of the side wall by a predefined small value for providing smooth inserting of accessories to and forming a close fit of accessories with the side wall.
According to a further embodiment, an inside surface of the side wall can comprise at least two vertical grooves of different sizes for allowing only one direction of installation of corresponding optical accessories (e.g., a diffuser) when inserted into the holder, by matching with corresponding features complimenting the at least two vertical grooves on the corresponding optical accessories.
It is further noted that the holder can be made of a plastic material using, for example, injection molding. The plastic material can be a type of polycarbonate (PC) or its variations, a type of ABS (acrylonitriIe-butadiene-styrene copolymer), a material like polypropylene and the like. The injection molding seems to be very feasible manufacturing method to create this holder described herein, but possibly other methods, like 3D printing technology, can be used as well.
Moreover, the ring holder 16 further comprises three springs 20, spaced along the perimeter 120° apart and vertically cut in the side wall 28 from the top surface (plane) 23 toward the bottom surface (plane) 25 until a predefined distance 27 from the bottom 25, where each spring 20 originated near the bottom plane 25 is tilted inward from the perimeter (toward the top plane 25) by a predefined extent (distance/angle). Then, when an optical accessory is inserted into the ring holder 16 through the top opening, at least one (may be more than one) of the springs 20 is manually bent outward of the perimeter to allow this accessory to slide down inside the side wall. After the manually bent at least one spring 20 being brought back to the original position by a spring effect, the multiple springs 20 can tightly hold the optical accessory in place.
The ring holder 16 further comprises three ledges 22, spaced along the perimeter 120° apart and attached to a bottom surface 25 of the side wall 28. The three ledges 22 are configured to keep optical accessories from falling down from the ring holder 16.
According to another embodiment, the ring holder 16, when placed in a lighting fixture 10 (e.g., as shown in FIG.1), can be held in place by a spring force generated by bended legs 24 spaced along the perimeter and attached to the bottom surface 25 of the side wall 28. For example, the bended legs 24 may comprise three bended legs 120° apart. Moreover, the ring holder 16 (comprising the one part) can be removed from and interchanged in the lighting fixture without any additional lock feature (or the like), for loading different optical accessories, as stated herein.
Moreover, an outside dimension of the one or more optical accessories and an inside dimension of the side wall 28 may have a similar circular shape and dimensions for providing smooth inserting of the optical accessories to and forming a close fit of accessories with the side wall 28.
According to a further embodiment, the inside surface of the side wall 28 can comprise at least two vertical grooves of different sizes 26 (only one groove is visible in
It is further noted that the ring holder 16 can be made of a plastic material using injection molding.
It is noted that a bottom portion in the light fixture 10 shown in
Thus, the light accessory holder has many advantages associated with the novel and unique features which include (but are not limited to):
Unless defined otherwise, technical and scientific terms used herein have the same meaning as is commonly understood by one having ordinary skill in the art to which this disclosure belongs. The terms “first”, “second”, and the like, as used herein, do not denote any order, quantity, or importance, but rather are employed to distinguish one element from another. Also, the terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items. The use of “including,” “comprising” or “having” and variations thereof herein are meant to encompass the items listed thereafter and equivalents thereof, as well as additional items. The terms “connected” and “coupled” are not restricted to physical or mechanical connections or couplings, and can include electrical and optical connections or couplings, whether direct or indirect.
Furthermore, the skilled artisan will recognize the interchangeability of various features from different embodiments. The various features described, as well as other known equivalents for each feature, can be mixed and matched by one of ordinary skill in this art, to construct additional systems and techniques in accordance with principles of this disclosure.
In describing alternate embodiments of the apparatus claimed, specific terminology is employed for the sake of clarity. The invention, however, is not intended to be limited to the specific terminology so selected. Thus, it is to be understood that each specific element includes all technical equivalents that operate in a similar manner to accomplish similar functions.
It is to be understood that the foregoing description is intended to illustrate and not to limit the scope of the invention, which is defined by the scope of the appended claims. Other embodiments are within the scope of the following claims.
It is noted that various non-limiting embodiments described and claimed herein may be used separately, combined or selectively combined for specific applications.
Further, some of the various features of the above non-limiting embodiments may be used to advantage, without the corresponding use of other described features. The foregoing description should therefore be considered as merely illustrative of the principles, teachings and exemplary embodiments of this invention, and not in limitation thereof.