The present invention generally relates to scroll compressors for compressing refrigerant and more particularly to an apparatus for controlling and/or limiting at least one of relative axial, radial, and rotational movement between scroll members during operation of the scroll compressor.
A scroll compressor is a certain type of compressor that is used to compress refrigerant for such applications as refrigeration, air conditioning, industrial cooling and freezer applications, and/or other applications where compressed fluid may be used. Such prior scroll compressors are known, for example, as exemplified in U.S. Pat. Nos. 6,398,530 to Hasemann; 6,814,551, to Kammhoff et al.; 6,960,070 to Kammhoff et al.; and 7,112,046 to Kammhoff et al., all of which are assigned to a Bitzer entity closely related to the present assignee. As the present disclosure pertains to improvements that can be implemented in these or other scroll compressor designs, the entire disclosures of U.S. Pat. Nos. 6,398,530; 7,112,046; 6,814,551; and 6,960,070 are hereby incorporated by reference in their entireties.
As is exemplified by these patents, scroll compressor assemblies conventionally include an outer housing having a scroll compressor contained therein. A scroll compressor includes first and second scroll compressor members. A first compressor member is typically arranged stationary and fixed in the outer housing. A second scroll compressor member is movable relative to the first scroll compressor member in order to compress refrigerant between respective scroll ribs which rise above the respective bases and engage in one another. Conventionally the movable scroll compressor member is driven about an orbital path about a central axis for the purposes of compressing refrigerant. An appropriate drive unit, typically an electric motor, is provided usually within the same housing to drive the movable scroll member.
In some scroll compressors, it is known to have axial restraint, whereby the fixed scroll member has a limited range of movement. This can be desirable due to thermal expansion when the temperature of the orbiting scroll and fixed scroll increases causing these components to expand. Examples of an apparatus to control such restraint are shown in U.S. Pat. No. 5,407,335, issued to Caillat et al., the entire disclosure of which is hereby incorporated by reference. Another example is U.S. Publication No. 2013/0252568 to Bush (and assigned to the current assignee), the entire disclosure of which is hereby incorporated by reference.
The present invention is directed towards improvements over the state of the art as it relates to the above-described features and other features of scroll compressors.
A first inventive aspect of the present invention is directed toward a holding plate in a scroll compressor that forms surface to surface contact with the non-orbiting scroll body along a contact surface oriented in a direction transverse to an axis of the scroll compressor bodies. The scroll compressor comprises a housing; an orbiting scroll body in the housing, and a non-orbiting scroll body in the housing. The orbiting scroll body including a first base and a first scroll rib with the first scroll rib projecting from the first base. The non-orbiting scroll body including a second base and a second scroll rib with the second scroll rib projecting from the second base. The first and second scroll ribs mutually engage with the orbiting scroll body being movable along an orbital path about an axis relative to the a non-orbiting scroll body for compressing of fluid. A pilot ring is positioned to engage a piloted surface of the non-orbiting scroll body to limit movement of the non-orbiting scroll body in a radial direction. A holding plate secures the pilot ring and the non-orbiting scroll body to prevent rotation between the non-orbiting scroll body and the pilot ring. A gap is maintained and defined between the pilot ring and the piloted surface of 1 millimeter or less for piloting movement. The holding plate forming surface to surface contact with the non-orbiting scroll body along a contact surface oriented in a direction transverse to the axis.
The holding plate can form surface to surface contact with the non-orbiting scroll body in a plane horizontal and perpendicular to the axis, with the compressor axis being vertical.
The holding plate may include horizontally flat top and bottom surfaces extending a full length of the holding plate.
In embodiments, to facilitate holding plate attachment, the non-orbiting scroll body comprises a shoulder along an upper side at an outer periphery thereof, the shoulder having including a raised boss region with a machined flat extending horizontally (and preferably horizontal perpendicular to the axis), the machined flat forming said surface to surface contact of the non-orbiting scroll with the holding plate.
In certain embodiments, the holding plate includes opposite end regions and a central region, the central region located between the opposite end regions. The central region is secured to the non-orbiting scroll body and the opposite end regions are secured to the pilot ring. Each region includes a mounting hole with each mounting hole projecting in a direction vertically through the holding plate.
The holding plate may comprise top and bottom surfaces with an outer peripheral edge connecting the top and bottom surfaces. The holding plate includes a length extending horizontally, a width extending horizontally transverse to the length, and a thickness extending vertically transverse to the length and the width. Preferably, the width being smaller than the length and greater than the thickness throughout the holding plate over an entire span of the holding plate.
The holding plate may also include reduced neck regions on opposite sides of the central region. Each neck region may reside between one of the opposite end regions and the central region. As a result, the cross-sectional area (e.g. width and/or thickness in the region of the width) can be variable and cover a reduced span in the neck regions that afford additional flexibility sufficient to allow contact between the non-orbiting scroll body and the pilot ring during operation.
In certain embodiments and other inventive aspects, self-locating features are provided in a scroll compressor. The holding plate comprises top and bottom surfaces, and an outer peripheral edge connecting the top and bottom surfaces. The pilot ring includes a first locating surface and a second locating surface, with the first and second locating surfaces extending vertically from a body of the pilot ring. The first locating surface extends transverse to the second locating surface. The holding plate is adapted to contact the first and second locating surfaces along the outer peripheral edge to locate the holding plate relative to the pilot ring.
The location feature may be spaced apart at the ends. For example, on the holding plate a first end region may contact the first locating surface and a second end region may contact the second locating surface, with the connection to the pilot ring intermediate thereof along a central region.
Preferably, when the self-locating feature is utilized, the first locating surface and second locating surface extending perpendicularly. Less preferred embodiments have the locating surfaces parallel or otherwise traverse.
It is another feature and inventive aspect that the same screws may also secure the holding plate to the pilot ring, but also secure the pilot ring to the crankcase. The pilot ring can be formed separately from a crankcase with a plurality of posts extending axially between the crankcase and the pilot ring (formed by both or either of the pilot ring and crankcase). Scroll bodies are positioned in the attached pilot ring and crankcase. Screws secure the pilot ring and the crank case, with at least two of said screws also securing the holding plate to the pilot ring.
The scroll compressor may include a motor contained in housing below scroll bodies, the motor having a rotational output on a drive shaft, an eccentric on the drive shaft engaging the orbiting scroll body to impart orbiting movement of the orbiting scroll body during operation of the motor.
Preferably, the scroll compressor housing comprises an outer annular shell surrounding the pilot ring, with the pilot ring not in contact with but radially spaced from an inner periphery of the outer annular shell. Instead a crankcase is mounted to the pilot ring, with the crankcase is in contact with outer annular shell.
Another inventive aspect is directed toward holding plate location. The scroll compressor comprises a housing; an orbiting scroll body in the housing, and a non-orbiting scroll body in the housing. The orbiting scroll body including a first base and a first scroll rib with the first scroll rib projecting from the first base. The non-orbiting scroll body including a second base and a second scroll rib with the second scroll rib projecting from the second base. The first and second scroll ribs mutually engage with the orbiting scroll body being movable along an orbital path about an axis relative to the a non-orbiting scroll body for compressing of fluid. A pilot ring is positioned to engage a piloted surface of the non-orbiting scroll body to limit movement of the non-orbiting scroll body in a radial direction. A holding plate secures the pilot ring and the non-orbiting scroll body to prevent rotation between the non-orbiting scroll body and the pilot ring. The holding plate is located on the pilot ring via contact with at least one shoulder on an external surface of the pilot ring.
The location maybe done in two dimensions in a further inventive feature.
According to certain embodiments for this feature, the holding plate comprises top and bottom surfaces, and an outer peripheral edge connecting the top and bottom surfaces. The pilot ring includes a first locating surface and a second locating surface provided by the at least one shoulder. The first and second locating surfaces extend vertically from a body of the pilot ring. The first locating surface extends transverse to the second locating surfaces. The holding plate is adapted to contact the first and second locating surfaces along the outer peripheral edge to locate the holding plate relative to the pilot ring.
To provide for different locating surfaces, the pilot ring preferably includes a first locating surface and a second locating surface provided by first and second shoulders respectively. The holding plate includes opposite first and second end regions and a central region, the central region located between the opposite end regions. The central region is secured to the non-orbiting scroll body and the opposite end regions secured to the pilot ring. The first end region contacts a first locating surface and the second end region contacts a second locating surface.
Preferably as in some embodiments, the first locating surface and second locating surface extend perpendicularly relative to each other.
The pilot ring includes a top surface, and the top surface may include first and second raised pads providing the first and second shoulders described above respectively. The first and second raised pads are machined to include first and second intermediate platforms upon which first and second end regions reside. Further a recessed region may reside between the first and second intermediate platforms.
Another inventive aspect is directed toward simplified assembly. The scroll compressor comprises a housing; an orbiting scroll body in the housing, and a non-orbiting scroll body in the housing. The orbiting scroll body including a first base and a first scroll rib with the first scroll rib projecting from the first base. The non-orbiting scroll body including a second base and a second scroll rib with the second scroll rib projecting from the second base. The first and second scroll ribs mutually engage with the orbiting scroll body being movable along an orbital path about an axis relative to the a non-orbiting scroll body for compressing of fluid. A pilot ring is positioned to engage a piloted surface of the non-orbiting scroll body to limit movement of the non-orbiting scroll body in a radial direction. A holding plate secures pilot ring and the non-orbiting scroll body to prevent rotation between the non-orbiting scroll body and the pilot ring. Screws (e.g. bolts or other threaded fasteners) secure the pilot ring and the crank case, with at least two of said screws also securing the holding plate to the pilot ring.
The holding plate may also be located along an external surface of the pilot ring via at least one vertically extending surface that prevents relative rotation between the holding plate and the pilot ring during torqueing of the screws.
Another inventive aspect of the present invention is directed toward a holding plate in a scroll compressor that is untwisted. The scroll compressor comprises a housing; an orbiting scroll body in the housing, and a non-orbiting scroll body in the housing. The orbiting scroll body including a first base and a first scroll rib with the first scroll rib projecting from the first base. The non-orbiting scroll body including a second base and a second scroll rib with the second scroll rib projecting from the second base. The first and second scroll ribs mutually engage with the orbiting scroll body being movable along an orbital path about an axis relative to the a non-orbiting scroll body for compressing of fluid. A pilot ring is positioned to engage a piloted surface of the non-orbiting scroll body to limit movement of the non-orbiting scroll body in a radial direction. A holding plate secures the pilot ring and the non-orbiting scroll body to prevent rotation between the non-orbiting scroll body and the pilot ring. A gap is maintained and defined between the pilot ring and the piloted surface of 1 millimeter or less for piloting movement. The holding plate includes opposite end regions and a central region, with the central region located between the opposite end regions. The central region is secured to the non-orbiting scroll body and the opposite end regions secured to the pilot ring. The holding plate comprises top and bottom surfaces and an outer peripheral edge connecting the top and bottom surfaces, wherein the top and bottom surface are untwisted being free of twisted regions.
According to additional inventive aspects, the top and bottom surfaces may extend in a common plane or parallel to the common plane throughout the opposite end regions and the central region.
Further, each end region and the central region includes a mounting hole, each mounting hole may project in a same direction through the holding plate.
According to a further feature, the bottom surface of the holding plate is placed horizontally flat upon each of the non-orbiting scroll body and the pilot ring.
Other aspects, objectives and advantages of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:
While the invention will be described in connection with certain preferred embodiments, there is no intent to limit it to those embodiments. On the contrary, the intent is to cover all alternatives, modifications and equivalents as included within the spirit and scope of the invention as defined by the appended claims.
Before turning to the holding plate 310 features of various embodiments in
An embodiment of the present invention is illustrated in the figures as the scroll compressor assembly 10 generally including an outer housing 12 in which a scroll compressor 14 can be driven by a drive unit 16. The scroll compressor assembly 10 may be arranged in a refrigerant circuit for refrigeration, industrial cooling, freezing, air conditioning or other appropriate applications where compressed fluid is desired. Appropriate connection ports provide for connection to a refrigeration circuit and include a refrigerant inlet port 18 and a refrigerant outlet port 20 extending through the outer housing 12. The scroll compressor assembly 10 is operable through operation of the drive unit 16 to operate the scroll compressor 14 and thereby compress an appropriate refrigerant or other fluid that enters the refrigerant inlet port 18 and exits the refrigerant outlet port 20 in a compressed high-pressure state.
The outer housing for the scroll compressor assembly 10 may take many forms. In particular embodiments of the invention, the outer housing 12 includes multiple shell sections. In the embodiment of
As can be seen in the embodiment of
In a particular embodiment, the drive unit 16 in is the form of an electrical motor assembly 40. The electrical motor assembly 40 operably rotates and drives a shaft 46. Further, the electrical motor assembly 40 generally includes a stator 50 comprising electrical coils and a rotor 52 that is coupled to the drive shaft 46 for rotation together. The stator 50 is supported by the outer housing 12, either directly or via an adapter. The stator 50 may be press-fit directly into outer housing 12, or may be fitted with an adapter (not shown) and press-fit into the outer housing 12. In a particular embodiment, the rotor 52 is mounted on the drive shaft 46, which is supported by upper and lower bearings 42, 44. Energizing the stator 50 is operative to rotatably drive the rotor 52 and thereby rotate the drive shaft 46 about a central axis 54. Applicant notes that when the terms “axial” and “radial” are used herein to describe features of components or assemblies, they are defined with respect to the central axis 54. Specifically, the term “axial” or “axially-extending” refers to a feature that projects or extends in a direction parallel to the central axis 54, while the terms “radial” or “radially-extending” indicates a feature that projects or extends in a direction perpendicular to the central axis 54.
With reference to
In the embodiment of
The drive shaft 46 further includes an offset eccentric drive section 74 that has a cylindrical drive surface 75 (shown in
As shown in
In certain embodiments such as the one shown in
The upper bearing member or crankcase 42 also provides axial thrust support to the movable scroll compressor body 112 through a bearing support via an axial thrust surface 96 of thrust bearing 84. While, as shown
Turning in greater detail to the scroll compressor 14, the scroll compressor includes first and second scroll compressor bodies which preferably include a stationary fixed scroll compressor body 110 and a movable scroll compressor body 112. While the term “fixed” generally means stationary or immovable in the context of this application, more specifically “fixed” refers to the non-orbiting, non-driven scroll member, as it is acknowledged that some limited range of axial, radial, and rotational movement is possible due to thermal expansion and/or design tolerances.
The movable scroll compressor body 112 is arranged for orbital movement relative to the fixed scroll compressor body 110 for the purpose of compressing refrigerant. The fixed scroll compressor body includes a first rib 114 projecting axially from a plate-like base 116 and is designed in the form of a spiral. Similarly, the movable scroll compressor body 112 includes a second scroll rib 118 projecting axially from a plate-like base 120 and is in the shape of a similar spiral. The scroll ribs 114, 118 engage in one another and abut sealingly on the respective surfaces of bases 120, 116 of the respectively other compressor body 112, 110. As a result, multiple compression chambers 122 are formed between the scroll ribs 114, 118 and the bases 120, 116 of the compressor bodies 112, 110. Within the chambers 122, progressive compression of refrigerant takes place. Refrigerant flows with an initial low pressure via an intake area 124 surrounding the scroll ribs 114, 118 in the outer radial region (see e.g.
The movable scroll compressor body 112 engages the eccentric offset drive section 74 of the drive shaft 46. More specifically, the receiving portion of the movable scroll compressor body 112 includes the cylindrical bushing drive hub 128 which slideably receives the eccentric offset drive section 74 with a slideable bearing surface provided therein. In detail, the eccentric offset drive section 74 engages the cylindrical bushing drive hub 128 in order to move the movable scroll compressor body 112 about an orbital path about the central axis 54 during rotation of the drive shaft 46 about the central axis 54. Considering that this offset relationship causes a weight imbalance relative to the central axis 54, the assembly typically includes a counterweight 130 that is mounted at a fixed angular orientation to the drive shaft 46. The counterweight 130 acts to offset the weight imbalance caused by the eccentric offset drive section 74 and the movable scroll compressor body 112 that is driven about an orbital path. The counterweight 130 includes an attachment collar 132 and an offset weight region 134 (see counterweight 130 shown best in
With reference to
Referring specifically to
It can be seen in
By virtue of the key coupling 140, the movable scroll compressor body 112 has movement restrained relative to the fixed scroll compressor body 110 along the first lateral axis 146 and second transverse lateral axis 154. This results in the prevention of relative rotation of the movable scroll body as it allows only translational motion. More particularly, the fixed scroll compressor body 110 limits motion of the key coupling 140 to linear movement along the first lateral axis 146; and in turn, the key coupling 140 when moving along the first lateral axis 146 carries the movable scroll 112 along the first lateral axis 146 therewith. Additionally, the movable scroll compressor body can independently move relative to the key coupling 140 along the second transverse lateral axis 154 by virtue of relative sliding movement afforded by the guide portions 254 which are received and slide between the second keys 152. By allowing for simultaneous movement in two mutually perpendicular axes 146, 154, the eccentric motion that is afforded by the eccentric offset drive section 74 of the drive shaft 46 upon the cylindrical bushing drive hub 128 of the movable scroll compressor body 112 is translated into an orbital path movement of the movable scroll compressor body 112 relative to the fixed scroll compressor body 110.
To carry axial thrust loads, the movable scroll compressor body 112 also includes flange portions 268 projecting in a direction perpendicular relative to the guiding flange portions 262 (e.g. along the first lateral axis 146). These additional flange portions 268 are preferably contained within the diametrical boundary created by the guide flange portions 262 so as to best realize the size reduction benefits. Yet a further advantage of this design is that the sliding faces 254 of the movable scroll compressor body 112 are open and not contained within a slot. This is advantageous during manufacture in that it affords subsequent machining operations such as finishing milling for creating the desirable tolerances and running clearances as may be desired.
Generally, scroll compressors with movable and fixed scroll compressor bodies require some type of restraint for the fixed scroll compressor body 110 which restricts the radial movement and rotational movement but which allows some degree of axial movement so that the fixed and movable scroll compressor bodies 110, 112 are not damaged during operation of the scroll compressor 14. In embodiments of the invention, that restraint is provided by a pilot ring 160, as shown in
A second inner wall 189 runs along the inner diameter of each semi-circular stepped portion 164. Each semi-circular stepped portion 164 further includes a bottom surface 191, a notched section 166, and a chamfered lip 190. In the embodiment of
In the embodiment of
The fixed scroll compressor body 110 also has a pair of second radially-outward projecting limit tabs 113, which, in this embodiment, are spaced approximately 180 degrees apart. In certain embodiments, the second radially-outward projecting limit tabs 113 share a common plane with the first radially-outward-projecting limit tabs 111. Additionally, in the embodiment of
Referring still to
Though not visible in the view of
It should be noted that “limit tab” is used generically to refer to either or both of the radially-outward projecting limit tabs 111, 113. Embodiments of the invention may include just one of the pairs of the radially-outward projecting limit tabs, or possibly just one radially-outward projecting limit tab, and particular claims herein may encompass these various alternative embodiments
As illustrated in
It is contemplated that the embodiments of
With reference to
In a particular embodiment of the invention, a central region of the floating seal 170 includes a plurality of openings 175. In the embodiment shown, one of the plurality of openings 175 is centered on the central axis 54. That central opening 177 is adapted to receive a rod 181 which is affixed to the floating seal 170. As shown in
In certain embodiments, when the floating seal 170 is installed in the space between the inner hub region 172 and the peripheral rim 174, the space beneath the floating seal 170 is pressurized by a vent hole (not shown) drilled through the fixed scroll compressor body 110 to chamber 122 (shown in
While the separator plate 30 could be a stamped steel component, it could also be constructed as a cast and/or machined member (and may be made from steel or aluminum) to provide the ability and structural features necessary to operate in proximity to the high-pressure refrigerant gases output by the scroll compressor 14. By casting or machining the separator plate 30 in this manner, heavy stamping of such components can be avoided.
During operation, the scroll compressor assembly 10 is operable to receive low-pressure refrigerant at the housing inlet port 18 and compress the refrigerant for delivery to the high-pressure chamber 180 where it can be output through the housing outlet port 20. This allows the low-pressure refrigerant to flow across the electrical motor assembly 40 and thereby cool and carry away from the electrical motor assembly 40 heat which can be generated by operation of the motor. Low-pressure refrigerant can then pass longitudinally through the electrical motor assembly 40, around and through void spaces therein toward the scroll compressor 14. The low-pressure refrigerant fills the chamber 31 formed between the electrical motor assembly 40 and the outer housing 12. From the chamber 31, the low-pressure refrigerant can pass through the upper bearing member or crankcase 42 through the plurality of spaces 244 that are defined by recesses around the circumference of the crankcase 42 in order to create gaps between the crankcase 42 and the outer housing 12. The plurality of spaces 244 may be angularly spaced relative to the circumference of the crankcase 42.
After passing through the plurality of spaces 244 in the crankcase 42, the low-pressure refrigerant then enters the intake area 124 between the fixed and movable scroll compressor bodies 110, 112. From the intake area 124, the low-pressure refrigerant enters between the scroll ribs 114, 118 on opposite sides (one intake on each side of the fixed scroll compressor body 110) and is progressively compressed through chambers 122 until the refrigerant reaches its maximum compressed state at the compression outlet 126 from which it subsequently passes through the floating seal 170 via the plurality of openings 175 and into the high-pressure chamber 180. From this high-pressure chamber 180, high-pressure compressed refrigerant then flows from the scroll compressor assembly 10 through the housing outlet port 20.
As is evident from the exploded view of
Turning now to
It should be noted that in this type of an arrangement and as described for earlier figures, the pilot ring 160 is separated from the fixed scroll body 110 by a gap 312 (defined between the cylindrical inner wall 169 and outer perimeter surface 119). This gap 312 is specifically defined for purposes of functioning as a pilot to allow for surface-to-surface contact between the non-orbiting fixed scroll body and the pilot ring during operation of the scroll compressor assembly 10. This gap defined between the pilot ring and the piloted surface of the fixed scroll is less than 1 millimeter to facilitate piloting, more typically 200 micron or 100 micron or less. Additionally, the pilot ring as shown is not in direct contact with or touching or directly supported by the outer shell or housing assembly as shown in prior figures. Instead, the pilot ring 160 is preferably attached to the crankcase 42 in which the crankcase is then press-fit or otherwise secured to the housing assembly as described for earlier figures. In other embodiments, the pilot ring may be directly attached to the outer housing though.
The holding plate 310 in this embodiment is configured to maintain angular relative positions to prevent rotation between the fixed scroll body 110 and the pilot ring 160 while allowing limited relative axial and radial movement between these components for axial and radial compliance. Indeed, contact between the pilot ring 160 and the fixed scroll 110 is intended during operation due to the control gap 312 that is provided. Thus, the pilot ring 160 pilots and controls or limits the movement available to the fixed scroll body 110 such that it is generally considered fixed or non-movable in comparison to the movable scroll body 112 shown in prior figures that is driven along a substantial orbital path. Further, the holding plate 310 prevents relative rotation between the fixed scroll body 110 and the pilot ring 160 by setting the angular positions of these components relative to each other.
In this embodiment, the holding plate 310 forms surface-to-surface contact with the fixed scroll body 110 in a plane 314 that is transverse to the central axis 54 and extending horizontally, that is primarily in the horizontal direction. More preferably, the holding plate 310 forms surface-to-surface contact along the plane 314 that is horizontal and perpendicular to the vertical or central axis 54 of the compressor. As is typical in scroll compressors, the central axis 54 is typically vertically oriented such that during operation the oil will drain into an oil sump as previously described at the bottom of the scroll compressor assembly. The common plane 314 can be defined by the pilot ring and the fixed scroll body as shown for example.
As shown, the holding plate 310 lies generally flat with a flat top surface 316 and flat bottom surface 318, both of which extend a full length of the holding plate in an embodiment.
To facilitate mounting of the holding plate 310, the non-orbiting or fixed scroll body 110 comprises a shoulder 320 along an upper or topside and at an outer periphery thereof The shoulder 320 can be formed from a raised boss region 322 with a machined flat 324 that extends horizontally. The machined flat 324, forms surface-to-surface contact between the non-orbiting scroll and the holding plate and forms part of common plane 314. As shown, a threaded bolt 337 (bolt also referred to as screw) may be used to secure the holding plate 310 to the raised boss region 322 of the fixed scroll body 110. It is also seen that central region 326 of the holding plate 310 is secured to this machined flat or boss region 322.
To secure the holding plate 310 to the pilot ring 160, the holding plate includes opposite end regions 328, 330 which are disposed on opposite sides of the central region 326 with the central region 326 therebetween. As shown, bolts 336, 338 (also referred to as “screws”) are used to attach the two end regions 328, 330 of the holding plate 310 to the pilot ring 160. In this manner, the fixed scroll body 110 is therefore attached to and secured to the holding plate 310 which in turn is secured to the pilot ring 160 to strictly limit the available movement therebetween that may be afforded via piloting movement and contact afforded by the small gap 312 to fix the position of the fixed scroll body 110. The holding plate 310 also in this manner prevents relative rotation between the fixed scroll body 110 and the pilot ring 160.
Further, it can be seen that with this configuration, a holding plate and each region thereof includes a mounting hole 332, 333, 334 with each mounting hole projecting in a direction vertically through the holding plate 310 and along holes axes that are parallel with each other. Further, bolts 336, 337 and 338 project through the corresponding holes 332, 333, 334, respectively to secure the holding plate to the pilot ring 160 on the one hand and on the other hand the fixed scroll body 110.
Further, the thinnest dimension of the holding plate may be in the vertical dimension.
For example, the holding plate includes the flat top and bottom surfaces 316, 318 with an outer peripheral edge 340 extending vertically between the surfaces 316, 318. The outer peripheral edge 340 is also the thickness and defines the minimum dimension in the vertical direction for the holding plate 310. The holding plate also includes a length extending horizontally between the end regions 328, 330, and a width extending horizontally traversed and preferably perpendicular to the length. With this configuration, the width is smaller than the length but greater than the thickness throughout the holding plate over an entire span of the holding plate. As a result, this provides some flexibility to the holding plate to allow for a limited range of axial movement between the pilot ring 160 and the fixed scroll body 110 by virtue of flexure in the thickness of the holding plate.
Additionally, relative radial movement (relative to central axis 54) is afforded by the holding plate 310 due to flexure in the holding plate in that direction and due to small sub-millimeter gap 312. To facilitate additional flexure, the holding plate may further comprise neck regions 342 disposed on opposite sides of the central region 326. Each neck region 342 is thus defined between the central region 326 and the end regions 328 and 330. Thus, the neck regions 342 are located intermediate of the locations in which the holding plate is mounted by the bolts 336, 337, 338. The width in the neck regions is reduced at the neck regions 342 relative to the other regions 326, 328, 330. As can be seen, the width may therefore be variable and cover a reduced span in the neck regions 342 that is sufficient to allow some flexure in the holding plate 310 to allow contact between the non-orbiting scroll body 110 and the pilot ring 160 during operation of the scroll compressor assembly 10. This allows for the piloting operation and function of the pilot ring to limit and allow for the limited movement compliance.
Preferably, the holding plate 310 may also include a self-locating feature that locates the holding plate 310 relative to the pilot ring 160 so as to maintain precision or accuracy on the size of the pilot gap 312, which is less than a millimeter and typically less than 200 or 100 micron to facilitate the piloting function.
To provide for a piloting feature, the pilot ring 160 includes a first locating surface 344 and a second locating surface 346 defined along the top surface 167 of the pilot ring 160. These locating surfaces 344, 346 extend vertically from the body of the pilot ring 160 and are in the preferred form of a vertical edge. As can be seen, the first locating surface 344 extends traverse relative to the second locating surface 346 and preferably, these located surfaces are oriented perpendicular relative to each other to provide for location in two separate mutually perpendicular planes, and further this feature also does not require the exact precision/tolerances in the overall length of the holding plate. As can be seen in the holding plate contacts each of the locating surfaces 344, 346 against the peripheral edge 340 of the holding plate 310 which serves to self-locate the holding plate.
More specifically, the holding plate 310 includes a first end edge 348 that contacts the first locating surface 344 and a second end edge 350 that contacts the second locating surface 346. The end edges 348, 350 are oriented transverse relative to each other and preferably perpendicular or vertical with the same orientation as that of the locating surfaces 344, 346. Transverse means crosswise or non-parallel, to include various angles.
Due to this self-locating features via the locating surfaces and end edges, during tightening of the various bolts 336, 337, 338, any twisting or displacement of the holding plate 310 during torqueing is eliminated or at least minimized sufficient to maintain the piloting gap 312 within acceptable tolerances at a consistent gap all of the way around fixed scroll body.
Further, an advantage may be that the same bolts 336 and 338 (or both labeled as 168) which are used to connect the holding plate 310 to the pilot ring 160 may also additionally function to secure the pilot ring 160 to the crankcase 42. Thus, this minimizing the amount of labor and also serves to reduce the complexity as well as the different accumulated tolerances between different parts or portions.
To facilitate the mounting and allow for some additional flexure in the holding plate 310, the top surface 167 of the pilot ring 160 may include first and second raised pads in the form of mounting bosses 171 that may be machined to have a recess to include first and second intermediate platforms 352, 354 that provide shoulders along these mounting bosses 171. Further a recessed region 356 is defined between these intermediate platforms 352, 354. As can be seen, the holding plate 310 rests flat along the platforms 352, 354 but is not in contact with the recessed region 356 allowing that section to be free and available for some flexing.
As mentioned above, the outer bolts 336, 338 are aligned with the post 89 of the crankcase 42 and are long bolts that extend through the pilot ring 160 and into threading engagement 91 with the crankcase 42. Thus, bolts 336, 338 not only secure the holding plate 310 to the pilot ring 160 but also secure the pilot ring 160 to the crankcase 42. It should also be noted that the dimensions of the pilot ring are reduced on the outer perimeter or diameter relative to the crankcase. In this fashion, it can be seen with reference to earlier figures that the pilot ring does not contact the outer housing in an embodiment. Instead the pilot ring is connected to the crankcase which in turn is in contact with and secured to the outer housing.
Additional embodiments of holding plates 360, 362, 366 and 368 are shown in
In relation to
In
All references, including publications, patent applications, and patents cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
This patent application claims the benefit of U.S. Provisional Patent Application No. 62/056,010, filed Sep. 26, 2014, the entire teachings and disclosure of which are incorporated herein by reference thereto.
Number | Date | Country | |
---|---|---|---|
62056010 | Sep 2014 | US |