Technical Field
The present invention relates to a hollow cup winding, in particular to a hollow cup winding capable of reducing distribution coefficient.
Description of the Related Art
In traditional designs, winding coefficients are usually used to measure the utilization ratio of the counter electromotive force of the motor. Tooth sockets in a hollow cup are canceled, causing a decline in the distribution coefficient of the winding and also a decline in the performance of the motor. For example, three phases of windings are uniformly distributed on the surface of a motor stator by an angle of 120°, as shown in
The winding of the traditional hollow cup motor fails to effectively utilize conductors away from the middle line of the winding, resulting in a decline in the motor power intensity, an increase in the resistance and a deterioration of the performance.
The objective of the present invention is to provide a hollow cup winding capable of reducing the distribution coefficient, which can improve the performance of a motor and has high universality, to overcome defects in the prior art.
The objective of the present invention can be fulfilled by the following technical solution:
a hollow cup winding capable of reducing distribution coefficient is characterized by the N phases of windings. Each phase of the winding consists of a k (360/k/N)° coil units and the k coil units constitute the backing coil assemblies and forward coil assemblies.
The backing or forward connection of the k (360/k/N)° coil units is determined by the principle of the maximum counter electromotive force.
For a three-phase two-electrode motor, the three phases of windings are classified into forward coil assemblies and backing coil assemblies, and each coil assembly is comprised of two 60° coil units.
The two 60° coil units are respectively located below the NS electrodes of a stator core.
The three-phase windings are connected in a triangular shape or a star shape.
K is preferably an even number.
Compared with the prior art, the present invention has the following advantages:
1) The method employs k (360/k/N)° coils to reduce the distribution coefficients of individual coils, and the k coils are connected, in principle, to a maximum counter electromotive force according to the numerical value of k and the electrode number of the rotor to enhance the counter electromotive force.
2) By changing the coil distribution, the method makes full use of the conductors in the windings to generate more counter electromotive forces.
3) The method can enhance the counter electromotive force coefficient and improve the motor performance in a unit of phase resistance.
4) The method is flexibly implemented, provides options for coil numbers according to the electrode number of the rotor, employs a connection mode under the principle of maximum sum electromotive force and has universality.
The present invention is described in detail with reference to the attached drawings and embodiment.
Embodiment
Aiming at the problem of decline in the counter electromotive force caused by winding distribution, the present invention puts forward a relatively concentrated winding distribution, employs k (360/k/N)° coils to reduce the distribution coefficient of each coil, and determines the forward or backing connection of the coils under the principle of the maximum counter electromotive force according to the numerical value of K and the electrode number of a rotor. In a motor structure, under the condition where the coil number is unchanged, the method of the present invention can achieve a larger counter electromotive force in comparison with the traditional method.
Taking a three-phase two-electrode hollow cup motor as an example, three phases of windings are uniformly distributed at a stator core at a phase angle of 120° in a traditional solution, as shown in
Number | Date | Country | Kind |
---|---|---|---|
2015 1 0412979 | Jul 2015 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20070013238 | Edelson | Jan 2007 | A1 |
20100090558 | Suzuki | Apr 2010 | A1 |
20120007461 | Wang | Jan 2012 | A1 |
20130249344 | Folmli | Sep 2013 | A1 |
20130307366 | Naginsky | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
103326489 | Sep 2013 | CN |
204858795 | Dec 2015 | CN |
2012147622 | Aug 2012 | JP |
Entry |
---|
International Search Report (English and Chinese) and Written Opinion of international application PCT/CN2016/076104, dated Jun. 15, 2016, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20170214286 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2016/076104 | Mar 2016 | US |
Child | 15482233 | US |