Japanese Patent Application No. 2017-003921 filed on Jan. 13, 2017, including description, claims, drawings, and abstract the entire disclosure is incorporated herein by reference in its entirety.
The present invention relates to a hollow mold. More specifically, the present invention relates to a hollow mold which is formed by blow molding of a resin.
Conventionally, hollow molds which are formed by blow molding of a resin are publicly known (see, for example, PTL 1).
The hollow mold disclosed in PTL 1 is a defroster duct. The defroster duct is integrally formed with a main body part, and a plurality of attaching portions (protrusions) provided at the front end of the main body part. The attaching portion is formed in a rectangular shape in plan view so as to protrude forward along the surface direction of the top surface of the main body part.
PTL 1
Japanese Patent Application Laid-Open No. 2014-108580
Here, when molding the defroster duct by blow molding, it is necessary to form a portion including a burr in the attaching portion and thereafter remove the burr with a cutter by an operator for the purpose of integrally molding the main body part with the attaching portion protruding from the peripheral portion of the main body part, for example.
However, the burr of the peripheral portion of the attaching portion is removed with a cutter as follows. First, the cutter is advanced in the horizontal direction along the front end of the main body part; then, the orientation of the cutter is changed by 90° (right angle) at the root of the attaching portion so as to move the cutter forward; then, the orientation of the cutter is changed by 90° at the front end corner of the attaching portion so as to advance the cutter in the horizontal direction along the front end of the attaching portion; then, the orientation of the cutter is changed by 90° at the corner of the front end of the attaching portion so as to advance the cutter rearward; and then, the orientation of the cutter is changed by 90° at the attaching portion so as to advance the cutter along the front end of the main body part.
As described above, when the burr is cut off from the peripheral portion of the attaching portion with a cutter, the cutter is required to be moved rightward and leftward in the rectilinear movement in two-dimension, and therefore it is disadvantageously difficult to remove the burr at the peripheral portion of the attaching portion with high accuracy and high speed.
To solve the above-described problems, an object of the present invention is to provide a hollow mold which can improve the manufacturing efficiency for a hollow mold including a protrusion.
To solve the above-described problems, a hollow mold according to the embodiment of the present invention includes: a main body part having a hollow shape; and a protrusion protruding outward from the main body part. The main body part includes an end surface, and the protrusion includes an end surface, the end surface of the main body part and the end surface of the protrusion being flush with each other.
In the hollow mold, the end surface of the main body part and the end surface of the protrusion are flush with each other. Accordingly, the cutting operation is performed by linearly moving the cutter along the end portion of the protrusion from the end portion of the main body part in plan view, thus improving the efficiently of the operation of removing the burr of the protrusion to form the end surface. In this manner, the manufacturing efficiency for a resin hollow mold including a protrusion is improved.
An embodiment of the present invention is described in detail below with reference to the accompanying drawings.
As illustrated in
Defroster duct 1 supplies, from a defroster opening of a front end portion of the top surface of the instrument panel, air-conditioning wind for removing inner fogging of a windshield and a side window glass near a side mirror not illustrated in the drawing. Ventilation duct 3 (hollow mold) is integrally blow-shaped with defroster duct 1 by use of a resin such as polypropylene. Ventilation duct 3 (hollow mold) sends and supplies air-conditioning wind that is output from a vertical surface of the instrument panel into the vehicle interior. Steering hanger beam 5 is manufactured by press forming, welding, casting and the like by use of a metal such as iron and magnesium, or by injection molding with polyamide resin added by use of glass fiber, or the like. In addition, as described later, steering hanger beam 5 includes first locking projection 7, and steering hanger beam 5 and ventilation duct 3 are coupled to each other when first locking projection 7 is locked at protrusion 33 of ventilation duct 3.
To be more specific, as illustrated in
As illustrated in
In main body part 20, first resin member 21 disposed on the rear side and second resin member 23 disposed on the front side form inner hollow part 30. Specifically, a parison in the form of a tube composed of a molten resin is sandwiched with a metal mold in the blow molding, and thus the opposing parts of the parison are partially brought into contact with each other in a linear shape and coupled to each other, and then, air is jetted thereto so as to form main body part 20 having hollow part 30 therein. To be more specific, main body part 20 is formed in a closed cross sectional structure with rear surface 25 disposed on the rear side, bottom surface 27 disposed on the lower side, front surface 31 disposed on the front side, and top surface 29 disposed on the upper side. Then, the upper end portion of rear surface 25 of first resin member 21 and the front end portion of top surface 29 of second resin member 23 are joined to each other in an abutting state in the blow molding, and thus flange 22 extending obliquely upward is formed.
Protrusion 33 protrudes to the upper side, which is the direction intersecting top surface 29 of main body part 20. Protrusion 33 includes a pair of vertical wall surfaces 43 and upper bottom surface 41. Vertical wall surfaces 43 extend upward, which is the direction intersecting top surface 29 of main body part 20, and are separated from each other in the horizontal direction. Upper bottom surface 41 couples the upper ends of vertical wall surfaces 43 in the horizontal direction. End surfaces 53 and 55 of vertical wall surfaces 43 and upper bottom surface 41 are formed in a U-shape in front view. Thickness T2 of vertical wall surface 43 is smaller than thickness T1 of main body part 20. It is to be noted that end surface 51 of main body part 20 and end surfaces 53 and 55 of protrusion 33 are formed in a straight line in plan view as illustrated in
Next, a procedure of removing burr 61 of flange 22 in intermediate product 103 which is removed from a metal mold after blow molding is completed is described.
As illustrated in
First, by linearly moving cutter 63 along cutting line CL of flange 22 of main body part 20, the portion other than flange 22 except for protrusion 33 can be removed. Here, since protrusion 33 protrudes upward in such a manner as to intersect top surface 29 of main body part 20, cutting line CL of protrusion 33 and cutting line CL of flange 22 of main body part 20 are set as a straight line in plan view. Accordingly, when removing burr 61 of protrusion 33, burr 61 can be removed with cutter 63 without stopping cutter 63 or changing the orientation of cutter 63 as in the removal of burr 61 of flange 22 of main body part 20.
Next, the operation and the effect of the present embodiment are described below.
Ventilation duct 3 (hollow mold) according to the present embodiment includes main body part 20 including hollow part 30 therein, and protrusion 33 provided at an end portion of main body part 20 so as to protrude in the direction intersecting top surface 29 of main body part 20. End surface 51 of main body part 20 and end surfaces 53 and 55 of protrusion 33 are formed in a straight line in plan view. Here, the “end portion” means the joining part of the resin except for flange 22 in intermediate product 103.
In this manner, in ventilation duct 3, end surface 51 of main body part 20 and end surfaces 53 and 55 of protrusion 33 are formed in a straight line in plan view. In other words, as viewed from the upper side in the UPR direction in
That is, in the conventional hollow mold, protrusion 33 is protruded from the end portion of main body part 20 in plan view, and consequently, when removing burr 61 of the end portion of protrusion 33, it is necessary to turn cutter 63 rightward and leftward in the rectilinear movement in two dimension.
By contrast, in the present embodiment, it is not necessary to turn cutter 63 rightward or leftward in the rectilinear movement in two-dimension, and it is only necessary to linearly move cutter 63 in plan view, whereby the ease of removal of a burr is significantly increased.
Since end surfaces 53 and 55 of protrusion 33 are formed in a U-shape in front view, the cross-sectional area of the portion removed by cutter 63 is small in comparison with the case of solid protrusion 233 (see
Protrusion 33 includes a pair of vertical wall surfaces 43 separated from each other in the extending direction of main body part 20, and upper bottom surface 41 coupling the upper ends of vertical wall surfaces 43, and the thickness T2 of vertical wall surface 43 is smaller than thickness T1 of main body part 20.
Accordingly, the difference in the resistance force exerted on cutter 63 in removal of burr 61 between main body part 20 and protrusion 33 is further reduced. Accordingly, cutter 63 can be further smoothly moved from the end portion of main body part 20 to the end portion of protrusion 33.
In addition, the method of cutting burr 61 of ventilation duct 3 (hollow mold) according to the present embodiment is a method of cutting burr 61 integrally formed at an end portion of ventilation duct 3 made of a resin. Ventilation duct 3 includes main body part 20 including hollow part 30 therein, and protrusion 33 provided at an end portion of main body part 20 so as to protrude in the direction intersecting top surface 29 of main body part 20, and cutting line CL set at the end portion of main body part 20 and cutting line CL set at the end portion of protrusion 33 are formed in a straight line in plan view. End surfaces 53 and 55 of protrusion 33 and end surface 51 of main body part 20 are formed to be flush with each other by linearly moving cutter 63 from the end portion of main body part 20 to the end portion of protrusion 33 along cutting line CL in plan view to remove burr 61 of the end portion of protrusion 33 and flange 22 of main body part 20.
Since burr 61 of protrusion 33 can be removed by a cutting operation of linearly moving cutter 63 from the end portion of main body part 20 to the end portion of protrusion 33, the manufacturing efficiency for a hollow mold including protrusion 33 is improved.
That is, in the present embodiment, cutting line CL set at the end portion of main body part 20 and cutting line CL set at the end portion of protrusion 33 are formed in a straight line in plan view. Accordingly, it is not necessary to turn cutter 63 rightward or leftward in the rectilinear movement in two-dimension, and it is only necessary to linearly move cutter 63 in plan view, whereby the ease of removal of a burr is significantly increased.
In the method of removing burr 61 of ventilation duct 3 (hollow mold) according to the fourth aspect, the end portion of protrusion 33 is formed in a U-shape in front view.
Since the end portion of protrusion 33 is formed in a U-shape in front view as described above, the cross-sectional area of protrusions 33 and 233 removed with cutter 63 is largely different from the case of solid protrusion 233 (see
In the method of removing burr 61 of ventilation duct 3 (hollow mold) according to the fifth aspect, the end portion of protrusion 33 is composed of a pair of vertical wall surfaces 43 separated from each other in the extending direction of main body part 20 and upper bottom surface 41 coupling the upper ends of vertical wall surfaces 43, and the thickness T2 of vertical wall surface 43 is smaller than thickness T1 of main body part 20.
Since thickness T2 of vertical wall surface 43 is smaller than thickness T1 of main body part 20 as described above, the difference in the resistance force exerted on cutter 63 in removal of burr 61 between main body part 20 and protrusion 33 is further reduced. Accordingly, cutter 63 can be further smoothly moved from the end portion of main body part 20 to the end portion of protrusion 33.
It is to be noted that the present invention is not limited to the above-described embodiments, and various modification may be made based on the technical ideas of the present invention.
For example, as illustrated in
In addition, as illustrated in
Number | Date | Country | Kind |
---|---|---|---|
2017-003921 | Jan 2017 | JP | national |