The present disclosure relates to decorative LED lights, and more particularly, to multicolored LED lights connected in reverse parallel.
Conventional decorative lights are typically fixed in color and celebratory purpose. For example, some conventional light strings comprise a plurality of lights that all have the same color (e.g., all white, all red, etc.). Another conventional light string comprises a plurality of lights that are multicolored (e.g., red, green, blue, yellow, white, etc.). Further, some of these light strings are designed to all be lit at the same time, while others are designed to turn on and off intermittently (e.g., flashing or blinking). Many of these lights are suitably colored for a particular holiday, e.g., Christmas, where the lights may be solid red and green, as well as other holidays where lights are hung as part of the celebratory decoration, including Easter, where pastel colors are popular, the Fourth of July (i.e., Independence Day) and Memorial Day, where the colors red, white and blue are popular, and Halloween, where orange and yellow are popular. For these and other celebrations, such as parties, birthdays, anniversaries and the like, an individual must purchase several different light strings having the appropriate color combination. Typically, the individual will then hang the light strings prior to the occasion and then remove them once the occasion is over. The purchase of numerous light strings can become expensive and the constant placing and removing of the different light strings can be time-consuming.
To address these problems, color-controllable light strings have been designed. However, these products have many limitations. For example, there may be unattractive non-lit bulbs along the light string in at least some selected color schemes or the number of wired lines along the light strand may be relatively large depending on the number of color combinations. Other considerations and/or limitations also include the longevity of the light string, cost of the light string, the limitations of particular/unpopular colors, etc. Accordingly, there remains a need for a color-controllable light string that addresses these limitations and considerations.
The present disclosure addresses these shortcomings by providing a long-lasting, cost-effective color-changeable light string system and methods of use. One aspect of the disclosure provides a decorative light system comprising at least one light string having a first end comprising a plug, a second end having a receptacle to receive a plug, and a plurality of light bulbs dispersed between the first end and the second end, each light bulb arranged electrically in series, and the light bulbs comprising at least two LED chips, wherein at least one LED chip is connected in parallel and at least one LED chip is connected in reverse parallel; and a switchbox comprising at least one outlet to receive the plug of the light string, a power cord for connecting to a power means, and a switch having at least a first position and a second position, wherein when the switch is in the first position, a first pole is engaged allowing passage of a positive waveform lighting the LEDs connected in parallel and wherein when the switch is in the second position, a second pole is engaged allowing passage of a negative waveform lighting the LEDs connected in reverse parallel.
Another aspect of the present disclosure provides a decorative light system comprising a light string comprising a first end having a plug, a second end having a receptacle to receive a plug, a plurality of light bulbs dispersed between the first end and the second end, each light bulb arranged electrically in series, the light bulbs comprising at least two LED chips, wherein at least one LED chip is connected in parallel and at least one LED chip is connected in reverse parallel; and a switchbox integrated into the light string, the switchbox comprising a switch having a first position and a second position, wherein when the switch is in the first position, a first pole is engaged allowing passage of a positive waveform lighting the LEDs connected in parallel and wherein when the switch is in the second position, a second pole is engaged allowing passage of a negative waveform lighting said LEDS connected in reverse parallel.
Another aspect of the present disclosure provides a light string comprising a first end having a plug, a second end having a receptacle to receive a plug, at least one current limiting resistor serially connected to the light string, a plurality of light bulbs dispersed between the first end and the second end, each light bulb arranged electrically in series, the light bulbs comprising at least two LED chips each having a different color, wherein at least one LED chip is connected in parallel and at least one LED chip is connected in reverse parallel; and a switchbox comprising a switch having a first position, a second position, and a third position, wherein when the switch is in the first position, a first pole is engaged allowing passage of a positive waveform lighting the LEDs connected in parallel, wherein when the switch is in the second position, a second pole is engaged allowing passage of a negative waveform lighting the LEDs connected in reverse parallel, and wherein when the switch is in the third position, a third pole is engaged allowing passage of both a positive and negative waveform lighting the LEDs connected in parallel in a first color and the LEDs in reverse parallel in a second color.
In certain embodiments, the light system comprises a plurality of light strings electrically connected in series.
In other embodiments, the light system further comprises at least one current limiting resistor serially connected to the light string.
In yet another embodiment, the bulb comprises at least two LED chips, each having a different color.
In certain embodiments, the switchbox further comprises a third position, wherein when the switch is in the third position, a third pole is engaged allowing passage of both a positive and negative waveform lighting the LEDs connected in parallel in a first color and the LEDs connected in reverse parallel in a second color.
In another embodiment, the switchbox further comprises a fourth position, wherein when the switch is in the fourth position a fourth pole is engaged preventing the waveforms from passing through the light string.
In other embodiments, the switch is controlled by a remote control.
Other aspects of the present disclosure provide methods of changing the color of light emitted from a bulb on a light string of the present disclosure. In one embodiment, the method comprises connecting a power cord to a power means, connecting a plug of the light string into the outlet of the switchbox, manipulating the switch to the first position, wherein when the switch is in the first position, a first pole is engaged allowing passage of a positive waveform that is passed through the light string lighting half of the LEDs connected in parallel in a first color and optionally manipulating the switch to the second position, the second pole is engaged allowing passage of a positive waveform that is passed through the light string thereby lighting half of the LEDs connected in reverse parallel in a second color.
In another embodiment, the present disclosure provides a method of changing the color of light emitted from a bulb on a light string comprising connecting the plug to a power means, manipulating the switch to the first position, wherein when the switch is in the first position, a first pole is engaged allowing passage of a positive waveform that is passed through the light string lighting half of said LEDs connected in parallel in a first color; and optionally manipulating the switch to the second position, wherein when the switch is in the second position, a second pole is engaged allowing passage of a negative waveform that is passed through the light string thereby lighting half of the LEDs connected in reverse parallel in a second color.
In other embodiments, the methods of the present disclosure further comprise optionally manipulating the switch to the third position, wherein when the switch is in the third position, a third pole is engaged allowing passage of both a positive and negative waveform lighting the LEDs connected in parallel in a first color and the LEDs connected in reverse parallel in a second color.
In yet other embodiments, the methods further comprise optionally manipulating the switch to a fourth position, wherein when the switch is in the fourth position, a fourth pole is engaged preventing the waveform from passing through the light string.
These and other novel features and advantages of the disclosure will be fully understood from the following detailed description and the accompanying drawings.
Unless otherwise defined, all technical terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.
The articles “a” and “an” are used herein to refer to one or to more than one (i.e. at least one) of the grammatical object of the article. By way of example, “an element” means at least one element and can include more than one element.
As shown in
The light string system of the present disclosure may comprise many variations, all of which are within the scope of the present disclosure. For example, in one embodiment, and as shown in
In another embodiment of the present disclosure, and as shown in
In another embodiment of the present disclosure, and as shown in
The total operational voltage of the light string 1 of the present disclosure that is connected in series is equal to AC voltage in commercial power since each unit is connected in series, and thus does not require the need for a step-down transformer. For example, the average power supply to a household is 120V and follows a typical sinusoidal waveform as shown in
Referring to
In yet another embodiment, and as shown in
In another embodiment the switchbox 4 comprises a relay system which comprises two relays 19, 22 controlled by a remote control 11. As shown in
In a preferred embodiment of the present disclosure, the at least two LED chips are within a single bulb or housing. In such embodiments, the two LED chips can be adopted, connected in parallel, connected in reverse parallel, and integrated into a same housing. In this particular scenario, the connection thereof is very convenient and the connection wire can be saved. In one embodiment, the two LED chips comprised in the single housing have two kinds of colors that can be emitted when the two LEDs emit light individually and respectively. Moreover, another one or more colors of light may be achieved by adjusting the overlap time or the sequence of the two LEDs which emit light at the same time. For example, in one embodiment, directly plugging in the light string of the present disclosure into a standard wall socket will result in both LEDs emitting light at the same time, thereby providing additional colors and hues (e.g., pastel colors resulting from the mixing of white light generated from one LED chip and a colored light, such as blue, from the second LED chip). In other embodiments, the switchbox includes a switch position which provides for passage of both positive and negative waveforms down the light string resulting in both LEDs emitting light at the same time (e.g., a pass-through position). Alternatively, the timing of the lighting of both LEDs may be altered to adjust the color as desired. As used herein, the terms “housing” or “bulb” refer to any transparent or translucent material that allows at least some light to pass through, such as glass or plastic.
In other embodiments, each bulb may have more LEDs connected, preferably in even number sets. For example, a bulb may comprise 4, 6, 8 or 10 LED chips, where half of the LED chips are connected in parallel and the other half of the LED chips are connected in reverse parallel. For example, for a bulb comprising 4 LED chips, 2 LED chips may be connected in parallel, and the other two chips may be connected in reverse parallel. In certain embodiments, each LED chip will emit a different color. In other embodiments, all of the LED chips connected in parallel will emit one color, e.g., blue, red, green, yellow, white, etc., while the other LED chips connected in reverse parallel will emit a second color that is different from those connected in parallel. In a preferred embodiment, each bulb comprises 2 LED chips, one that is connected in parallel and the other that is connected in reverse parallel. More preferably, each chip is programmed to emit a color different from the other. It is also within the scope of the present disclosure that any combination of colors may be used. Furthermore, the number of bulbs on each light string can be adjusted accordingly, and can be readily determined by those skilled in the art. In certain embodiments, a light string will comprise between 10 and 200 bulbs electrically connected in series. In other embodiment, the light string will comprise between 10 and 150 bulbs electrically connected in series. In yet other embodiments, the light string will comprise between 10 and 100 bulbs electrically connected in series.
In other embodiments, a plurality of light strings may be serially linked together. In one embodiment, at least two light strings are serially linked together. In another embodiment, at least three light strings are serially linked together. In yet another embodiment, at least four light strings are serially linked together. In embodiments having light strings comprising a switchbox with a pass-through mode, all serially attached strings, except for the very first in the series, will be set to pass-through mode. In such embodiments, it is the switchbox connected to the very first string in the series which will control the passage of negative, positive or both types of waveforms.
In a preferred embodiment, and as shown in
According to another aspect, the present disclosure provides a method of changing colors on a light string according to the present disclosure by connecting the power cord to a power means, connecting the plug of the light string into the outlet of the switchbox, manipulating the switch to a first position, wherein when the switch is in the first position, a first pole is engaged allowing passage of a positive waveform that is passed through the light string lighting half of the LEDs connected in parallel in a first color. For example, as shown in
In another embodiment, the present disclosure provides a method changing the color of light emitted from a bulb on the light string comprising connecting the plug to a power means, manipulating the switch to a first position, wherein when the switch is in the first position a first pole is engaged allowing passage of a positive waveform through the light string lighting half of the LEDs connected in parallel in a first color. In preferred embodiments, the switch is integrated into said light string.
The methods of the present disclosure further provide optionally manipulating the switch to a second position, wherein a second pole is engaged allowing passage of a negative waveform through the light string thus lighting half of the LEDs connected in reverse parallel in a second color. For example, and as shown in
In other embodiments, the methods further provide optionally manipulating the switch to a third position, wherein when the switch is in a third position, a third pole is engaged allowing passage of both positive and negative waveforms lighting the LEDs connected in parallel in a first color and the LEDs connected in reverse parallel in a second color. For example, as shown in
In yet another embodiment, the method further provide optionally manipulating the switch to a fourth position, wherein when the switch is in the fourth position a fourth pole is engaged which prevents the passage of both positive and negative waveforms, thereby not lighting any of the LEDs.
It is to be understood that the above is merely a description of preferred embodiments of the disclosure and that various changes, alterations, and variations may be made without departing from the true spirit and scope of the invention as set forth in the appended claims. The several embodiments and variations described above can be combined with each other were suitable. The particular color schemes for the holidays described herein are merely examples and may vary. It is not necessary that the plurality of wires along the decorative light string be intertwined or bound; they could be provided in a 2-dimensional matrix or 3-dimensional structure. Also, the lights in each set need not be interleaved with lights of another set or sets. Few if any of the terms or phrases in the specification and claims has been given any special or particular meaning different from the plain language meaning, and therefore the specification is not to be used to define the terms in an unduly narrow sense.
This application claims priority to U.S. Provisional Patent Application No. 60/121,230, filed Dec. 10, 2008 in the name of Dean Hering et al. and entitled “Holiday LED Lighting System and Methods of Use,” the contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61121230 | Dec 2008 | US |