Not applicable.
Not applicable.
1. Field of the Invention
The present invention relates to an assembly for cutting a hole and, most particularly, to an assembly for cutting a hole in a pipe or in a well casing.
2. Background Information
There are many instances wherein it is necessary to drill a hole in the sidewall of an existing conduit such as a pipe, a well casing, or the like. In most cases, this operation is performed in new construction or in conjunction with a modification of an existing plumbing system. For example, when drilling a well, it is standard practice to provide a below ground level discharge in the well casing for the water at a depth below the deepest penetration of frost in winter. This prevents the water from freezing when pumped close to the surface from deep within the well. It is mandatory to drill the hole, in situ, in order locate the discharge at the proper depth. Other examples include the need to connect piping together in a water supply system or in a sanitary sewer system.
In the past, the practice was to initially drill a small pilot hole in the pipe and then drill a larger hole with the appropriate size drill bit. This arrangement caused numerous problems especially in terms of the precision in forming the hole. In addition, the operation often resulted in damage to the existing conduit, injury to the operator, and/or other difficulties, such as broken hole saws, broken drill bits, excessive chips in the conduit and so forth.
A variety of devices have been developed specifically for cutting holes in pipes or similar conduits, such as well casings. Patents have been granted for a number of these inventions, including the following:
Doty, in U.S. Pat. No. 3,847,501, describes a drill and tap attachment for pipe clamps, particularly a collar puller for metal pipe and the like. Holes are drilled and tapped at intervals in the pie for attaching threaded nipples. The tapping attachment is adjusted by hand which, in turn, operates the drill and tapping unit. Only a small bit is used for drilling the pipe.
In U.S. Pat. No. 3,922,107, Fowler discloses a core drilling device for sewer pipes. The device includes a base secured to the pipe with bolts penetrating the pipe. A drill press type of stand holds a core drill that cuts the pipe through an aperture in the base. The bolts are used to secure a clamping plate that secures a branch pipe to the sewer pipe.
Hutton, in U.S. Pat. No. 3,976,091, describes a pipe tapping tool having a plug means adapted to fit internally within a branch pipe. A boring bar is mounted on the plug means so as to be capable of being linearly or rotatably moved with respect to the plug means and so as to extend through the plug means. A boring means is mounted on one end of the boring bar. A mounting member is secured to the plug means and extends outwardly therefrom. A holding means carried by the mounting means secures the plug means to a branch pipe. The holding means comprises two interfitting yokes adapted to fit around the exterior of the branch pipe so that their extremities are locked together. A separate fastener secures the base of each of the yokes to the mounting means, the fasteners being located on diametrically opposite sides of the branch pipe when the tool is installed.
U.S. Pat. No. 4,005,945 by Gutman discloses a clamp and drill guide apparatus utilized by an operator to aid in manually drilling holes in work pieces, which have an arcuate contour. The apparatus includes a first clamping member, which has a multiplicity of openings axially passing through the first clamping member in a vertical direction. A second clamping member located in alignment with the first clamping member and below such, includes a multiplicity of threaded through openings, which axially pass in the vertical direction and are alignable with each of the through openings in the first clamping member. A pair of screw and nut members clamp the first member to the second member when a work piece is inserted there between. Further, the apparatus provides a mechanism for axially aligning the work piece between the first member and the second member.
In U.S. Pat. No. 4,094,612, Kring describes a plate having a flat surface for mounting the tool to an irregular or curved work piece. The plate has a plurality of depending legs forming a notch between them for straddling the work piece. Means for fastening the plate to the work piece include a roller chain attached to a threaded hook to adjust the length of the chain around a pipe.
Harris et al., in U.S. Pat. No. 4,152,090, describe an apparatus for cutting a hole through the sidewall of a longitudinally extending pipe. This apparatus includes a cylinder saw, i.e., a hole saw, and a portable jig for supporting and guiding the saw during the hole cutting operation. The jig pivots to allow the hole saw to enter the pipe at an angle to begin the hole cutting operation.
U.S. Pat. No. 4,422,812 by Linville discloses a rotatable shell cutter having a cylindrical member which advances to cut into a pipe. A plurality of cutting elements is arranged in a circle at one end of the cylinder. Each cutting assembly comprises a cartridge fixed as one piece to the cylindrical member, such as by brazing or the like, a seat positioned thereon through dowel pins, a cutting insert mounted on the seat through a cooperating V-shaped projection and recess, and a clamp engaging, positioning and securing the cutting element against the seat and also secured to the cartridge for urging all of the cutting assembly elements together. The clamp is fitted for a particular sized pipe.
Dolatowski et al, in U.S. Pat. No. 4,936,720, describe a device for cutting holes in pipe that includes a base configured for attachment normal to a section of pipe and having a track extending the length of the base. A travel plate is slidably engaged in the track and configured for the accommodation of a power drill thereon. A mechanism controls the linear reciprocal movement of the travel plate in the track, the length of the base being just long enough to accommodate the drill and hole drilling bit assembly for operating the apparatus in close quarters. A hole locator, and an adapter for attachment of the base to smaller diameter pipes may also be provided.
U.S. Pat. No. 5,051,044 by Allen discloses an apparatus used to drill holes in existing pipes or other conduits, or virtually any cylindrical object. The apparatus includes a mounting unit which rests upon the pipe to be drilled and a drill mounting apparatus. The drill mounting apparatus is removably mounted to the mounting unit. The drill mounting apparatus is adapted to receive and position a drilling device which forms a hole in the pipe or the like.
In U.S. Pat. No. 5,163,792, Slavik describes a clamp structure that mounts a workpiece between an underlying saddle plate and an uppermost bushing head. The bushing head includes a slidably received guide bushing directed there within in coaxially oriented alignment, with a saddle bore directed within the saddle to provide for alignment of drilling directed through the workpiece. The invention further includes the bushing head and a saddle clamp arranged and mounted on pivoting jaw structure arranged for clamping the workpiece there between.
Cooper, in U.S. Pat. No. 5,800,099, describes a system for using a portable tool for assisting the making of holes in installed pipes, such as water pipes and the like, to prepare for interconnected piping. The system preferably utilizes a hole saw guide bushing, which is contained in a clamp-head at the end of the fixed jaw of a “Vise-Grip”-like device. The clamp-head accommodates various sizes of guide bushings and hole-saws for making various size holes in various size pipes. Other features assist accurate hole positioning, e.g., horizontal and vertical levels, center marks, and V-shaped holding surfaces on the clamp-heads.
U.S. Pat. No. 5,879,112 by Ivey discloses a water supply line tapping tool for allowing plumbers to tap into a main water supply line. The device includes a main shaft having a first end and a second end. The first end is adapted for coupling with a standard portable electric drill. The main shaft has a threaded hole therein disposed inwardly of the second end. The threaded hole receives a screw therein. The second end has an internally threaded receiving collar disposed thereon. A hole saw is coupled with the receiving collar on the second end of the main shaft. The hole saw has an arbor portion. The arbor portion has an internal end extending inwardly of the second end of the main shaft for being engaged by the screw extending within the threaded hole. A sleeve is slidably disposed on the main shaft for coupling with a saddle valve.
In U.S. Pat. No. 6,050,753, Turner describes an apparatus for mounting a drill on the pipe.
The apparatus includes a platform carrying a mounting member for a drill stand. The mounting member slides along a frame which carries a plurality of elongated holes therein. The longitudinal movement allowed by sliding permits a drill mounted on a drill stand to be selectively positioned to bore a hole in a pipe upon which the platform is rigidly clamped. By provision of such a facility, there is no need to loosen the clamping force of the platform upon the pipe.
Turner, in U.S. Pat. No. 6,761,511, discloses a V-shaped frame attached to a pipe to be drilled. The frame may be used with larger pipes by attaching a removable extension plate to the arms of the V-shaped frame, thereby increasing the size of the recess between the arms. The apparatus may be fixed to the pipe by a chain, which connects to the platform and extends around the pipe, or by attaching clips to the frame and attaching the clips to the surface of the pipe by screws, etc.
U.S. Design Pat. No. D 499,002 by Troxell shows a universal guide for a hole saw. The guide appears to include a suction cup device for attaching the guide to a surface and an adjustable portion having overlapping plates, each with a V-shaped opening. The hole saw fits into the square opening formed by the overlapping plates.
Applicant has devised a hole cutting assembly useful for cutting relatively large diameter holes in well casing, pipes and similar conduits which have a generally circular cross section.
The invention is directed to a hole cutting assembly adapted for cutting cylindrical conduits. The hole cutting assembly includes a base member having first and second V-shaped contact sections at opposite ends thereof. A linear base anchoring member is secured to the base member, the anchoring member adapted for encircling a cylindrical conduit and drawing both V-shaped contact sections of the base member against an outer surface of the cylindrical conduit. A support plate member extends perpendicularly from the base member in opposition to one V-shaped contact section. A bearing housing member is secured to the support plate member, the housing member including a cylindrical passage there through with a cylindrical axis parallel the support plate member. The cylindrical axis is positioned beyond one end of the base member, and the housing member includes at least two bearings within the cylindrical passage. A cylindrical arbor shaft member is rotatably and slidably mounted within the housing member's cylindrical passage. The shaft member includes a threaded end adjacent the base member and a hexagonal end opposite the base member, with the shaft member's threaded end adapted for securing a cylindrical cutting bit member thereto. Securing the hole cutting assembly to an outer surface of a conduit with the base anchoring member, and attaching a power drill to the arbor shaft member's hexagonal end provides rotation of a cylindrical cutting bit member secured to the threaded end of the arbor shaft member, thereby cutting a hole in the conduit.
In a preferred embodiment of the invention, the hole cutting assembly further includes a planar guide member extending perpendicularly from the support plate member adjacent the opposed V-shaped contact portion. The guide member includes an aperture therein sufficiently large to accommodate a cylindrical cutting bit member fastened to the arbor shaft member.
The invention is a hole cutting assembly adapted for cutting cylindrical conduits. The hole cutting assembly comprises a base member having first and second V-shaped contact sections at opposite ends thereof. A linear base anchoring member is secured to the base member, the anchoring member adapted for encircling a cylindrical conduit and drawing both V-shaped contact sections of the base member against an outer surface of the cylindrical conduit. A support plate member extends perpendicularly from the base member in opposition to one V-shaped contact section. A bearing housing member is secured to the support plate member, the housing member including a cylindrical passage there through with a cylindrical axis paralleling the support plate member. The cylindrical axis is positioned beyond one end of the base member, and the housing member includes at least two bearings within the cylindrical passage. A cylindrical arbor shaft member is rotatably and slidably mounted within the housing member's cylindrical passage. The shaft member includes a threaded end adjacent the base member and a hexagonal end opposite the base member, with the shaft member's threaded end adapted for securing a cylindrical cutting bit member thereto. Securing the hole cutting assembly to an outer surface of a conduit with the base anchoring member, and attaching a power drill to the arbor shaft member's hexagonal end provides rotation of a cylindrical cutting bit member secured to the threaded end of the arbor shaft member, thereby cutting a hole in the conduit.
In a preferred embodiment of the invention, the hole cutting assembly for cylindrical conduits further includes a planar guide member extending perpendicularly from the support plate member adjacent the opposed V-shaped contact portion. The guide member includes an aperture therein sufficiently large to accommodate a cylindrical cutting bit member fastened to the arbor shaft member.
Referring now to
A linear base anchoring member 30 is secured to the base member 15, with the anchoring member 30 adapted for encircling a cylindrical conduit C and drawing both V-shaped contact sections 25 of the base member 15 against an outer surface of the cylindrical conduit C, as illustrated in
Referring again to
The bearing housing member 55 including a cylindrical passage 60 there through with a passage cylindrical axis A paralleling the support plate member 50, as illustrated in
A cylindrical arbor shaft member 75 is rotatably and slidably mounted within the housing member's cylindrical passage 60. The shaft member 75 includes a threaded end 85 positioned adjacent the base member 15 and a hexagonal end 80 opposite the base member 15, with the shaft member's threaded end 85 adapted for securing a hole saw, cylindrical cutting bit member 90 thereto. The arbor shaft member 75 is shown in greater detail in
The operator secures the hole cutting assembly 10 to an outer surface of a conduit C with the base anchoring member 30, and attaching a power drill to the arbor shaft member's hexagonal end 80. The power drill provides rotation of the cylindrical cutting bit member 90 secured to the threaded end 85 of the arbor shaft member 75. The operator advances the arbor shaft member 75 within the bearing housing 55, with the cylindrical cutting bit member 90 cutting a hole in the conduit C, as illustrated in
In a preferred embodiment of the invention, the hole cutting assembly 10 for cylindrical conduits C further includes a planar guide member 100 extending perpendicularly from the support plate member 50 adjacent the opposed V-shaped contact portion 25, as illustrated in
While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.
This application claims the benefit under 35 U.S.C. § 119 (e) of provisional application Ser. No. 60/700,162, filed 19 Jul. 2005. Application Ser. No. 60/700,162 is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2672770 | Buck | Mar 1954 | A |
2820377 | Buck | Jan 1958 | A |
2849900 | Heidtman, Jr. | Sep 1958 | A |
3090260 | Brooks et al. | May 1963 | A |
3617140 | Gates | Nov 1971 | A |
3847501 | Doty | Nov 1974 | A |
3922107 | Fowler | Nov 1975 | A |
3976091 | Hutton | Aug 1976 | A |
4005945 | Gutman | Feb 1977 | A |
4090805 | Grimsley | May 1978 | A |
4094612 | Kring | Jun 1978 | A |
4152090 | Harris et al. | May 1979 | A |
4261673 | Hougen | Apr 1981 | A |
D267011 | Morris | Nov 1982 | S |
4390309 | Fangmann | Jun 1983 | A |
4422812 | Linville | Dec 1983 | A |
4936720 | Dolatowski et al. | Jun 1990 | A |
5051044 | Allen | Sep 1991 | A |
5163792 | Slavik | Nov 1992 | A |
5800099 | Cooper | Sep 1998 | A |
5879112 | Ivey | Mar 1999 | A |
6050753 | Turner | Apr 2000 | A |
6761511 | Turner | Jul 2004 | B2 |
D499002 | Troxell | Nov 2004 | S |
Number | Date | Country | |
---|---|---|---|
60700162 | Jul 2005 | US |