This application claims priority to European application 17382450.9 filed Jul. 11, 2017, the contents of which are hereby incorporated by reference as if set forth in their entirety.
The present invention refers to an integrated hollow toroidal magnetic power unit comprising a hollow toroidal magnetic core, including one or more independent toroidal coils wound around said hollow toroidal magnetic unit, which provides one or two independent inductors, and one or more annular axial coils wound around the central axis defined by said hollow toroidal magnetic core, providing a single or a double (for example common-mode) choke configuration. Other configurations with one or more toroidal coils and annular axial coils are still possible within the scope of this invention provided their windings being orthogonal.
The annular axial coil or coils are integrated, or fully enclosed within the hollow toroidal magnetic core, achieving a better performance and a compact construction. This configuration uses the soft magnetic core more efficiently as two independent components, that with conventional technology would use one independent core each, are here wound on just one magnetic device that behaves as two independent electric components.
This magnetic power unit is particularly adapted to be used for example as a power transformer or inductor in the electrical power field, suitable for operating a high power electrical device, especially usable in the field of hybrid and electrical vehicles (HEVs) that nowadays is growing quite fast. The new models of electrical vehicles require more and more power electronics inside, not only for the electrical motor supply with speed and torque control, but also for high-voltage (HV) battery chargers and stable in-car continuous low-voltage (LV) power supplies. In an embodiment, the proposed magnetic power has been designed for an interconnecting box between HV battery and HV component in an electrical vehicle.
The hollow toroidal magnetic power unit of this invention responds to a new volumetric efficiency concept on magnetic units.
It will be understood along this description that references to geometric position, such as parallel, perpendicular, tangent, etc. allow deviations up to ±5° from the theoretical position defined by this nomenclature. It will also be understood that any range of values given may not be optimal in extreme values and may require adaptations of the invention to these extreme values are applicable, such adaptations being within reach of a skilled person.
U.S. Pat. No. 4,210,859 discloses an inductive device comprising a magnetic core and windings for producing two (see
EP patent application of the same applicant 16002354, discloses a compact magnetic power unit in which special solutions are provided to remove heat produced by the Foucault currents generated from the core of magnetic power unit particularly in the case of power transformers.
The present invention further develops the proposal of said embodiment, and includes embodiments with two annular axial coils, separated and electrically isolated, wound around the hollow toroidal magnetic core.
The present invention is directed to highly compact hollow toroidal magnetic power unit comprising, as known in the state of the art:
As will be understood a magnetic core is an element made of a material with a high magnetic permeability with the ability to confine and guide magnetic fields.
According to the invention the hollow toroidal magnetic core is formed by at least two different partial magnetic cores, corresponding to a first and second partial toroidal cores, assembled together by an attachment as a composed core in a layered configuration.
It is known in the state of the art, by the cited document U.S. Pat. No. 4,210,859, that first partial toroidal core having a toroidal groove defined therein, being said first partial toroidal core a body of revolution obtained from a U-shaped section. According to this document it is known to wound the annular axial coil around a coil-former included within the first toroidal groove. This feature allows an easy wounding operation of the annular axial coil around the coil-former and a posterior insertion of said wounded coil-former in the first toroidal groove.
The toroidal coil will be a coil wounded passing each turn through the inner passage, each turn crossing the inner cylindrical surface and the outer cylindrical surface.
The annular axial coil will be a coil wounded around the central axis of the hollow toroidal magnetic core.
The present invention proposes, as innovative features, the following features not known from the state of the art:
In a preferred embodiment, the hollow toroidal magnetic core is made of an electric conductive material, and the at least one toroidal coil and the at least one annular axial coil are electrically isolated, with an electric insulant element, regarding the hollow toroidal magnetic core;
Being the at least one toroidal and annular axial coils electrically isolated from the hollow toroidal magnetic core, the hollow toroidal magnetic core can be made not only of a magnetic conductive material, but also of a magnetic electroconductive material.
The magnetic core here disclosed can be made, for example, of a material selected among ferrite, ferromagnetic material, or a PBM (polymer-bonded soft magnetic material) injectable material and as indicated with electromagnetic properties. Besides, thanks to the design of the invention (several orthogonal coils around a single magnetic core) an important saving of the core material is also obtained.
Typically, the best magnetic conductive materials, having higher permeability with competitive prices, are also electro conductive materials (typically Mn Zn ferrites and Fe Si alloys). This power unit is designed to be connected to a high-power circuit; therefore, an elevated magnetic saturation limit and permeability of the material constitutive of the hollow toroidal magnetic core determines the size of the power unit and the power limit managed by said power unit. Therefore, the isolation of the toroidal and annular axial coils allows the selection of the best material for the hollow toroidal magnetic core, achieving a smaller power unit with higher performance. Preferably the hollow toroidal magnetic core is made of a Manganese Zinc alloy which has an elevated magnetic permeability.
The cited annular and toroidal gaps define an exit scape for the magnetic fields contained and guided by the hollow toroidal magnetic core.
The annular gap is defined in a plane perpendicular to the central axis, and prevents the magnetic saturation produced by the magnetic fields induced by the current conducted through the at least one annular axial coil.
The toroidal gap is defined in a plane parallel and coincident with the central axis, and prevents the magnetic saturation produced by the magnetic fields induced by the current conducted through the at least one toroidal coil.
Therefore, said annular and toroidal gaps prevent the magnetic saturation of the hollow toroidal magnetic core permitting an increase of the power conducted through the toroidal coil and the annular axial coil without increasing the size of the hollow toroidal magnetic core, or permits a reduction of the hollow toroidal magnetic core size, achieving a more compact power unit. The size of said annular and toroidal gaps can be adapted, optimizing each hollow toroidal power unit to the circuit to which it is connected.
The proposed power unit can be assembled onto electric insulating support base, and said support base include multiple pairs of metallic connection terminals.
Each toroidal coil and each annular axial coil is made of a single wire wounded multiple turns around the magnetic core. Each wire has two opposed ends which are electrically connected to said pair of metallic connection terminals. This feature permits an easy and safe connection of the hollow toroidal power unit proposed to a circuit.
The respective ends of the wires constitutive of said at least one annular axial coil are introduced within the first toroidal groove through an access opening provided in the outer cylindrical surface of the hollow toroidal magnetic core. Said access opening is preferably coincident with the toroidal gap and connected to the toroidal gap, permitting an easy insertion of the coil-former, carrying the at least one annular axial coil, within the hollow toroidal magnetic core in the central axis direction.
The wires cannot be in electrical contact neither with the hollow toroidal magnetic core nor with the access openings.
When the air gap cited above is defined between the first and second partial toroidal cores, said first and second partial toroidal cores are, according to a preferred embodiment, spaced apart by spacers placed there between, or by spacers defined by protrusions protruding from the surfaces of the first and second partial toroidal cores facing each other.
Said spacers can be, for example, protrusions of the first and/or second partial toroidal cores, or alternatively can be provided by the coil-former, by the electric isolated support base or by another structure non-included within the hollow toroidal magnetic core.
According to an embodiment of the present invention both first and second partial toroidal cores have toroidal grooves. The coil-former of the at least one annular axial coil is therefore partially inserted within the first toroidal groove, provided in the first partial toroidal core, and simultaneously partially inserted in the second toroidal groove provided in the second partial toroidal core.
This feature determine that the cited annular gap is placed in an intermediate position of the outer cylindrical surface of the hollow toroidal magnetic core, said gab facing the annular axial coil, having first and second partial toroidal cores a similar or identical size, offering similar or identical magnetic saturation limit and therefore optimizing the power conducted through the hollow toroidal power unit.
Preferably said first and second partial toroidal cores are symmetric. In this case the annular gap is exactly in a central position of the outer cylindrical surface of the hollow toroidal magnetic core, being both first and second partial toroidal cores equal in size, providing equal magnetic saturation level.
The electric insulant element cited above can be, for example, a hollow toroidal shell surrounding the hollow toroidal magnetic core. Said electric insulant element can be formed by two toroidal shells coupled together surrounding the hollow toroidal magnetic core. Alternatively, the electric insulant element can be an electric insulant material over-molded around the hollow toroidal magnetic core.
In an additional alternative embodiment, said at least one toroidal coil is made of a wire covered with said electric insulant element being a flexible material, so that after wounding said insulated wire around the hollow toroidal magnetic core the insulant material isolates the wire constitutive of the toroidal coil from the hollow toroidal magnetic core.
The isolation of the at least one annular axial coil can be achieved using a coil-former made of an electrical insulating material, heat conductive polymer, for example.
Another embodiment of the present invention is to provide at least two independent toroidal coils wounded around the same hollow toroidal magnetic core. This provides the present power unit of capabilities only achievable using two different power units with respective different magnetic cores.
This embodiment can be achieved using at least two different wires, each isolated with said electric insulant element. Each single turn of one independent toroidal coil, wounded around the hollow toroidal magnetic core, shall be placed between consecutive turns of the other independent toroidal coil wounded around the hollow toroidal magnetic core. This solution provides two or more toroidal coils wounded around the hollow toroidal magnetic core.
According to an alternative solution of this embodiment said at least one toroidal coil comprises two independent toroidal coils, being each independent toroidal coil wounded around a different circular sector of the hollow toroidal magnetic core, being said different circular sectors defined by a magnetic wall parallel and coincident with the central axis placed within the tubular inner passage. Said magnetic wall separates the magnetic fields of the two independent toroidal coils wounded around different circular sectors of the hollow toroidal magnetic core, preventing interferences which could reduce the efficiency of the power unit.
Alternatively, is proposed that the power unit includes at least two independent annular axial coils having equal diameter and being spaced apart in the direction of the central axis. This feature permits the integration of two different choke configurations into the same hollow toroidal power unit.
The magnetic power unit, including the toroidal coil, is preferably covered with an electric insulant material over-molded leaving the pairs of metallic connection terminals uncovered, protecting the hollow toroidal power unit and preventing manipulation or accidents.
Preferably a thermally conductive element is inserted within the inner passage of the hollow toroidal magnetic core and in thermal contact with the hollow toroidal magnetic power unit said thermally conductive element being integrated in a cooling structure including a heatsink. Said thermally conductive element permits the evacuation of the heat produced within the power unit.
In a preferred embodiment, the thermally conductive element is a hollow pipe filled with a fluid with a low boiling point.
The method of production of the hollow toroidal magnetic power unit is also proposed as part of a second aspect of the present invention, said method including wounding at least one annular axial coil around the coil-former, then the insertion of said coil-former, carrying the at least one annular axial coil, within the first toroidal groove of the first partial toroidal core. Then the second partial toroidal core is placed overlapped and facing an annular face of the first partial toroidal core leaving an annular gap there between. The width of said annular gap can be defined by a spacer placed there between, for example a protrusion of the coil-former, and therefore can be adapted to each single use of the power unit produced.
When the second partial toroidal core includes a second groove the coil-former is also inserted therein.
Connection wires of the at least one annular axial coils exit from the hollow toroidal magnetic core through access openings provided in the outer cylindrical surface of the hollow toroidal magnetic core.
Then, according to a first embodiment of the method, the hollow toroidal magnetic core is encapsulated within an electric insulant element, for example by over-molding a plastic cover around it, or assembling two toroidal shells around it. At least one toroidal coil is then wound around the insulated hollow toroidal magnetic core.
Alternatively, the hollow toroidal magnetic core can be not insulated with the electric insulant element if the conductive wire constitutive of the toroidal core is a wire insulated with the electric insulant element, for example a flexible plastic covering said conductive wire.
Then the power unit is attached to a support base and the wires constitutive of the annular and toroidal coils are connected to metallic connection terminals integrated on said support base.
It will also be understood that any range of values given may not be optimal in extreme values and may require adaptations of the invention to these extreme values are applicable, such adaptations being within reach of a skilled person.
Other features of the invention appear from the following detailed description of an embodiment.
The foregoing and other advantages and features will be more fully understood from the following detailed description of an embodiment with reference to the accompanying drawings, to be taken in an illustrative and not limitative, in which:
According to an embodiment of the present invention the hollow toroidal power unit includes a hollow toroidal magnetic core 1 made of a magnetic and electric conductive material, preferably a zinc alloy material which has a high magnetic saturation level.
The hollow toroidal magnetic core 1 is a body of revolution obtained from a squared section revolved around a central axis A. Said hollow toroidal magnetic core 1 defines an inner cylindrical surface 3, surrounding an inner passage 4, and an outer cylindrical surface 2, both concentric with the central axis A.
Said hollow toroidal magnetic core 1 is made of a first partial toroidal core 10 and a symmetric second toroidal partial core 20, having both toroidal partial cores 10 and 20 corresponding annular faces facing each other.
The first partial toroidal core 10 includes a first toroidal groove concentric with the central axis A, being said toroidal groove accessible through said annular face of the first partial toroidal core 10.
The second partial toroidal core 20 is, according to the present embodiment, symmetric and includes a second toroidal groove symmetric to the first toroidal groove. When first and second partial toroidal cores 10 and 20 are facing each other both first and second partial toroidal cores define a hollow toroidal magnetic core 1. This feature can be shown in
A coil-former 42 made of plastic is inserted within said hollow toroidal magnetic core 1, said coil-former 42 receiving an annular axial coil 40 wounded around. Being the coil-former 42 inserted within the toroidal groove said annular axial coil 40 is concentric to the central axis A.
Said coil-former 42 is defined, according to the embodiments shown on
According to an alternative embodiment of this feature, shown on
The inclusion of more than two annular axial coils 40 within the hollow toroidal magnetic core 1 is also contemplated.
Both first and second partial toroidal cores 10 and 20 include one toroidal gap 52 defined in a plane parallel and coincident with the central axis A, said toroidal gap 52 being an interruption of the annular continuity of the material constitutive of the first partial toroidal core 10 and of the second partial toroidal core 20. Preferably said gap of the first and the second toroidal partial cores are coincident.
Said toroidal gap 52 offers an exit to the magnetic fields created and guided by the toroidal coil 30 on said hollow toroidal magnetic core 1 preventing the magnetic saturation of the hollow toroidal magnetic core 1. Said toroidal gap 52 can interrupt completely the magnetic material continuity of the hollow toroidal magnetic core 1, has shown on
The access opening 12 are preferably provided in the outer cylindrical surface 2 of the hollow toroidal magnetic core 1.
In addition, each hollow toroidal magnetic core 10, 20 also include an annular gap 51 defined in a plane perpendicular to the central axis A, being placed said annular gap 51 between the first and second partial toroidal cores 10 and 20.
According to the present embodiment of the invention, the hollow toroidal magnetic core 1, containing the annular axial coil 40, is encapsulated within an electric insulant element 70 made of a hollow toroidal shell of electric insulating material. Said hollow toroidal shell is made of two toroidal shells coupled together around the hollow toroidal magnetic core 1.
Alternatively said electric insulant element 70 is an over-moulded electric insulating material, for example plastic.
A toroidal coil 30 of conductive wire is wounded around said hollow toroidal magnetic core 1 covered with the electric insulating element 70.
In an alternative embodiment, the hollow toroidal magnetic core 1 is not encapsulated with electric insulant element 70, and the toroidal coil 30 is wounded directly around the hollow toroidal magnetic core 1, but in this embodiment the conductive wire constitutive of the toroidal coil 30 shall be an electric insulated conductive wire, covered with the electric insulant element 70, as shown on
According to an embodiment of the present invention the hollow toroidal magnetic core 1 comprises two toroidal coils 30 (see
Alternatively the two toroidal coils 30 can be wounded in parallel (
The cited hollow toroidal power unit described above is attached to an insulant support base 60, which is provided with metallic connection terminals 61. Each conductive wire constitutive of a toroidal coil 30 or an annular axial coil 40 has respective two opposed ends each connected to one metallic connection terminal 61 of the support base 60. Said metallic connection terminals 61 permit an easy, reliable and safe electric connection between the hollow toroidal power unit and an electric circuit.
The invention also proposes the insertion of a thermally conductive element 80 within the inner passage 4 of the hollow toroidal magnetic core 1, being said thermally conductive element 80 in thermal contact with the toroidal magnetic power unit. Said thermally conductive element 80 is integrated in a cooling structure including a heatsink, for example a sink plate, in such a way that the heat produced within the hollow toroidal power unit is conducted from the inner passage 4 to the sink plate through the thermally conductive element 80, producing a cooling effect of the hollow toroidal power unit.
Preferably the hollow toroidal power unit is covered by an over-moulded cover, only leaving uncovered the metallic connection terminals 61 and, if there is a thermal conductive element 80 also leaving uncovered the correspondent sink plate. Said over-moulded cover can also be introduced within the interspace between the inner cylindrical surface 3 of the hollow toroidal magnetic core 1 and the thermal conductive element 80, assuring the thermal transmission there between.
It will be understood that various parts of one embodiment of the invention can be freely combined with parts described in other embodiments, even being said combination not explicitly described, provided there is no harm in such combination.
Number | Date | Country | Kind |
---|---|---|---|
17382450.9 | Jul 2017 | EP | regional |