Holding frame for a plug-type connector

Information

  • Patent Grant
  • 10554007
  • Patent Number
    10,554,007
  • Date Filed
    Tuesday, September 20, 2016
    7 years ago
  • Date Issued
    Tuesday, February 4, 2020
    4 years ago
Abstract
A holding frame for a plug-type connector is intended to have good heat resistance and a high level of mechanical robustness and, when installed in a metallic plug-type connector housing, enable protective grounding while at the same time being convenient to use, in particular during the replacement of individual modules. To this end, it is proposed to manufacture the holding frame at least partially from spring-elastic sheet metal. For this purpose, the holding frame can have a basic portion and a deformation portion, which are formed from different materials. The basic portion is used for fixing an accommodated module in a plane. The deformation portion can assume an insertion state and a holding state, wherein the insertion state permits insertion of at least one module into the holding frame in a direction transverse to the plane and an accommodated module is fixed in the holding state.
Description
DESCRIPTION

The invention relates to a holding frame according to the preamble of independent main claim 1.


The invention also relates to a method according to the preamble of independent coordinated claim 9.


Holding frames of this type are required in order to receive a plurality of modules of the same kind and/or also a plurality of different modules. By way of example, these modules can be insulating bodies, which are provided as contact carriers for electronic and electrical and possibly also for optical and/or pneumatic contacts. It is particularly important that the holding frame enables a regulation-compliant protective earthing according to plug-type connector standard EN61984, for example for insertion of the holding frame loaded with modules into a metal plug-type connector housing.


PRIOR ART

A holding frame for supporting plug-type connector modules and for installation in plug-type connector housings and/or for screwing to wall surfaces is known from document EP 0 860 906 E1, wherein the plug-type connector modules are inserted into the holding frame and supporting means on the plug-type connector modules cooperate with recesses provided on opposite wall parts (side parts) of the holding frame, wherein the recesses are formed as openings, which are closed on all sides, in the side parts of the holding frame, wherein the holding frame consists of two halves connected to one another in a hinged manner, wherein the holding frame separates transversely to the side parts of the frame, and wherein hinges are arranged in the fastening ends of the holding frame in such a way that when the holding frame is screwed onto a fastening surface the frame parts are oriented in such a way that the side parts of the holding frame are oriented at right angles to the fastening surface, and the plug-type connector modules are connected to the holding frame in an interlocking manner by means of the supporting means. Holding frames of this type are usually manufactured in practice in a diecasting method, in particular in a zinc diecasting method.


Document EP 2 581 991 A1 discloses a holding frame for plug-type connector modules which has two frame halves, which can be latched to one another by linear displacement of one frame half relative to the other frame half in a direction of displacement, wherein detent means corresponding to one another are provided on each of the frame halves and, in the event of linear displacement, latch the two frame halves to one another in two different latch positions, in which the frame halves are spaced apart from one another at a different distance.


It has been found in practice however that holding frames of this type require complex handling during assembly. By way of example, holding frames of this type must be unscrewed and/or unlatched from the plug-type connector as soon as even just a single module is to be replaced. Here, the other modules, the removal of which was not even desired, might also fall out of the holding frame and then have to be inserted again before the frame halves are screwed together and/or latched. Finally, all modules must be disposed simultaneously in their intended positions already before the frame halves are joined together so as to be ultimately fixed in the holding frame when the frame halves are joined together, which complicates the assembly.


Document EP 1 801 927 B1 discloses a holding frame that consists of a one-piece plastics injection-molded part. The holding frame is formed as a peripheral collar and has, on its plugging side, a plurality of wall segments separated by slots. Each two opposed wall segments form an insertion region for a plug module, wherein the wall segments have window-like openings, which serve to receive protrusions integrally molded on the narrow sides of the modules. A guide groove is also provided in each of the wall segments. The guide groove is formed above the openings by means of an outwardly offset window web, which on the inner side has an insertion bevel. In addition, the plug modules have detent arms, which are integrally molded on the narrow sides in a manner acting in the direction of the cable connections, and which latch beneath the lateral collar wall, such that two independent detent means fix the plug-type connector modules in the holding frame.


In the case of this prior art it is disadvantageous on the one hand that the holding frame is a holding frame formed from plastic, which holding frame is not suitable for protective earthing and therefore is not suitable for installation in metal plug-type connector housings. However, the use of metal plug-type connector housings presupposes a protective earthing of this type and is necessary in many cases, for example on account of the mechanical robustness and temperature resistance of said housings and the electrically shielding properties thereof, and is therefore desired by the customer. It has also been found that the production of the aforementioned plastics holding frames by means of injection molding is at the least problematic and can be implemented only with a high level of effort. Lastly, the heat resistance of a plastics holding frame of this type also is not always sufficient for particular applications, for example in the vicinity of a blast furnace. Lastly, the plastics material and the shape, in particular the strength of the holding frame at the relevant points, are determined primarily by the requirements placed on flexibility and not by those of temperature resistance.


PROBLEM

The problem addressed by the invention is that of specifying a design for a holding frame, which on the one hand has a good heat resistance and a high mechanical robustness and in particular enables an appropriate protective earthing, in particular a PE (protection earth), even in the case of installation in a metal plug-type connector housing, and on the other hand also ensures comfortable handling, in particular when replacing individual modules.


This problem is solved in a first aspect with a holding frame of the type mentioned in the introduction by the features of the characterizing part of independent main claim 1.


In a second aspect the problem is solved with a method of the type mentioned in the introduction by the features of the characterizing part of independent coordinated claim 9.


A holding frame of this type can be used in the field of heavy industrial plug-type connectors and can consist at least in part of an electrically conductive material. A protective earthing, in particular a PE protective earthing is thus made possible where appropriate, which can be realized for example in that the holding frame has a PE contact or at least is provided with a PE contact of this type.


The holding frame has a basic portion and a deformation portion, which are formed at least in part from different materials. The basic portion serves to fix a received module in a plane. The deformation portion can assume an insertion state and a holding state, wherein the insertion state allows at least one module to be inserted into the holding frame in a direction transverse to the plane, wherein in the holding state a received module is fixed.


The holding frame can have, by way of example, a basic frame as basic portion and at least one, preferably two cheek parts as deformation portion. The basic frame can then be formed from a different material compared with the cheek parts and therefore advantageously can have a lower elasticity and therefore a greater rigidity compared with the cheek parts.


The deformation portion, in particular the one or more cheek parts, can be formed from a material which is more elastic in accordance with its stress/strain graph, i.e. has a lower modulus of elasticity compared with the material from which the basic portion, in particular the basic frame, is formed. Expressed conversely, the material of the basic portion can be more rigid than the material from which the deformation portion is formed. By way of example, the material of the basic frame can have a modulus of elasticity, in accordance with its stress/strain graph, which is greater than the modulus of elasticity of the material from which the cheek parts are formed.


Here, the value of the modulus of elasticity is all the greater, the greater is the resistance put up by a material in opposition to the elastic deformation thereof. Furthermore, the material from which the deformation portion is formed, in accordance with the stress/strain graph thereof, can have a greater elastic range compared with the material from which the basic portion is formed.


In particular, the basic portion, in particular the basic frame, can be rigid, and in particular can be rigid in an idealized way.


Furthermore, the deformation portion, in particular the cheek part or the cheek parts, can be resilient and advantageously can be manufactured from a resilient sheet metal.


A resilient sheet metal is to be understood here to mean a sheet metal that has resilient properties, for example a reversible deformability, in particular with application of a corresponding restoring force, i.e. for example a sheet metal that is manufactured from spring steel or a comparable material.


Advantageous embodiments of the invention are specified in the dependent claims.


One advantage of the invention therefore lies in the fact that the modules can be individually inserted into the holding frame and removed therefrom again with only very little effort, which in particular facilitates the manual fitting of said modules. The resilient properties of the deformation portion, in particular of the cheek part or the cheek parts, specifically make it possible to insert or to remove modules individually with only very little effort. At the same time, the basic frame, as a result of its rigidity, can ensure the necessary mechanical stability when holding the inserted modules.


Use of one or more metal materials, for example compared with plastic, ensures high temperature resistance and furthermore also a particularly high mechanical robustness of the holding frame, which is advantageous both for the basic portion, in particular the basic frame, and for the deformation portion, in particular the cheek parts.


A further advantage of the use of one or more metal materials lies in the fact that the holding frame, for electrical safety, enables a protective earthing, in particular a PE protective earthing of a metal plug-type connector housing in which the holding frame is inserted. This furthermore also ensures, as an additional advantage, a shielding of the signals transmitted through the plug-type connector. This shielding may be a protection against interfering fields from outside. However, the shielding may also be a shielding for avoiding or reducing emitted interference, i.e. for protecting the environment against interfering fields of the plug-type connector. In other words, not only are the signals transmitted through the modules protected against external interfering fields, but there is also provided a protection of the surroundings from interference produced by a flow of current running through the modules.


A particularly great additional advantage of the use of one or more metal materials furthermore lies in the fact that the holding frame on the one hand is particularly heat-resistant and on the other hand, for example due to the use of resilient sheet metal, still has a sufficiently high elasticity at the necessary points to insert the modules individually and with little effort into the module frame and to remove these again. It is therefore particularly advantageous when the holding frame comprises resilient sheet metal at suitable points, since it is thus much more resistant to heat, with at least just as much elasticity, than a plastics frame which is otherwise functionally comparable from a mechanical viewpoint. Relevant modules can be designed in an accordingly compact manner, such that they can still be fabricated from plastic and are nevertheless relatively resistant to heat.


It is particularly advantageous when the holding frame has a plurality of different regions, for example a first and second region, which have a different elasticity from one another, because a higher section modulus can then be applied purposefully in the region of the highest bending load. The first region can correspond to the basic portion. The second region can correspond to the deformation portion.


These different regions, in particular the basic portion and the deformation portion, can be formed for example from different materials and can thus preferably have different material properties, in particular different moduli of elasticity.


The second region, in particular the deformation portion, can thus have a higher elasticity than the first region, which in particular corresponds to the basic portion. Expressed conversely, the first region can thus have a greater rigidity than the second region. In particular, the first region can be rigid and the second region can be resilient. An elasticity or rigidity of this type can be achieved on the one hand, as already mentioned, by the used material in question and/or can be achieved on the other hand also by the geometric shaping of these regions, in particular of the basic portion and of the deformation portion.


The first region, in particular the basic portion, can be formed for this purpose from a rigid material, for example from a zinc alloy or from an aluminum alloy or from a copper alloy. The second region, in particular the deformation portion, can be formed from a resilient material and therefore can consist by way of example of a resilient sheet steel.


The first region, in particular the basic portion, can be produced in a casting method, for example in a zinc diecasting or aluminum diecasting method or also by milling from, for example, a copper alloy. By way of example, the first region, in particular the basic portion, may preferably be the peripheral basic frame. The basic frame can thus be, in particular, a zinc diecast part. The basic frame can be substantially rectangular in cross section, i.e. has two mutually opposed end faces extending parallel to one another and, at right angles thereto, has two mutually opposed side parts extending parallel to one another, wherein the two end faces are shorter than the two side parts. Here, both the end faces and the side parts can have a substantially rectangular shape.


The second region, in particular the deformation portion, furthermore can be formed by way of example from the at least one, preferably both separate cheek parts, each of said cheek parts preferably consisting of a resilient sheet metal part. The two cheek parts can consist, where appropriate, of the same material, in particular of resilient sheet metal, and in addition can have the same thickness. By way of example, the preferably two cheek parts can be punched out from the same punching sheet.


Each cheek part can be substantially flat and can preferably have a rectangular basic shape. It thus has two mutually opposed, long edges, specifically a first and a second edge, and, at right angles thereto, two mutually opposed short edges, specifically a third and a fourth edge. The cheek part has preferably straight slots, in particular at regular distances starting on its first edge and extending preferably at right angles thereto into the cheek part in the direction of the second edge, whereby freely protruding tabs are formed in the cheek part. Furthermore, a detent window can be arranged as detent element in each of these tabs. These detent windows are intended to receive detent lugs of inserted modules in order to latch the modules in the holding frame. Furthermore, each cheek part can have a plurality of fastening elements, in particular fastening recesses, preferably of round shape, for fastening to the basic frame.


The two cheek parts can advantageously be fastened one to each outer side of the two side parts on the basic frame, such that two resilient tabs of the two cheek parts protrude symmetrically to one another in each case. Furthermore, these tabs can be bent slightly outwardly toward their end, i.e. away from the basic frame and thus away from one another, so as to facilitate the insertion of a module.


At the appropriate side part, preferably at both side parts, the basic frame can have fastening means, for example round fastening pins. These fastening means can engage with the fastening recesses of the relevant cheek part and can thus hold the cheek parts on the basic frame, for example by latching and/or by an interlocking and frictionally engaged connection. Additionally or alternatively, the cheek parts can be fastened to the basic frame by adhesive bonding, welding, soldering, riveting and/or screwing or by any other fastening method.


The appropriate modules can be substantially cuboidal and can have a width on each of two mutually opposed longitudinal sides corresponding to the width of a tab. Each module advantageously has, on each of its two end faces, a detent lug, which likewise can be substantially cuboidal. Each of the resilient tabs of the holding frame advantageously has a detent window, which can be substantially rectangular and which is intended to receive a detent lug of this type, preferably in an interlocking manner.


The two detent lugs of a module can differ from one another, for example in terms of their shape and/or their size, in particular by their length, and the tabs on both sides of the holding frame can have corresponding windows, which likewise differ from one another and which each fit one of the detent lugs in terms of size and/or shape. This has the advantage that the orientation of each module in the holding frame is fixed as a result. In other words, the detent windows and the detent lugs can be used on the basis of their shape and/or size as coding means, in particular as polarization means, for orientation of the modules in the holding frame.


The tabs of the holding frame are advantageously bent away slightly from the holding frame in a freely protruding end region, which simplifies the insertion of the modules. A module can then be inserted into the holding frame in a particularly user-friendly manner. For this purpose, a module specifically is firstly inserted between two tabs of a holding frame and then slides via its two side faces and in particular via the detent lugs integrally molded thereon along the end regions of the tabs bent away from one another. The two tabs thus bend temporarily away from one another until the detent lugs in question are received by the associated detent window of the relevant tab and therefore latch therein. As the detent lugs are received in the relevant detent windows, the tabs preferably spring back into their starting position. The modules can thus latch individually in the holding frame.


At the same time, the module is held fixedly in the preferably rigid basic frame. In order to unlatch the modules again, merely the two relevant tabs have to be bent away from one another again. The relevant module can then be removed individually from the holding frame, whereas the other modules are still latched. A fixed hold of the module in the holding frame alongside a comparatively low actuation force is thus ensured in this way, which is particularly advantageous for the handling.


It is also particularly advantageous that the modules are held with sufficient holding force in the holding frame already by the above-specified construction, and accordingly, besides their detent lugs, require no further detent means, for example detent arms, which facilitates their design and therefore their production effort considerably and at the same time ensures a compact design and therefore also a high heat resistance of the modules and therefore of the entire plug-type connector.


In one embodiment it is particularly advantageous when these two cheek parts are identical, i.e. in spite of the two-part embodiment of the holding frame only cheek parts of one type have to be produced, which in turn reduces the production effort.


In another preferred embodiment the two cheek parts differ at least by the size and/or the shape of their detent windows. This has the advantage that the orientation of each module, which accordingly also has two different detent lugs, is thus fixed. In other words, the detent windows and the detent lugs thus serve on account of their shape as coding means for orientation of the modules.


For earthing protection (PE), the holding frame can be provided with a corresponding PE module, which, for example via an electrically conductive earthing clip, produces electrical contact between an earthing cable attached thereto and the at least partly electrically conductive, in particular metal holding frame. The holding frame can thus be fitted with a PE contact.


Alternatively, the holding frame itself can have a PE contact, for example a screw contact, for the earthing cable. By way of example, a PE contact of this type can be integrally molded on the basic frame.





EXEMPLARY EMBODIMENT

An exemplary embodiment of the invention is illustrated in the drawing and will be explained in greater detail hereinafter. In the drawing:



FIG. 1 shows a basic frame;



FIGS. 2a and 2b show a first cheek part from two different perspectives;



FIGS. 2c and 2d show a second cheek part from two different perspectives;



FIGS. 3a and 3b show a module from two different perspectives;



FIGS. 4a and 4b show a holding frame with an inserted PE module from two different perspectives.






FIG. 1 shows a basic frame 1. This basic frame 1 is substantially rectangular in cross section, i.e. has two mutually opposed end faces 11, 11′ extending parallel to one another and, at right angles thereto, has two mutually opposed side parts 12, 12′ extending parallel to one another, wherein the two end faces 11, 11′ are shorter than the two side parts 12, 12′. Both the end faces 11, 11′ and the side parts 12, 12′ in turn have a substantially rectangular shape, wherein a flange 13, 13′ is integrally molded onto each of the end faces 11, 11′ at right angles thereto, wherein each of these two flanges 13, 13′ has two screw bores 131, 131′, such that the basic frame 1 has a total of four screw bores 131, 131′.


The two side parts 12, 12′ each have, at a first edge, a plurality of webs 122, 122′, which are relatively short in the present embodiment and which are arranged in a manner opposite one another symmetrically, wherein the term “short” in this context means that the length of the webs 122, 122′ extending upwardly in the drawing is less than the width of said webs. However, the webs 122, 122′ could also be much longer in a different embodiment. By way of example, the length of the webs could correspond to their width or could even exceed their width. Open recesses 123, 123′ are thus formed between these webs 122, 122′.


In the present example four such open recesses 123, 123′ are provided on each cheek part 2, 2′, however it would also of course be conceivable to provide a different number of recesses, for example three, five, six, seven or eight. The number of open recesses 132, 132′ in each side part 12, 12′ corresponds to the number of modules 3 that the corresponding holding frame is able to receive.


Furthermore, each side part 12, 12′ has a plurality of fastening pins 124, 124′ for fastening the relevant cheek part 2, 2′. In the present case the fastening pins 124, 124′ have a circular shape in cross section; however, any other shape would also be conceivable; for example, the fastening pins 124, 124′ could thus also be oval, rectangular, square, triangular or pentagonal, or could have n corners or could be formed in any other flat shape.


Two cheek parts 2, 2′ are thus provided for the holding frame, specifically a first cheek part 2 and a second cheek part 2′.



FIGS. 2a and 2c each show one of these cheek parts 2, 2′ in a first perspective, in which the viewing direction extends at right angles thereto. FIGS. 2b and 2d show, respectively, the cheek parts 2, 2′ in an oblique view. Each cheek part 2, 2′, which in the present exemplary embodiment is preferably a punched and bent part, has three slots 21, 21′, by means of which four tabs 22, 22′ of identical size are formed. The number of tabs 22, 22′ of the cheek parts 2, 2′ corresponds to the number of open recesses 123, 123′ in each of the two side parts 12, 12′ of the basic frame 1.


A detent window 23, 23′ is provided in each tab 22, 22′ of each cheek part 2, 2′. The detent windows 23 of the first cheek part 2 are larger than the detent windows 23′ of the second cheek part 2′. The two cheek parts 2, 2′ thus differ from one another by the size of their detent windows 23, 23′. Furthermore, additional fastening recesses 24, 24′ are provided in the cheek parts 2, 2′, which recesses have a circular shape in the present exemplary embodiment, but of course could also have any other shape, for example could be oval, rectangular, square, triangular or pentagonal, could have n corners, or could be formed in any other flat shape.


The fastening pins 124, 124′ of the basic frame 1 fit in an interlocking manner into the fastening recesses 24, 24′ of the cheek parts 2, 2′ respectively, such that each cheek part 2, 2′ can be fitted onto the relevant side part 12, 12′. Each cheek part 2, 2′ can additionally also be fastened in another way to the corresponding side part 12, 12′, for example by adhesive bonding, welding, soldering, riveting and/or screwing.


It can be seen in FIGS. 2b and 2d that the cheek parts 2, 2′ in the lower end region are folded through 180° at a bending line B, B′ and are therefore reinforced in this region. A lower edge K, K′ of the associated sheet metal comes to lie here between the fastening recesses 24 and an associated bending line B, B′, such that the fastening recesses 24, 24′ are uncovered and the fastening pins 124, 124′ can be inserted therein in an unhindered manner.



FIG. 3a and FIG. 3b show a possible design of a module 3 that can be inserted into the holding frame, from two different views. Of course, other modules of similar design can also be used.


The module 3 has, on a first longitudinal side 32, a first detent lug 31, which is intended to latch in a detent window 23 of the first cheek part 2. On a second longitudinal side 32′ opposite this first longitudinal side 32, the module 3 has a second detent lug 31′, which is narrower than the first detent lug and which is intended to latch in a detent window 23′ of the second cheek part 2′. The module is also very compact, which improves the heat resistance thereof.


The orientation of the module 3 in the holding frame is fixed by the shape of the detent lugs 31, 31′ and the shape of the windows 23, 23′.



FIG. 4 shows a fully assembled holding frame, in which the two cheek parts 2, 2′ are thus fastened to the basic frame. Here, the fastening pins 124, 124′ of the basic frame engage with the fastening recesses 24, 24′ of the corresponding cheek part 2, 2′. In addition, a particular stability of this fastening is provided in that said lower edges K, K′ of the sheet metal of the cheek parts 2, 2′ terminate directly with the corresponding side part 12, 12′ of the basic frame 1. Additionally or alternatively to the fastening by means of the fastening pins 124, 124′ and the fastening recesses 24, 24′, the cheek parts 2, 2′ can also be soldered, welded, screwed or riveted to the basic frame 1, or can be fastened thereto in another way.


The cheek parts 2, 2′ have, in particular in the region of their tabs 22, 22′, a greater elasticity than the basic frame 1. Expressed conversely, the basic frame 1, which can be produced in a diecasting method, in particular a zinc diecasting method, has a greater rigidity than the two resilient cheek parts 2, 2′, which for example can consist of resilient sheet steel.


This means that a certain force, for example of 10 N, which acts on any tab 22 of a cheek part 2 at the height of the detent window 23 thereof at right angles to the surface of the cheek part 2, directed from the inside out with respect to the holding frame, causes a deflection of the tab 22 to be measured in line with the detent window 23 thereof, which deflection is greater than the deflection experienced by the basic frame 1 at any arbitrary point when a force of equal strength, for example likewise of 10 N, acts on this arbitrary point perpendicularly to the end face 11, 11′ or side part 12, 12′ of said basic frame, directed from the inside out with respect to the basic frame.


The basic frame 1 thus has a greater rigidity than the cheek parts 2, 2′. Expressed conversely, the cheek parts 2, 2′ have a higher elasticity than the basic frame.


The following disclosure is provided on the understanding that the holding frame is fixed at four corner points. By way of example, it can be fixed in or to a metal plug-type connector housing by screwing at the four screw bores 131, 131′ in the flanges 13, 13′ of said holding frame.


If, for example, a force of 10 N acts on the tab 22 of a cheek part 2 at the level of the detent window 23 thereof at right angles to the surface of the cheek part 2, this tab 22 will be reversibly deflected for example over a path of least 0.2 mm, preferably at least 0.4 mm, in particular at least 0.8 mm, i.e. for example more than 1.6 mm. If a force of equal magnitude of 10 N for example acts in the middle of a side part 12 perpendicularly to the surface of the side part 12, acting from the inside out with respect to the basic frame 1, the basic frame 1 will thus be deflected even in this region, in which the rigidity of said basic frame is minimal, only over a path of less than 0.2 mm, preferably less than 0.1 mm, in particular less than 0.05 mm, i.e. for example less than 0.025 mm. The basic frame 1 is thus more rigid than the cheek parts 2, 2′. In particular, the basic frame 1 is considered to be rigid and the cheek parts 2, 2′ are each said to be resilient.


A holding and in particular a latching of the modules is thus provided with high holding force alongside low actuation forces, which significantly facilitates the handling, in particular the insertion and removal of individual modules 3. Lastly, the cheek part 2 is resilient, and the elasticity of the cheek part 2 is selected in particular in accordance with the above-specified values such that the modules 3 can be manually inserted and manually removed. At the same time, the basic frame 1 is rigid, and in particular the rigidity of the basic frame 1 is so high, in particular in accordance with the above-specified values, that the inserted modules 3 are held therein with sufficient strength to ensure the intended function of an associated plug-type connector. The modules 3 and therefore contacts also provided in the modules 3 are thus, specifically, positioned with sufficient geometric accuracy and sufficient mechanical stability to reliably electrically contact corresponding mating contacts of a comparable mating plug.


Such a plug-type connector and a corresponding mating plug, which are not illustrated in the drawing, can additionally have a preferably metal housing, in which a holding frame fitted fully or partially with modules 3 is inserted.


In the holding frame illustrated in FIGS. 4a and 4b, a specially designed PE module 3′ is held, which corresponds in terms of its basic shape to the module 3 illustrated in FIGS. 3a and 3b. In addition, the PE module 3′ has an electrically conductive PE contact 33′, which is electrically conductively connected via the PE module 3′ to an electrically conductive earthing clip 34′ likewise belonging to the PE module 3′. The PE contact 33′ can be, for example, a screw contact, i.e. the PE contact 33′ has an earthing screw 35′, which is suitable for conductively connecting an earthing cable to the PE contact 33′ and for mechanically fixing said cable to said contact. This earthing cable is electrically conductively connected to the basic frame by the PE module 3′ via the earthing clip 34′ thereof, which is clamped to one of the end faces 11′ of the holding frame.


Alternatively, the holding frame itself can have a PE contact of this type, for example a PE screw contact, on its basic frame 1. The PE contact can be integrally molded on the basic frame 1, for example. This can be implemented already during the production of the basic frame 1, for example by means of injection molding.


The invention, however, is in no way limited to this embodiment. Rather, a multiplicity of further embodiments are disclosed, in particular by the following characterizing features and by expedient combination thereof:


The holding frame serves to receive modules 3 of the same type and/or different modules 3, wherein the holding frame can be formed from at least two different materials, of which at least one material is electrically conductive. The holding frame advantageously has resilient properties at least in part. In particular, the holding frame can consist in part of a rigid material and in part of a resilient material.


By way of example, the holding frame can be formed in a number of parts. The holding frame can consist of at least two parts, of which a first part is formed of a first material and a second part is formed of a second material, wherein the modulus of elasticity of the first material is greater than the modulus of elasticity of the second material.


By way of example, the first part can be formed as a basic frame 1 and the second part can be formed as a cheek part 2, 2′. The basic frame 1 can be rectangular in cross section and can have two mutually opposed side parts 12, 12′ extending parallel to one another and two opposed end faces 11, 11′ arranged perpendicularly to said side parts and extending parallel to one another. In particular, the basic frame 1 can be rigid. The basic frame 1 can be formed in one piece. The basic frame 1 can be formed as a diecast part. The at least one cheek part 2, 2′ can be resilient. The at least one cheek part 2, 2′ can be electrically conductive and can also consist of resilient sheet metal.


The at least one cheek part 2, 2′ can be fastened to the basic frame 1, for example by adhesive bonding, welding, soldering, riveting, latching and/or screwing. The at least one cheek part 2, 2′ can have a plurality of slots 21, 21′, by means of which tabs 22, 22′ are formed in the cheek parts 2, 2′. Here, the width of the tabs 22, 22′ can correspond to the width of the modules 3. In particular, all tabs 22, 22′ can have the same width. Each tab 22, 22′ can have a detent means. The detent means can consist of a detent window 23, 23′, which is arranged in the relevant tab 22, 22′. The at least one cheek part 2, 2′ can be, in particular, a punched and bent part. The at least one cheek part 2, 2′ can be constituted by two cheek parts 2, 2′. The holding frame can have a protective earthing contact (PE contact) or can be provided with at least one such contact.


During production thereof, the holding frame, which is intended for a plug-type connector and is suitable for receiving modules 3 of the same type and/or different modules 3, can be formed from at least two different materials.


At least a first part of the holding frame, specifically a basic frame 1, can be produced here in a diecasting method, in particular in a zinc diecasting method.


The at least one cheek part 2, 2′ can be punched out from a resilient sheet metal and in particular can be folded through 180° at least at one bending edge B, B′.


The at least one cheek part 2, 2′ can be fastened to the basic frame 1, in particular by adhesive bonding, welding, soldering, riveting, latching and/or screwing.


The holding frame, by means of its basic frame, can hold a module 3 received therein in one direction and at the same time can fix this module 3 perpendicularly to said direction by means of tabs 13, 13′, 23, 23′ belonging to the relevant cheek part 2, 2′, in particular by latching the module 3 at the tabs 22, 22′ thereof.


LIST OF REFERENCE SIGNS


1 basic frame



11, 11′ end faces



12, 12′ side parts



122, 122′ webs



123, 123′ open recesses



124, 124′ fastening pins



13, 13′ flanges



131, 131′ screw bores



2, 2′ cheek parts



21, 21′ slots



22, 22′ tabs



23, 23′ detent windows



24, 24′ fastening recesses


B, B′ bending line


K, K′ lower edge



3 module



3′ PE module



31, 31′ detent lugs



32, 32′ front faces



33′ PE contact



34′ earthing clip



35′ earthing screw

Claims
  • 1. A holding frame for a plug-type connector adapted for receiving a plurality of modules, said holding frame comprising: a base frame including longitudinal sidewalls and transverse end walls that define a rectangular frame structure that is adapted to receive the plurality of modules within an interior cavity of the rectangular frame structure; andat least two opposed cheek parts being distinct from but coupled to the base frame, the cheek parts adapted to assume an insertion state and a holding state, wherein said cheek parts in the insertion state are adapted to allow at least one of the plurality of modules to be inserted into the interior cavity of the rectangular frame structure in a direction transverse to a base plane, and in the holding state are adapted to fix the at least one of the plurality of modules in place within the interior cavity of the rectangular frame structure,wherein the base frame is formed at least in part from a first material and each of the cheek parts is formed at least in part of a second material that is different than the first material,wherein the cheek parts include resilient tabs extending in a direction transverse to the base plane along exterior lateral sides of the longitudinal sidewalls of the base frame, the resilient tabs each having an upper free end, and wherein a respective locking window is arranged in each resilient tab to serve as a locking element adapted to receive a locking latch of one of the plurality of modules as the cheek parts move from the insertion state to the holding state,wherein each of the longitudinal sidewalls defining the rectangular frame structure of the base frame include a plurality of upwardly extending protrusions that are arranged to define open recesses spaced apart along a longitudinal length at an upper end of each of the longitudinal sidewalls between the upwardly extending protrusions which are configured to receive the locking latches of the modules that extend transversely toward each of the longitudinal sidewalls when the modules are received in the rectangular frame structure, andwherein the open recesses of each of the longitudinal sidewalls are aligned with the locking windows of the resilient tabs of the cheek parts to collectively define latch openings that extend completely through each of the cheek parts and completely through the longitudinal sidewalls for receiving the locking latches of the modules when the modules are received in the rectangular frame structure.
  • 2. The holding frame as claimed in claim 1, wherein the base frame and the cheek parts are formed in at least one of an interlocking, frictionally engaged, or integrally bonded manner.
  • 3. The holding frame as claimed in claim 2, wherein the base frame and the cheek parts are adhesively bonded, welded, soldered, riveted, latched, or screwed together.
  • 4. The holding frame as claimed in claim 1, wherein each of the at least two opposed cheek parts is formed of a resilient sheet metal.
  • 5. The holding frame as claimed in claim 1, further comprising a protective earth contact.
  • 6. The holding frame as claimed in claim 1, wherein the interior cavity extends completely through the rectangular frame structure of the base frame from one of opposing sides of the base frame to the other of the opposing sides of the base frame to provide a space within confines of the longitudinal sidewalls and transverse end walls that is completely devoid of material of the base frame.
  • 7. The holding frame as claimed in claim 1, wherein each of the at least two opposed cheek parts includes a 180 degree folded edge at a lower end of the cheek part to provide parallel and laterally offset lower end cheek portions.
  • 8. The holding frame as claimed in claim 1, wherein each of the at least two opposed cheek parts includes the plurality of resilient tabs positioned side-by-side and extending in the direction transverse to the base plane along the exterior lateral sides of the longitudinal sidewalls of the base frame.
  • 9. The holding frame as claimed in claim 1, wherein portions of the longitudinal sidewalls of the rectangular frame structure of the base frame adjacent the open recesses defined between the upwardly extending protrusions of the longitudinal sidewalls cooperate with the locking windows formed in the resilient tabs of the cheek parts to collectively form latch receiving devices to secure the modules within the interior cavity of the rectangular frame structure of the base frame.
  • 10. The holding frame as claimed in claim 1, wherein portions of each of the resilient tabs on each of opposing sides of the respective locking window provided in the resilient tab are immediately adjacent to the longitudinal sidewall of the base frame without any intermediate structure between each of the resilient tabs and the longitudinal sidewall when the modules are received in the base frame and the cheek parts are in the holding state.
  • 11. A holding frame for a plug-type connector adapted for receiving a plurality of modules, said holding frame comprising: a base frame including longitudinal sidewalls and transverse end walls that define a rectangular frame structure that is adapted to receive the plurality of modules within an interior cavity of the rectangular frame structure; andat least two deformable parts being distinct from but coupled to the base frame, each of the at least two deformable parts being adapted to assume an insertion state and a holding state, wherein the deformable part in the insertion state is adapted to allow at least one of the plurality of modules to be inserted into the interior cavity of the rectangular frame structure in a direction transverse to a base plane, and in the holding state is adapted to fix the at least one of the plurality of modules in place within the interior cavity of the rectangular frame structure,wherein the base frame is formed at least in part of a first material and each of the at least two deformable parts is formed at least in part of a second material that is different than the first material,wherein each of the at least two deformable parts includes at least one resilient tab extending in a direction transverse to the base plane along a respective exterior lateral side of a respective one of the longitudinal sidewalls of the base frame, each of the resilient tabs having an upper free end, and wherein a respective locking window is arranged in each of the resilient tabs to serve as a module locking element,wherein each of the longitudinal sidewalls defining the rectangular frame structure of the base frame include a plurality of upwardly extending protrusions that are arranged to define open recesses spaced apart along a longitudinal length at an upper end of the longitudinal sidewall between the upwardly extending protrusions which are configured to receive locking lugs of the modules that extend transversely toward each of the longitudinal sidewalls when the modules are received in the rectangular frame structure, andwherein the open recesses of the longitudinal sidewalls are aligned with the locking windows of the resilient tabs of the deformable parts to collectively define lug openings that extend completely through the deformable parts and completely through the longitudinal sidewalls for receiving the locking lugs of the modules when the modules are received in the rectangular frame structure.
  • 12. The holding frame as claimed in claim 11, wherein the base frame and the deformable parts are adhesively bonded, welded, soldered, riveted, latched, or screwed together in an interlocking, frictionally engaged, or integrally bonded manner.
  • 13. The holding frame as claimed in claim 11, wherein each of the at least two deformable parts is elastically deformable or plastically deformable between the insertion state and the holding state.
  • 14. The holding frame as claimed in claim 13, wherein each of the at least two deformable parts is formed of a resilient sheet metal.
  • 15. The holding frame as claimed in claim 11, further comprising a protective earth contact.
  • 16. The holding frame as claimed in claim 11, wherein the interior cavity extends completely through the rectangular frame structure of the base frame from one of opposing sides of the base frame to the other of the opposing sides of the base frame to provide a space within confines of the longitudinal sidewalls and transverse end walls that is completely devoid of material of the base frame.
  • 17. The holding frame as claimed in claim 11, wherein each of the at least two deformable parts includes a 180 degree folded edge at a lower end of the deformable part to provide parallel and laterally offset lower end portions of the deformable part.
  • 18. The holding frame as claimed in claim 11, wherein each of the at least two deformable parts includes a plurality of resilient tabs positioned side-by-side and extending in the direction transverse to the base plane along the respective exterior lateral sides of one of the longitudinal sidewalls of the base frame.
  • 19. The holding frame as claimed in claim 11, wherein portions of the longitudinal sidewalls of the rectangular frame structure of the base frame adjacent the open recesses defined between the upwardly extending protrusions of the longitudinal sidewalls cooperate with the locking windows formed in the resilient tabs of the deformable parts to collectively form lug receiving devices to secure the modules within the interior cavity of the rectangular frame structure of the base frame.
  • 20. The holding frame as claimed in claim 11, wherein portions of each of the resilient tabs on each of opposing sides of the respective locking window provided in the resilient tab are immediately adjacent to the longitudinal sidewall of the base frame without any intermediate structure between each of the resilient tabs and the longitudinal sidewall when the modules are received in the base frame and the deformable parts are in the holding state.
  • 21. A holding frame for a plug-type connector adapted for receiving a plurality of modules, said holding frame comprising: a base frame adapted to insertably receive the plurality of modules; anda pair of opposing cheek parts provided on exterior sides of the base frame, the opposing cheek parts being adapted to move between an insertion state and a holding state, wherein opposing the cheek parts in the insertion state are adapted to allow at least one of the plurality of modules to be inserted into the base frame in a direction transverse to a base plane, and in the holding state are adapted to fix the at least one of the plurality of modules in place within the base frame, wherein each of the opposing cheek parts include resilient tabs extending in the direction transverse to the base plane along the exterior sides the base frame, the resilient tabs each having an upper free end, and wherein a respective locking window is arranged in each of the resilient tabs to serve as a locking element adapted to receive a locking latch of one of the plurality of modules as the cheek parts move from the insertion state to the holding state,wherein the base frame is formed at least in part of a first material and each of the opposing cheek parts is formed at least in part of a second material different than the first material,wherein the base frame has longitudinal sidewalls that each include a plurality of upwardly extending protrusions that are arranged to define open recesses spaced apart along a longitudinal length at an upper end of each of the longitudinal sidewalls between the upwardly extending protrusions which are configured to receive locking latches of the modules that extend transversely toward each of the longitudinal sidewalls when the modules are received in the base frame, andwherein the open recesses of the longitudinal sidewalls are aligned with the locking windows of the resilient tabs of the opposing cheek parts to collectively define latch openings that extend completely through the cheek parts and completely through the longitudinal sidewalls for receiving the locking latches of the modules when the modules are received in the base frame.
  • 22. The holding frame as claimed in claim 21, wherein each of the at least two opposed cheek parts has a lower end coupled to a respective lateral side of the base frame and an upper end that is adapted to move outwardly away from the respective lateral side of the base frame when transitioning to the insertion state.
  • 23. The holding frame as claimed in claim 21, wherein the base frame includes transverse end walls that extend between the longitudinal sidewalls to define a rectangular frame structure that is adapted to insertably receive the plurality of modules within an interior cavity of the rectangular frame structure.
  • 24. The holding frame as claimed in claim 23, wherein the interior cavity extends completely through the rectangular frame structure of the base frame from one of opposing sides of the base frame to the other of the opposing sides of the base frame to provide a space within confines of the longitudinal sidewalls and transverse end walls that is completely devoid of material of the base frame.
  • 25. The holding frame as claimed in claim 21, wherein each of the at least two opposed cheek parts includes a 180 degree folded edge at a lower end of each of the at least two opposed cheek parts to provide parallel and laterally offset lower end cheek portions.
  • 26. The holding frame as claimed in claim 21, wherein each of the at least two opposed cheek parts includes the plurality of resilient tabs positioned side-by-side and extending in the direction transverse to the base plane along the exterior sides of the base frame.
  • 27. The holding frame as claimed in claim 21, wherein portions of the longitudinal sidewalls of the base frame adjacent the open recesses defined between the upwardly extending protrusions of the longitudinal sidewalls cooperate with the locking windows formed in the resilient tabs of the cheek parts to collectively form latch receiving devices to secure the modules within the base frame.
  • 28. The holding frame as claimed in claim 21, wherein portions of each of the resilient tabs on each of opposing sides of the respective locking window provided in the resilient tab are immediately adjacent to the exterior sides the base frame without any intermediate structure between each of the resilient tabs and the exterior sides when the modules are received in the base frame and the cheeks parts are in the holding state.
  • 29. A holding frame for a plug-type connector adapted for receiving a plurality of modules, said holding frame comprising: a base frame including longitudinal sidewalls and transverse end walls that define a rectangular frame structure that is adapted to receive the plurality of modules within an interior cavity of the rectangular frame structure; andat least two opposed cheek parts being distinct from but coupled to the base frame, the cheek parts adapted to assume an insertion state and a holding state, wherein said cheek parts in the insertion state are adapted to allow at least one of the plurality of modules to be inserted into the interior cavity of the rectangular frame structure in a direction transverse to a base plane, and in the holding state are adapted to fix the at least one of the plurality of modules in place within the interior cavity of the rectangular frame structure,wherein the base frame is formed at least in part from a first material and each of the cheek parts is formed at least in part of a second material that is different than the first material,wherein the cheek parts include resilient tabs extending in a direction transverse to the base plane along exterior lateral sides of the longitudinal sidewalls of the base frame, the resilient tabs each having an upper free end, and wherein a respective locking window is arranged in each of the resilient tabs to serve as a locking element adapted to receive a locking latch of one of the plurality of modules as the cheek parts move from the insertion state to the holding state,wherein each of the longitudinal sidewalls of the base frame includes a plurality of upwardly extending protrusions that are arranged to define open recesses spaced apart along a longitudinal length at an upper end of each of the longitudinal sidewalls between the upwardly extending protrusions which are configured to receive locking latches of the modules that extend transversely toward the longitudinal sidewall when the modules are received in the rectangular frame structure,wherein the open recesses of the longitudinal sidewalls are aligned with the locking windows of the resilient tabs of the cheek parts to collectively define latch openings that extend completely through the cheek parts and completely through the longitudinal sidewalls for receiving the locking latches of the modules when the modules are received in the rectangular frame structure, andwherein portions of each of the resilient tabs on each of opposing sides of the respective locking window provided in the resilient tab are immediately adjacent to the longitudinal sidewall of the base frame without any intermediate structure between each of the resilient tabs and the longitudinal sidewall when the modules are received in the base frame and the cheek parts are in the holding state.
  • 30. A holding frame for a plug-type connector adapted for receiving a plurality of modules, said holding frame comprising: a base frame including longitudinal sidewalls and transverse end walls that define a rectangular frame structure that is adapted to receive the plurality of modules within an interior cavity of the rectangular frame structure; andat least two deformable parts being distinct from but coupled to the base frame, each of the at least two deformable parts being adapted to assume an insertion state and a holding state, wherein the deformable part in the insertion state is adapted to allow at least one of the plurality of modules to be inserted into the interior cavity of the rectangular frame structure in a direction transverse to a base plane, and in the holding state is adapted to fix the at least one of the plurality of modules in place within the interior cavity of the rectangular frame structure,wherein the base frame is formed at least in part of a first material and each of the at least two deformable parts is formed at least in part of a second material that is different than the first material,wherein each of the at least two deformable parts includes at least one resilient tab extending in a direction transverse to the base plane along a respective exterior lateral side of a respective one of the longitudinal sidewalls of the base frame, each of the resilient tabs having an upper free end, and wherein a respective locking window is arranged in each of the resilient tabs to serve as a module locking element,wherein each of the longitudinal sidewalls of the base frame includes a plurality of upwardly extending protrusions that are arranged to define open recesses spaced apart along a longitudinal length at an upper end of the longitudinal sidewall between the upwardly extending protrusions which are configured to receive locking latches of the modules that extend transversely toward the longitudinal sidewall when the modules are received in the rectangular frame structure,wherein the open recesses of the longitudinal sidewalls are aligned with the locking windows of the resilient tabs of the deformable parts to collectively define latch openings that extend completely through the deformable parts and completely through the longitudinal sidewalls for receiving the locking latches of the modules when the modules are received in the rectangular frame structure, andwherein portions of each of the resilient tabs on each of opposing sides of the respective locking window provided in the resilient tab are immediately adjacent to the longitudinal sidewall of the base frame without any intermediate structure between each of the resilient tabs and the longitudinal sidewall when the modules are received in the base frame and the deformable parts are in the holding state.
  • 31. A holding frame for a plug-type connector adapted for receiving a plurality of modules, said holding frame comprising: a base frame adapted to insertably receive the plurality of modules; anda pair of opposing cheek parts provided on exterior sides of the base frame, the opposing cheek parts being adapted to move between an insertion state and a holding state, wherein the pair of opposing cheek parts in the insertion state are adapted to allow at least one of the plurality of modules to be inserted into the base frame in a direction transverse to a base plane, and in the holding state are adapted to fix the at least one of the plurality of modules in place within the base frame, wherein the cheek parts include resilient tabs extending in the direction transverse to the base plane along the exterior sides the base frame, the resilient tabs each having an upper free end, and wherein a respective locking window is arranged in each of the resilient tabs to serve as a locking element adapted to receive a locking latch of one of the plurality of modules as the pair of opposing cheek parts move from the insertion state to the holding state,wherein the base frame is formed at least in part of a first material and each of the opposing cheek parts is formed at least in part of a second material different than the first material,wherein the base frame has longitudinal sidewalls that each include a plurality of upwardly extending protrusions that are arranged to define open recesses spaced apart along a longitudinal length at an upper end of the longitudinal sidewall between the upwardly extending protrusions which are configured to receive locking latches of the modules that extend transversely toward the longitudinal sidewall when the modules are received in the base frame,wherein the open recesses of the longitudinal sidewalls are aligned with the locking windows of the resilient tabs of the pair of opposing cheek parts to collectively define latch openings that extend completely through the pair of opposing cheek parts and completely through the longitudinal sidewalls for receiving the locking latches of the modules when the modules are received in the base frame, andwherein portions of each resilient tab on each of opposing sides of the respective locking window provided in the resilient tab are immediately adjacent to the exterior sides the base frame without any intermediate structure between each of the resilient tabs and the exterior sides when the modules are received in the base frame and the cheeks parts are in the holding state.
Priority Claims (2)
Number Date Country Kind
10 2013 113 975 Dec 2013 DE national
10 2013 113 976 Dec 2013 DE national
CROSS REFERENCE TO RELATED PATENT APPLICATION

This application is a continuation of U.S. patent application Ser. No. 15/030,858 filed Apr. 20, 2016, which in turn is a 371 National Phase Patent Application based on PCT/DE14/100439, filed Dec. 11, 2014, the contents of which is incorporated herein by reference, in its entirety.

US Referenced Citations (32)
Number Name Date Kind
3544951 Roberts Dec 1970 A
3576520 Stauffer Apr 1971 A
4032209 Rutkowski Jun 1977 A
4090764 Malsby et al. May 1978 A
4621885 Szczesny et al. Nov 1986 A
4659162 Cartesse Apr 1987 A
4735583 Rudy, Jr. et al. Apr 1988 A
4952172 Barkus Aug 1990 A
5090920 Casey Feb 1992 A
5352133 Sampson Oct 1994 A
5562493 Ferrill et al. Oct 1996 A
5913690 Dechelette et al. Jun 1999 A
6004162 Harting et al. Dec 1999 A
6074238 DeRoss Jun 2000 A
6196869 Kay et al. Mar 2001 B1
6556411 Hoeft et al. Apr 2003 B1
7303446 Hills Dec 2007 B2
7316591 Ferderer Jan 2008 B2
7597587 Duesterhoeft Oct 2009 B1
7979985 Spitaels et al. Jul 2011 B2
8900018 Riepe et al. Dec 2014 B2
20020072267 Bowling Jun 2002 A1
20050085129 Chiou et al. Apr 2005 A1
20060258218 Chen Nov 2006 A1
20100091179 Murakami et al. Apr 2010 A1
20100144203 Glover et al. Jun 2010 A1
20100206702 Zhou et al. Aug 2010 A1
20100311286 Schrader Dec 2010 A1
20100320883 Yang et al. Dec 2010 A1
20110237107 Nagata et al. Sep 2011 A1
20120244754 Riepe et al. Sep 2012 A1
20130217268 Duan et al. Aug 2013 A1
Foreign Referenced Citations (39)
Number Date Country
1191400 Aug 1998 CN
1988277 Jun 2007 CN
202333292 Jul 2012 CN
202474421 Oct 2012 CN
203277786 Nov 2013 CN
18 16 371 Jul 1960 DE
2014182 Oct 1970 DE
2736079 Feb 1979 DE
3851961 Jun 1995 DE
29508095 Jul 1995 DE
298 12 500 Oct 1998 DE
10 2008 009 357 Aug 2009 DE
20 2012 103 360 Mar 2013 DE
202013103611 Sep 2013 DE
102013113976 Jun 2015 DE
0183587 Jun 1986 EP
0570181 May 1993 EP
0836246 Apr 1998 EP
0860906 Aug 1998 EP
1 495 522 Oct 2003 EP
0860906 May 2004 EP
1801927 Jun 2007 EP
1801927 May 2010 EP
2581991 Apr 2013 EP
2930794 Oct 2015 EP
2489609 Mar 1982 FR
2 572 857 May 1986 FR
2657469 Jul 1991 FR
6-52924 Feb 1994 JP
10-189150 Jul 1998 JP
10-241777 Sep 1998 JP
11-251016 Sep 1999 JP
2008084672 Apr 2008 JP
2011-204567 Oct 2011 JP
2011-228154 Nov 2011 JP
10-2010-0086445 Jul 2010 KR
92 746 Mar 2010 RU
125 779 Mar 2013 RU
2011069522 Jun 2011 WO
Non-Patent Literature Citations (34)
Entry
Opposition Letter with cover letter (with translation), DE 10 2013 113 976, dated Oct. 18, 2016 (61 pgs).
HEAVYCON Modular feature classification (no translation), Phoenix Contact, Jul. 7, 2014 (4 pgs).
Photo E3.1, listed under enclosures list of Opposition Letter, DE 10 2013 113 976, dated Oct. 18, 2016 (2 pgs).
Photo Anlagel, Phoenix product of Opposition Letter, De 10 2013 113 976, dated Oct. 18, 2016 (1 pg).
Google internet search, MIXO modular units for multipole connectors 156-Treotham, Aug. 4, 2016 (8 pgs).
URL approval, Connectors for Use in Data, Signal, Control and Power Applications-Component, Aug. 1, 2013 (4 pgs).
ILME Supplement to CN.07 catalogue, New products 2010 (4 pgs).
ILME Supplement to CN.11 catalogue, New products 2011 (5 pgs).
ILME Supplement to CN.12 catalogue, New products 2012 (10 pgs).
ILME Supplement to CN.12 catalogue, Oct. 2013 (4 pgs).
ILME CN.12 Mehrpolige Steckverbinder für industrielle Anwendung (no translation), listed under enclosures list as E2.3 of Opposition Letter, DE 10 2013 113 976, dated. Oct. 18, 2016 (6 pgs).
Definition of “Frame” fromWikipedia, Oct. 28, 2016 (1 pg).
Opposition Letter, DE 10 2013 113 976, dated Oct. 18, 2016 (36 pgs). English translation to follow.
Photo, E3.1 (2 pgs). Details to follow.
Photo, Anlagel (1 pg). Details to follow.
ILME CN.12 Mehrpolige Steckverbinder für industrielle Anwendung (no translation) (6 pgs). Details to follow.
Letter from DTS PartmbB, Munich to German Patent and Trademark Office, Objections to the grant of a patent having the subject matter of the patent application with official file reference 10 2013 113 976.0, dated Apr. 26, 2016 (26 pgs).
Letter from Eisenführ Speiser Patentanwälte Rechtsanwälte PartGmbB, Bremen to German Patent and Trademark Office, Munich, “Regarding the third party objection of Apr. 26, 2016,” dated May 24, 2016 (6 pgs).
German Patent and Trademark Office Notice, file reference 10 2013 113 975.2, dated Nov. 21, 2014 (2 pgs).
German Patent and Trademark Office Notice, file reference 10 2013 113 976.0, dated Nov. 21, 2014 (2 pgs).
Extract from Duden (online directory) relating to the term “lateral”, downloaded Aug. 31, 2016 from http://www.duden.de/rechtsthreibung/lateral (4 pgs).
International Preliminary Report on Patentability issued in application No. PCT/DE2014/100439, dated Jun. 23, 2016 (7 pgs).
German Third Party Observation issued in application No. 10 2013 113 976.0, dated Apr. 26, 2016 (30pgs).
Excerpt: “frame” definition, downloaded from wikipedia.org, May 11, 2016 (3 pgs).
Excerpt: “lateral” definition, downloaded from dictionary.com, May 11, 2016 (7 pgs).
German Office Action issued in application No. 10 2013 113 975.2, dated Nov. 21, 2014 (4 pgs).
International Search Report and Written Opinion issued in application No. PCT/DE2014/100439, dated Apr. 9, 2015 (10 pgs).
Notice of Opposition, dated Jun. 28, 2017, for German Patent No. 10 2013 113 976, on behalf of Phoenix Contact GmbH & Co. KG, 44 pages. (with English Translation).
Chinese Office Action and Search Report, dated Jun. 20, 2017, for Chinese Application No. 201480067749.6, 21 pages. (with English Translation).
Japanese Office Action, dated Jun. 2, 2017, for Japanese Application No. 2016-538506, 13 pages. (with English Translation).
Notice of Opposition, dated Jan. 18, 2018, for European Patent No. 3 080 875, on behalf of Phoenix Contact GmbH & Co. KG, 36 pages.
Harting Elektronik GmbH, “Schwere Steckverbinder Han-Modular®,” Product Catalog, Jan. 1999, 44 pages.
Canadian Intellectual Property Office, Office Action dated Feb. 20, 2018, for Canadian Application No. 2,930,052, 4 pages.
Rospatent, Decision on Grant dated Jan. 22, 2018, for Russian Application No. 2016125448/07(039852), 7 pages.
Related Publications (1)
Number Date Country
20170012400 A1 Jan 2017 US
Continuations (1)
Number Date Country
Parent 15030858 US
Child 15271128 US