Holographic wide angle display

Information

  • Patent Grant
  • 11460621
  • Patent Number
    11,460,621
  • Date Filed
    Wednesday, April 15, 2020
    4 years ago
  • Date Issued
    Tuesday, October 4, 2022
    2 years ago
Abstract
An apparatus for displaying an image, including: an input image node configured to provide at least a first and a second image modulated lights; and a holographic waveguide device configured to propagate the at least one of the first and second image modulated lights in at least a first direction. The holographic waveguide device includes: at least a first and second interspersed multiplicities of grating elements disposed in at least one layer, the first and second grating elements having respectively a first and a second prescriptions. The first and second multiplicity of grating elements are configured to deflect respectively the first and second image modulated lights out of the at least one layer into respectively a first and a second multiplicities of output rays forming respectively a first and second FOV tiles.
Description
BACKGROUND

There is a need for a compact see through data display capable of displaying image content ranging from symbols and alphanumeric arrays to high-resolution pixelated images. The display should be highly transparent and the displayed image content should be clearly visible when superimposed over a bright background scene. The display should provide full color with an enhanced color gamut for optimal data visibility and impact. A desirable feature is that the display should be as easy to wear, natural and non-distracting as possible with a form factor similar to that of ski goggles or, more desirably, sunglasses. The eye relief and pupil should be big enough to avoid image loss during head movement even for demanding military and sports activities. The image generator should be compact, solid state and have low power consumption.


The above goals are not achieved by current technology. Current wearable displays only manage to deliver see through, adequate pupils, eye relief and field of view and high brightness simultaneously at the expense of cumbersome form factors. In many cases weight is distributed in undesirable place for a wearable display in front of the eye. One common approach to providing see through relies on reflective or diffractive visors illuminated off axis. Microdisplays, which provide high-resolution image generators in tiny flat panels, often do not necessarily help with miniaturizing wearable displays because a general need for very high magnifications inevitably results in large diameter optics. Several ultra low form factor designs offering spectacle-like form factors are currently available but usually demand aggressive trade-offs against field of view (FOV), eye relief and exit pupil.


A long-term goal for research and development in HMDs is to create near-to-eye, color HMDs featuring:

    • a) high resolution digital imagery exceeding the angular resolution of standard NVGs over the entire field of view and focused at infinity;
    • b) a 80°×40° monocular field-of-view (FOV) HIVID, or a 120°×40° binocular FOV HIVID with 40° stereoscopic overlap at the center of the FOV;
    • c) a high see-through (≥90%) display with an unobstructed panoramic view of the outside world, a generous eye box, and adequate eye relief; and
    • d) a light-weight, low-profile design that integrates well with both step-in visors and standard sand, wind and dust goggles.


Although the imagery will be displayed over a certain field of view, the panoramic see-through capability may be much greater than this and generally better than the host visor or goggles. This is an improvement over existing NVGs, where the surrounding environment is occluded outside the 40° field of view.


One desirable head-worn display is one that: (1) preserves situational awareness by offering a panoramic see-through with high transparency; and (2) provides high-resolution, wide-field-of-view imagery. Such a system should also be unobtrusive; that is, compact, light-weight, and comfortable, where comfort comes from having a generous exit pupil and eye motion box/exit pupil (>15 mm), adequate eye relief (≥25 mm), ergonomic center of mass, focus at infinity, and compatibility with protective head gear. Current and future conventional refractive optics cannot satisfy this suite of requirements. Other important discriminators include: full color capability, field of view, pixel resolution, see-through, luminance, dynamic grayscale and low power consumption. Even after years of highly competitive development, HWDs based on refractive optics exhibit limited field of view and are not compact, light-weight, or comfortable.


Head-mounted displays based on waveguide technology substrate guided displays have demonstrated the capability of meeting many of these basic requirements. Of particular relevance is a patent (U.S. Pat. No. 5,856,842) awarded to Kaiser Optical Systems Inc. (KOSI), a Rockwell Collins subsidiary, in 1999, which teaches how light can be coupled into a waveguide by employing a diffractive element at the input and coupled out of the same waveguide by employing a second diffractive element at the output. According to U.S. Pat. No. 5,856,842, the light incident on the waveguide needs to be collimated in order to maintain its image content as it propagates along the waveguide. That is, the light should be collimated before it enters the waveguide. This can be accomplished by many suitable techniques. With this design approach, light leaving the waveguide may be naturally collimated, which is the condition needed to make the imagery appear focused at infinity. Light propagates along a waveguide only over a limited range of internal angles. Light propagating parallel to the surface will (by definition) travel along the waveguide without bouncing. Light not propagating parallel to the surface will travel along the waveguide bouncing back and forth between the surfaces, provided the angle of incidence with respect to the surface normal is greater than some critical angle. For BK-7 glass, this critical angle is ˜42°. This can be lowered slightly by using a reflective coating (but this may diminish the see through performance of the substrate) or by using a higher-index material. Regardless, the range of internal angles over which light will propagate along the waveguide does not vary significantly. Thus, for glass, the maximum range of internal angles is ≤50°. This translates into a range of angles exiting the waveguide (i.e.; angles in air) of <40°; generally less, when other design factors are taken into account.


To date, SGO technology has not gained wide-spread acceptance. This may be due to the fact that waveguide optics can be used to expand the exit pupil but they cannot be used to expand the field of view or improve the digital resolution. That is, the underlying physics, which constraints the range of internal angles that can undergo total internal reflection (TIR) within the waveguide, may limit the achievable field of view with waveguide optics to at most 40° and the achievable digital resolution to that of the associated image.


BRIEF SUMMARY OF INVENTION

In view of the foregoing, the Inventors have recognized and appreciated the advantages of a display and more particularly to a transparent display that combines Substrate Guided Optics (SGO) and Switchable Bragg Gratings (SBGs).


Accordingly, provided in one aspect of some embodiments is an apparatus for displaying an image, comprising: an input image node configured to provide at least a first and a second image modulated lights; and a holographic waveguide device configured to propagate the at least one of the first and second image modulated lights in at least a first direction. The holographic waveguide device may comprise: at least a first and second interspersed multiplicities of grating elements disposed in at least one layer, the first and second grating elements having respectively a first and a second prescriptions. The first and second image modulated lights may be modulated respectively with first field of view (FOV) and second FOV image information. The first multiplicity of grating elements may be configured to deflect the first image modulated light out of the at least one layer into a first multiplicity of output rays forming a first FOV tile, and the second multiplicity of grating elements may be configured to deflect the second image modulated light out of the layer into a second multiplicity of output rays forming a second FOV tile.


Provided in another aspect of some embodiments is a method of displaying an image, the method comprising: (i) providing an apparatus comprising: an input image node and a holographic waveguide device comprising (M×N) interspersed multiplicities of grating elements, where M, N are integers; (ii) generating image modulated light (I,J) input image node corresponding to field of view (FOV) tile (I,J), for integers 1≤I≤N and 1≤J≤M; (iii) switching grating elements of prescription matching FOV tile (I,J) to their diffracting states; (iv) illuminating grating elements of prescription matching FOV tile (I,J) with image modulated light (I,J); and (v) diffracting the image modulated light I, J into FOV tile I, J.


A more complete understanding of the invention can be obtained by considering the following detailed description in conjunction with the accompanying drawings, wherein like index numerals indicate like parts. For purposes of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail.


It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. In particular, all combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter disclosed herein. It should also be appreciated that terminology explicitly employed herein that also may appear in any disclosure incorporated by reference should be accorded a meaning most consistent with the particular concepts disclosed herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The skilled artisan will understand that the drawings primarily are for illustrative purposes and are not intended to limit the scope of the inventive subject matter described herein. The drawings are not necessarily to scale; in some instances, various aspects of the inventive subject matter disclosed herein may be shown exaggerated or enlarged in the drawings to facilitate an understanding of different features. In the drawings, like reference characters generally refer to like features (e.g., functionally similar and/or structurally similar elements).



FIG. 1 is a schematic illustration of a color waveguide display architecture using stacked gratings where each grating prescription corresponds to waveguide light being diffracted into a unique field of view tile.



FIG. 2 is a schematic cross section view of a waveguide display in one embodiment using stacked gratings indicating the FOV provided by each grating.



FIG. 3A is a schematic cross section view of a tessellated waveguide display in one embodiment showing a detail of the tessellation pattern.



FIG. 3B is a schematic cross section view of a tessellated waveguide display in one embodiment showing a detail of the tessellation pattern in which the grating elements are uniformly interspersed.



FIG. 3C is a schematic cross section view of a tessellated waveguide display in one embodiment showing a detail of the tessellation pattern in which the grating elements are randomly interspersed.



FIG. 4 is a schematic front elevation view of the function elements of a tessellated waveguide display in one embodiment.



FIG. 5 is a schematic front elevation view of a tessellated waveguide display in one operational state in one embodiment.



FIG. 6 is a schematic front elevation view of a tessellated waveguide display showing details of the Input Image Node in one embodiment.



FIG. 7 illustrates the operation of the Input Image Node in one embodiment.



FIG. 8A is a tessellation pattern comprising rectangular elements of differing size and aspect ratio in one embodiment.



FIG. 8B is a tessellation pattern comprising Penrose tiles in one embodiment.



FIG. 8C is a tessellation pattern comprising hexagons in one embodiment.



FIG. 8D is a tessellation pattern comprising squares in one embodiment.



FIG. 9A is a tessellation pattern comprising diamond-shaped elements in one embodiment.



FIG. 9B is a tessellation pattern comprising isosceles triangles in one embodiment.



FIG. 10A is a tessellation pattern comprising hexagons of horizontally biased aspect ratio in one embodiment.



FIG. 10B is a tessellation pattern comprising rectangles of horizontally biased aspect ratio in one embodiment.



FIG. 10C is a tessellation pattern comprising diamond shaped elements of horizontally biased aspect ratio in one embodiment.



FIG. 10D is a tessellation pattern comprising triangles of horizontally biased aspect ratio in one embodiment.



FIG. 11 is a schematic cross sectional view of a tessellated waveguide containing two grating layers in one embodiment.



FIG. 12A shows an example of a tessellation pattern comprising four different grating element types with an eye pupil overlaid in one embodiment.



FIG. 12B shows an example of a tessellation pattern comprising one grating element types with an eye pupil overlaid in one embodiment.



FIG. 12C shows an example of a tessellation pattern comprising two different grating element types with an eye pupil overlaid in one embodiment.



FIG. 12D shows an example of a tessellation pattern comprising three different grating element types with an eye pupil overlaid in one embodiment.



FIG. 13 shows an example of a tessellation pattern for one particular grating element type with an eye pupil overlaid in one embodiment.



FIG. 14 is a chart showing the MTF versus angular frequency for the tessellation pattern of FIG. 13 in one embodiment.



FIG. 15 shows an example of a tessellation pattern using rectangular elements of horizontally biased aspect ratio and comprising elements of five different types in one embodiment.



FIG. 16A illustrates the projection into the exit pupil of tessellation elements of a first type corresponding to a first field of view with an eye pupil overlaid in one embodiment.



FIG. 16B illustrates the projection into the exit pupil of tessellation elements of a second type corresponding to a second field of view with an eye pupil overlaid in one embodiment.



FIG. 16C illustrates the projection into the exit pupil of tessellation elements of a third type corresponding to a third field of view with an eye pupil overlaid in one embodiment.



FIG. 16D shows the field of view tile corresponding to the tessellation elements of FIG. 16A in one embodiment.



FIG. 16E shows the field of view tile corresponding to the tessellation elements of FIG. 16B.



FIG. 16F shows the field of view tile corresponding to the tessellation elements of FIG. 16C in one embodiment.



FIG. 17 shows the distribution of tessellation element types within regions labelled by numerals 1-7 used to provide a field of view tiling pattern illustrated in FIG. 18 in one embodiment.



FIG. 18 shows a field of view tiling pattern comprising four horizontal tiles and three vertical tiles.



FIG. 19A shows a tessellation pattern comprising elements of one type from regions 1 and 7 in one layer of a two layer waveguide in the embodiment illustrated in FIGS. 17-18 in one embodiment.



FIG. 19B shows overlaid tessellation patterns from both layers of the waveguide of FIG. 19A in one embodiment.



FIG. 20A shows a tessellation pattern comprising elements of one type from regions 2 and 6 in one layer of a two layer waveguide in the embodiment illustrated in FIGS. 17-18 in one embodiment.



FIG. 20B shows overlaid tessellation patterns from both layers of the waveguide of FIG. 20A in one embodiment.



FIG. 21A shows a tessellation pattern comprising elements of one type from regions 3 and 5 in one layer of a two layer waveguide in the embodiment of the invention illustrated in FIGS. 17-18 in one embodiment.



FIG. 21B shows overlaid tessellation patterns from both layers of the waveguide of FIG. 21A in one embodiment.



FIG. 22A shows a tessellation pattern comprising elements of one type from region 4 in one layer of a two layer waveguide in the embodiment of the invention illustrated in FIGS. 17-18.



FIG. 22B shows overlaid tessellation patterns from both layers of the waveguide of FIG. 22A in one embodiment.



FIG. 23 illustrates the composite tessellation pattern resulting from the superposition of the tiling patterns of FIGS. 19A-22B in one embodiment.



FIG. 24 shows an example of a tessellation pattern in a two layer waveguide for grating elements of one type only in one embodiment.



FIG. 25 shows the composite tessellation pattern in a first layer of a two layer waveguide in one embodiment.



FIG. 26 shows the composite tessellation pattern in a second layer of a two layer waveguide in one embodiment.



FIG. 27A is a schematic cross section view showing the image output portion of an Input Image Node in one embodiment.



FIG. 27B is a schematic cross section view showing the image input portion of an Input Image Node in one embodiment.



FIG. 28A is a cross section view showing the Input Image Node and its coupling to the DigiLens waveguide via the Vertical Beam Expander in one embodiment.



FIG. 28B shows a ray trace of the embodiment of FIG. 28A in one embodiment.



FIG. 29 is a plan view of the DigiLens waveguide and the Vertical Beam Expander in one embodiment.



FIG. 30A shows a waveguide 252 with input rays directed into the TIR paths by a coupling grating in one embodiment.



FIG. 30B shows a waveguide in one embodiment having input coupling optics comprising the first and second gratings disposed adjacent each other, the half wave film sandwiched by the waveguide and the first grating; and a polarizing beam splitter (PBS) film sandwiched by the waveguide and the second.



FIG. 31 is a schematic cross section of a portion of a waveguide used in the invention in which light is extracted from the waveguide in opposing directions in one embodiment.



FIG. 32 is a schematic cross section of a portion of a waveguide used in the invention incorporating a beam splitter layer for improving illumination uniformity in one embodiment.



FIG. 33 illustrates a method of reducing the number of wiring tracks in an electrode layer using dual sided addressing in one embodiment.



FIG. 34 illustrates one scheme for interleaving electrode wiring tracks in a tessellated waveguide in one embodiment.



FIG. 35 illustrates another scheme for interleaving electrode wiring tracks in a tessellated waveguide in one embodiment.



FIG. 36 illustrates a further scheme for interleaving electrode wiring tracks in a tessellated waveguide in one embodiment.



FIG. 37A shows a schematic plan view of a curved visor implementation of the invention in one embodiment.



FIG. 37B shows a schematic side elevation view of a curved visor implementation of the invention in one embodiment.



FIG. 38 show a cross section of a curved visor implementation of the invention in which the DigiLens comprises laminated optically isolated waveguides in one embodiment.



FIG. 39 show a cross section of a curved visor implementation of the invention in which the DigiLens comprises laminated grating layers that form a single waveguiding structure in one embodiment.



FIG. 40A shows a cross section of a curved visor implementation of the invention in which the DigiLens comprises facetted elements in one embodiment.



FIG. 40B shows the optical interface between two of the facetted elements of FIG. 40A in one embodiment.



FIG. 40C illustrates the optical interface between two of the facetted elements of FIG. 40A in more detail in one embodiment.



FIG. 41 show a cross section of a curved visor implementation of the invention in which the DigiLens comprises facetted elements embedded in a curved lightguide in one embodiment.



FIG. 42A is a chart showing the variation of diffraction efficiency with angle for a micro tessellated pattern in one embodiment of the invention in one embodiment.



FIG. 42B shows the micro-tessellation distribution corresponding to the chart of FIG. 42A in one embodiment.



FIG. 43A is a chart showing a MTF plot for a regular micro tessellation pattern with 50% aperture fill in one embodiment.



FIG. 43B is a schematic illustration showing the effect of 50% aperture fill produced by the micro tessellation pattern of FIG. 43A in one embodiment.



FIG. 44A is a chart showing a MTF plot for a regular micro tessellation pattern with 25% aperture fill in one embodiment.



FIG. 44B is a schematic illustration showing the effect of 25% aperture fill produced by the micro tessellation pattern of FIG. 43A in one embodiment.



FIG. 45A is a chart showing a MTF plot for a regular micro tessellation pattern with 50% aperture fill in one embodiment.



FIG. 45B is a footprint diagram for the case of FIG. 45A in one embodiment.



FIG. 46A is a footprint diagram showing the effect of 75% aperture fill for 50 micron micro tessellations in one embodiment.



FIG. 46B is a chart showing a MTF plot illustrating the effect of 75% aperture fill for 50 micron micro tessellations in one embodiment.



FIG. 47A is a footprint diagram showing the effect of 50% aperture fill for 50 micron micro tessellations in one embodiment.



FIG. 47B is a chart showing a MTF plot illustrating the effect of 50% aperture fill for 50 micron micro tessellations in one embodiment.



FIG. 48A is a footprint diagram showing the effect of 25% aperture fill for 50 micron micro tessellations in one embodiment.



FIG. 48B is a chart showing a MTF plot illustrating the effect of 25% aperture fill for 50 micron micro tessellations in one embodiment.



FIG. 49A is a footprint diagram showing the effect of 75% aperture fill for 125 micron micro tessellations in one embodiment.



FIG. 49B is a chart showing a MTF plot illustrating the effect of 75% aperture fill for 125 micron micro tessellations in one embodiment.



FIG. 50A is a footprint diagram showing the effect of 50% aperture fill for 125 micron micro tessellations in one embodiment.



FIG. 50B is a chart showing a MTF plot illustrating the effect of 50% aperture fill for 125 micron micro tessellations in one embodiment.



FIG. 51A is a footprint diagram showing the effect of 25% aperture fill for 125 micron micro tessellations in one embodiment.



FIG. 51B is a chart showing a MTF plot illustrating the effect of 25% aperture fill for 125 micron micro tessellations in one embodiment.



FIG. 52A is a footprint diagram showing the effect of 75% aperture fill for 250 micron micro tessellations in one embodiment.



FIG. 52B is a chart showing a MTF plot illustrating the effect of 75% aperture fill for 250 micron micro tessellations in one embodiment.



FIG. 53A is a footprint diagram showing the effect of 50% aperture fill for 250 micron micro tessellations in one embodiment.



FIG. 53B is a chart showing a MTF plot illustrating the effect of 50% aperture fill for 250 micron micro tessellations in one embodiment.



FIG. 54A is a footprint diagram showing the effect of 25% aperture fill for 250 micron micro tessellations in one embodiment.



FIG. 54B is a chart showing a MTF plot illustrating the effect of 25% aperture fill for 250 micron micro tessellations in one embodiment.



FIG. 55A is a footprint diagram showing the effect of 1 mm tessellation at 50% aperture fill for 125 micron micro tessellations for a 3 mm eye pupil diameter in one embodiment.



FIG. 55B is a chart showing a MTF plot illustrating the effect of 1 mm tessellation at 50% aperture fill for 125 micron micro tessellations for a 3 mm eye pupil diameter in one embodiment.



FIG. 56A is a footprint diagram showing the effect of 1.5 mm tessellation at 50% aperture fill for 125 micron micro tessellations for a 3 mm eye pupil diameter in one embodiment.



FIG. 56B is a chart showing a MTF plot illustrating the effect of 1.5 mm tessellation at 50% aperture fill for 125 micron micro tessellations for a 3 mm eye pupil diameter in one embodiment.



FIG. 57A is a footprint diagram showing the effect of 3 mm tessellation at 50% aperture fill for 125 micron micro tessellations for a 3 mm eye pupil diameter in one embodiment.



FIG. 57B is a chart showing a MTF plot illustrating the effect of 3 mm tessellation at 50% aperture fill for 125 micron micro tessellations for a 3 mm eye pupil diameter in one embodiment.



FIG. 58A is a chart showing the MTF of a User Defined Aperture in one embodiment.



FIG. 58B is a chart showing the MTF of a Bitmap Aperture Function in one embodiment.



FIG. 59A is a Bitmap Aperture Function in one embodiment of the invention in one embodiment.



FIG. 59B is a chart showing diffraction efficiency versus angle for the embodiment of FIG. 59A in one embodiment.



FIG. 60 is a MTF plot showing the effect of 1.0 mm tessellation using 125 um micro tessellations randomly positioned with variable transmission and a 3 mm eye pupil in one embodiment.



FIG. 61 is a Bitmap Aperture Function in one embodiment.



FIG. 62 is a MTF plot showing the effect of 1.5 mm tessellation using 125 um micro tessellations randomly positioned with variable transmission and a 3 mm eye pupil in one embodiment.



FIG. 63 is a first illumination uniformity analysis of a first implementation tessellation pattern in one embodiment.



FIG. 64 is a second illumination uniformity analysis of a first implementation tessellation pattern in one embodiment.



FIG. 65 is a third illumination uniformity analysis of a first implementation tessellation pattern in one embodiment.



FIG. 66 is a fourth illumination uniformity analysis of a first implementation tessellation pattern in one embodiment.



FIG. 67 is a fifth illumination uniformity analysis of a first implementation tessellation pattern in one embodiment.



FIG. 68 is a sixth illumination uniformity analysis of a first implementation tessellation pattern in one embodiment.



FIG. 69 is a seventh illumination uniformity analysis of a first implementation tessellation pattern in one embodiment.



FIG. 70 is an eighth illumination uniformity analysis of a first implementation tessellation pattern in one embodiment.



FIG. 71 is a ninth illumination uniformity analysis of a first implementation tessellation pattern in one embodiment.



FIG. 72 is a tenth illumination uniformity analysis of a first implementation tessellation pattern in one embodiment.



FIG. 73 is an eleventh illumination uniformity analysis of a first implementation tessellation pattern in one embodiment.



FIG. 74 is a twelfth illumination uniformity analysis of a first implementation tessellation pattern in one embodiment.



FIG. 75 is a thirteenth illumination uniformity analysis of a first implementation tessellation pattern in one embodiment in one embodiment.





DETAILED DESCRIPTION

Following below are more detailed descriptions of various concepts related to, and embodiments of, an inventive display. It should be appreciated that various concepts introduced above and discussed in greater detail below may be implemented in any of numerous ways, as the disclosed concepts are not limited to any particular manner of implementation. Examples of specific implementations and applications are provided primarily for illustrative purposes.


Various Embodiments

Provided in one embodiment is an apparatus for displaying an image, comprising: an input image node configured to provide at least a first and a second image modulated lights; and a holographic waveguide device configured to propagate the at least one of the first and second image modulated lights in at least a first direction. The holographic waveguide device may comprise: at least a first and second interspersed multiplicities of grating elements disposed in at least one layer, the first and second grating elements having respectively a first and a second prescriptions. The first and second image modulated lights may be modulated respectively with first field of view (FOV) and second FOV image information. The first multiplicity of grating elements may be configured to deflect the first image modulated light out of the at least one layer into a first multiplicity of output rays forming a first FOV tile, and the second multiplicity of grating elements may be configured to deflect the second image modulated light out of the layer into a second multiplicity of output rays forming a second FOV tile.


Provided in another embodiment is an apparatus for displaying an image, comprising: an input image node configured to provide at least a first and a second image modulated lights; and a holographic waveguide device configured to propagate the at least one of the first and second image modulated lights in at least a first direction. The holographic waveguide device may comprise: at least a first and second interspersed multiplicities of grating elements disposed in at least one layer, the first and second grating elements having respectively a first and a second prescriptions. The first and second image modulated lights may be modulated respectively with first field of view (FOV) and second FOV image information. The first multiplicity of grating elements may be configured to deflect the first image modulated light out of the at least one layer into a first multiplicity of output rays forming a first FOV tile, and the second multiplicity of grating elements may be configured to deflect the second image modulated light out of the layer into a second multiplicity of output rays forming a second FOV tile. The first and second multiplicities of the grating elements may comprise an SBG in a passive mode or a switching mode.


Provided in another embodiment is an apparatus for displaying an image, comprising: an input image node configured to provide at least a first and a second image modulated lights; a beam expander; and a holographic waveguide device configured to propagate the at least one of the first and second image modulated lights in at least a first direction. The holographic waveguide device may comprise: at least a first and second interspersed multiplicities of grating elements disposed in at least one layer, the first and second grating elements having respectively a first and a second prescriptions. The first and second image modulated lights may be modulated respectively with first field of view (FOV) and second FOV image information. The first multiplicity of grating elements may be configured to deflect the first image modulated light out of the at least one layer into a first multiplicity of output rays forming a first FOV tile, and the second multiplicity of grating elements may be configured to deflect the second image modulated light out of the layer into a second multiplicity of output rays forming a second FOV tile.


Provided in another embodiment is an apparatus for displaying an image, comprising: an input image node configured to provide at least a first and a second image modulated lights; and a holographic waveguide device configured to propagate the at least one of the first and second image modulated lights in at least a first direction. The holographic waveguide device may comprise: at least a first and second interspersed multiplicities of grating elements disposed in at least one layer, the first and second grating elements having respectively a first and a second prescriptions. The first and second image modulated lights may be modulated respectively with first field of view (FOV) and second FOV image information. The first multiplicity of grating elements may be configured to deflect the first image modulated light out of the at least one layer into a first multiplicity of output rays forming a first FOV tile, and the second multiplicity of grating elements may be configured to deflect the second image modulated light out of the layer into a second multiplicity of output rays forming a second FOV tile. At least one of the first and second multiplicities of the grating elements may be tessellated in a predetermined pattern.


In one embodiment, at least one of the first and second multiplicities of the grating elements comprise an SBG that is in a switching mode or in a passive mode.


In one embodiment, at least one of the first and second multiplicities of the grating elements are electrically switchable.


In one embodiment, at least one of the first and second multiplicities of the grating elements have a non-diffracting state and a diffracting state having a diffraction efficiency lying between a predetermined minimum level and a maximum level.


In one embodiment, all elements in the first or second multiplicities of grating elements are configured to be switched.


In one embodiment, at least one of the first and second multiplicities of the grating elements have a diffracting state, and when in the diffracting state. The first grating elements are configured to deflect the first image modulated light out of the at least one layer into the first multiplicity of output rays forming a first FOV tile. The second grating elements are configured to deflect the second image modulated light out of the layer into the second multiplicity of output rays forming a second FOV tile.


In one embodiment, the at least one layer is sandwiched between transparent substrates to which patterned electrodes are applied.


In one embodiment, the at least one layer is sandwiched between transparent substrates to which patterned electrodes are applied, and at least one of the patterned electrodes comprises a first multiplicity of electrode elements overlapping the first multiplicity of the first grating elements and a second multiplicity of electrode elements overlapping the second multiplicity of the second grating elements.


In one embodiment, at least one of the first and second multiplicities of the grating elements have a diffraction efficiency that is spatially dependent.


In one embodiment, at least one of the first and second multiplicities of the grating elements have a diffraction efficiency that increases with distance along a length of the waveguide.


In one embodiment, within the at least one layer the grating elements have integer N1 different prescription interspersed in a first band, abutted to the left and right, in sequence, by bands containing elements of integer N2 different prescriptions where N1>N2, N3 different prescriptions where N2>N3, and integer N4 different prescriptions where N3>N4. In one embodiment, at least one of the first and second multiplicities of grating elements have 12 different prescriptions interspersed in a first band, abutted to the left and right, in sequence, by bands containing elements of 9 different prescriptions, 6 different prescriptions, and 1 prescription.


In one embodiment, each the FOV tile is configured to provide an image at infinity.


In one embodiment, each the FOV tile is configured to provide an image at a far point of the human eye.


In one embodiment, the holographic waveguide device comprises at least one of beam splitter lamina, a quarter wave plate, and a grating device for polarization recovery.


In one embodiment, the image modulated light from at least one grating element of a given prescription is present within an exit pupil region bounded by the instantaneous aperture of the human eye pupil. In one embodiment, the image modulate light from at least three grating elements of a given prescription is present.


In one embodiment, the FOV tiles abut in FOV space to form a rectangular FOV.


In one embodiment, the FOV tiles abut in FOV space to provide a continuous field of view.


In one embodiment, at least two the FOV tiles overlap.


In one embodiment, the FOV tiles abut to provide a FOV of approximately 40 degrees horizontally by 30 degrees vertically.


In one embodiment, the FOV tiles abut to provide a FOV of approximately 60 degrees horizontally by 30 degrees vertically.


In one embodiment, wherein the FOV tiles abut to provide a FOV of approximately 80 degrees horizontally by 80 degrees vertically.


In one embodiment, the input image node further comprises a despeckler.


In one embodiment, at least one of the first and second multiplicities of the grating elements are recorded in HPDLC.


In one embodiment, at least one of the first and second multiplicities of the grating elements are reverse mode SBGs.


In one embodiment, the holographic waveguide device is curved.


In one embodiment, at least one of the first and second multiplicities of grating elements have varying thickness.


In one embodiment, the holographic waveguide device comprises faceted sections abutting edge to edge.


In one embodiment, the holographic waveguide device comprises faceted sections abutting edge to edge and embedded in a plastic continuously curved volume.


In one embodiment, the holographic waveguide device comprises plastic.


In one embodiment, the holographic waveguide device is configured to provide exit pupil expansion in the first direction, and the beam expander is configured to provide exit pupil expansion in a second direction.


In one embodiment, the holographic waveguide device is configured to provide exit pupil expansion in the first direction, and the beam expander is configured to provide exit pupil expansion in a second direction that is orthogonal to the first direction.


In one embodiment, the beam expander further comprises: an input port for image modulated light from the input image node; an output port; and at least one waveguide layer configured to propagate light in a second direction. The at least one waveguide layer may comprise at least one grating lamina configured to extract the modulated light from a substrate along the second direction into the first direction through the output port.


In one embodiment, the beam expander further comprises at least one waveguide layer that comprises at least two grating lamina disposed adjacently.


In one embodiment, the beam expander further comprises at least one waveguide layer that comprises at least two overlapping grating lamina.


In one embodiment, the beam expander incorporates at least one of a beam splitter lamina, a quarter wave plate, and a grating device for polarization recovery.


In one embodiment, the first and second image modulated lights are presented sequentially.


In one embodiment, at least one of the first and second modulated image lights undergoes total internal reflection (TIR) within the waveguide device.


In one embodiment, the input image node comprises at least one of a microdisplay, a light source configured to illuminate the microdisplay, a processor for writing image data to the microdisplay, and a collimation lens, a relay lens, a beam splitter, and a magnification lens.


In one embodiment, the first and second multiplicities of the grating elements are tessellated in a predetermined pattern.


In one embodiment, the predetermined pattern is at least one of a periodic pattern, a non-periodic pattern, a self-similar pattern, a non-self-similar tiling pattern, and randomly distributed pattern. In one embodiment, a non-periodic pattern may be a Penrose tiling pattern. In another embodiment, a self-similar pattern may be a Penrose tiling pattern.


In one embodiment, all elements in the first or second multiplicities of grating elements are configured to be switched into a diffracting state simultaneously.


In one embodiment, at least one of the first and second multiplicities of the grating elements have at least one axis of symmetry.


In one embodiment, at least one of the first and second multiplicities of the grating elements have a shape that comprises at least one of a square, triangle and diamond.


In one embodiment, elements of the first multiplicity of grating elements have a first geometry and elements of the second multiplicity of grating elements have a second geometry.


In one embodiment, at least one of the first and second grating elements have at least two different geometries.


In one embodiment, all grating elements in the at least one the layer are optimized for one wavelength.


In one embodiment, at least one of the first and second grating elements in the at least one layer are optimised for at least two wavelengths.


In one embodiment, at least one of the first and second grating elements have multiplexed prescriptions optimized for at least two different wavelengths.


In one embodiment, at least one of the first and second grating elements have multiplexed prescriptions optimized for at least two different diffraction efficiency angular bandwidths.


In one embodiment, at least one of the first and second image modulated lights is collimated.


In one embodiment, at least one of the first and second image modulated lights is polarized.


In one embodiment, the apparatus may further comprise an illumination source comprising a laser providing light of at least one wavelength.


In one embodiment, the holographic waveguide device is configured to provide a transparent display.


Provided in some embodiments are devices comprising the apparatus as described herein. The device may be a part of a reflective display. The device may be a part of a stereoscopic display in which the first and second image modulated light provides left and right eye perspective views. The device may be a part of a real image forming display. The device may be a part of at least one of HMD, HUD, and HDD. The device may be a part of a contact lens.


In one embodiment, the input image node comprises at least one of a microdisplay, a light source configured to illuminate the microdisplay, a processor for writing image data to the microdisplay, and a collimation lens, a relay lens, a beam splitter and a magnification lens.


Provided in another embodiment is a method of displaying an image, the method comprising: (i) providing an apparatus comprising: an input image node and a holographic waveguide device comprising (M×N) interspersed multiplicities of grating elements, where M, N are integers; (ii) generating image modulated light (I,J) input image node corresponding to field of view (FOV) tile (I,J), for integers 1≤I≤N and 1≤J≤M; (iii) switching grating elements of prescription matching FOV tile (I,J) to their diffracting states; (iv) illuminating grating elements of prescription matching FOV tile (I,J) with image modulated light (I,J); and (v) diffracting the image modulated light I, J into FOV tile I, J.


In one embodiment, the method may further comprise repeating (ii)-(v) until achieving full FOV tiled.


In one embodiment, the method may further comprise sampling the input image into a plurality of angular intervals, each of the plurality of angular intervals having an effective exit pupil that is a fraction of the size of the full pupil.


In one embodiment, the method may further comprise improving the displaying of the image by modifying at least one of the following of the at least one grating lamina of at least one of the first and second optical substrates: grating thickness, refractive index modulation, k-vector, surface grating period, and hologram-substrate index difference.


It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. In particular, all combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter disclosed herein. It should also be appreciated that terminology explicitly employed herein that also may appear in any disclosure incorporated by reference should be accorded a meaning most consistent with the particular concepts disclosed herein.


At least some embodiments provided herein overcome the challenges of tiling large FOVs using a multiplicity of different grating prescriptions in a waveguide HMD of the type disclosed in U.S. Pat. No. 8,233,204. In one embodiment, grating angular bandwidth constraints could limit the size of FOV tiles to around 10°×10° leading to unmanageably large grating stacks as the number of vertical and horizontal FOV tiles increased. Attempting full color would increase the number of layers by a factor of 3.


One important feature of the embodiments described herein is that instead of stacking gratings of different prescriptions, they are chopped up into small elements which are then interspersed into tessellation patterns in one or more overlapping layers.


One embodiment of a tessellated display may comprise an Input Image Node (IIN); a first beam expander waveguide (usually vertical); and a second beam expander waveguide (usually horizontal) which also serves as an eyepiece. In one embodiment, the eyepiece combines the tessellation and beam expansion functions. Each waveguide may contain input and output Bragg gratings. Each of the waveguides may comprise more than one grating layer. In color embodiments, a separate monochromatic waveguide may be used for each primary color. Another option for providing color is to record multiplexed gratings, in which holograms with different color prescriptions are superimposed, into a waveguide. Multiplexing may also be used to combine gratings of different angular bandwidth.


Many different tessellation schemes are possible including periodic (i.e., invariant under lateral displacement), non-periodic, self similar and random schemes. The patterns may be designed to provide more detail in near the centre FOV. Embodiments provided herein encompass passive or switchable tessellation solutions and include hybrid solutions that combine passive and switchable elements.


In one embodiment, rays diffracted from each tessellation element form a footprint in the exit pupil. Typically, there must be at least two such footprints within an instantaneous eye pupil area. The precise number will depend on factors such as tessellation size and shape. In one embodiment, tessellation may present significant design and fabrication challenges. The tiny (few millimeter) grating elements result in resolution loss and illumination ripple, both of which have proved difficult to correct. The holographic recording and electrode patterning of tessellated holographic arrays may be difficult with current processes. These challenges may be overcome by using the passive grating elements. In one embodiment, bandwidth may be increased in the tangential plane by making gratings thinner, while broad bandwidth in the orthogonal, sagittal, plane may be achieved. Tessellation may offer a route to larger FOVs if the above design and fabrications problems can be solved. A FOV of 80°×80° in color is a reasonable goal.


One embodiment uses separate vertical and horizontal beam expansion waveguides to provide an enlarged exit pupil (or eye box). In one embodiment, collimated image light from the IIN is fed into the first beam expansion waveguide with a FOV defined by the microdisplay and collimating optics. One embodiment allows the input or “coupling” optics to be configured in many different ways ranging from classical optical lens-mirror designs to more compact designs based entirely on diffractive (holographic) optics. One embodiment may be implemented using all-passive gratings (although the use of switchable gratings is preferred for large FOVs). Conventional passive gratings would not work. One benefit of using passive SBGs is that the refractive index modulation of the grating can be tuned from very low to very high values with a correspondingly broad range of diffraction efficiencies. The high index modulation of SBGs results from the alternating bands of polymer-rich and LC-rich regions that form the Bragg fringes. Alternatively, active gratings may also be used, wherein the active gratings may be tuned from very low to very high values with a correspondingly broad range of diffraction efficiencies.


The vertical and horizontal beam expanders may be based on lossy waveguides; that is, ones designed to extract light out of the waveguide uniformly along its length. As demonstrated in U.S. application Ser. No. 13/844,456, filed Mar. 15, 2013, this may be achieved by varying the thickness (and modulation) across the grating. In one embodiment, in its simplest case this entails creating a wedged grating (by inclining the cell walls) such that the hologram thickness increases in the direction of propagation. Generally, the grating thickness may vary from 1.0-1.2 microns up to 2.8-3.0 microns, the lower thickness producing the lowest efficiency (and largest angular bandwidth). Some embodiments may allow more sophisticated control of extraction by varying the thickness in orthogonal directions, using two wedge angles, or in a more general fashion by applying curvature to one or both faces of the grating.


In one embodiment, beam expansion gratings are very thin (well below 3 microns), which results in very broad diffraction efficiency angular bandwidth which, in turn. By optimising thickness and refractive index modulation it is possible to meet all of the desired grating characteristics needed in the display—e.g., very high efficiency for coupling into gratings and large dynamic range for the efficient, uniform extraction needed for beam expansion.


Image sampling can be used to enhance image transfer efficiency and form factor. Coupling wide FOV image light into a waveguide would normally result in some loss of image angular content owing to the limited range of angles that can be efficiently propagated down a waveguide. Some of this light may couple out of the waveguide. At least some embodiments described herein may overcome this challenge by sampling the input image into multiple angular intervals, each of which has an effective exit pupil that is a fraction of the size of the full pupil, the thickness of the waveguide being reduced correspondingly.


One feature of the embodiments provided herein is the possibility of combining fixed frequency surface gratings at the input and output of each waveguide with rolled k-vectors. The surface grating may be intersection of the Bragg fringes with the substrate edge and accounts (approximately) for the basic ray optics of the waveguide. The k-vector is the direction normal to the Bragg grating and accounts for the diffraction efficiency vs. angle characteristics of the grating. By varying the k-vector direction along the waveguide propagation direction (k-vector rolling), it is possible to, firstly, provide efficient coupling of image light into the waveguide and, secondly, ensure that once coupled-in, all of the desired angular content is transmitted down the waveguide with high efficiency. The k-vector rolling would desirably be augmented by grating thickness control as discussed above.


In general the propagation of angular content down the waveguides can be optimized by fine tuning of one or more of the following: grating thickness; refractive index modulation; k-vector rolling; surface grating period; and the hologram-substrate index difference. The tessellation pattern may include infrared sensitive elements for implementing a waveguide eye tracker.


SBG Device


One way to create a much larger field of view is to parse it into a set of smaller fields of view (each compatible with the optical limitations of the waveguide) and to (time) sequentially display them rapidly enough that the eye perceives them as a unified wide-angle display. One way to do this is by using holographic elements that can be sequentially switched on and off very rapidly. One desirable solution to providing such switchable holographic elements is a device knows as a Switchable Bragg Grating (SBG).


The optical design benefits of diffractive optical elements (DOEs) include unique and efficient form factors and the ability to encode complex optical functions such as optical power and diffusion into thin layers. Bragg gratings (also commonly termed volume phase gratings or holograms), which offer high diffraction efficiencies, have been widely used in devices such as Head Up Displays. An important class of Bragg grating devices is known as a Switchable Bragg Grating (SBG). SBG is a diffractive device formed by recording a volume phase grating, or hologram, in a polymer dispersed liquid crystal (PDLC) mixture. Typically, SBG devices are fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between parallel glass plates or substrates. One or both glass substrates support electrodes, including for example transparent indium tin oxide films, for applying an electric field across the PDLC layer. A volume phase grating is then recorded by illuminating the liquid material with two mutually coherent laser beams, which interfere to form the desired grating structure. During the recording process, the monomers polymerize and the HPDLC mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer. The alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating. The resulting volume phase grating can exhibit very high diffraction efficiency, which may be controlled by the magnitude of the electric field applied across the PDLC layer. When an electric field is applied to the hologram via transparent electrodes, the natural orientation of the LC droplets is changed causing the refractive index modulation of the fringes to reduce and the hologram diffraction efficiency to drop to very low levels. Note that the diffraction efficiency of the device can be adjusted, by, for example, the applied voltage over a continuous range from near 100% efficiency with no voltage applied to essentially zero efficiency with a sufficiently high voltage applied.


SBGs may be used to provide transmission or reflection gratings for free space applications. SBGs may be implemented as waveguide devices in which the HPDLC forms either the waveguide core or an evanescently coupled layer in proximity to the waveguide. In one particular configuration to be referred to here as Substrate Guided Optics (SGO) the parallel glass plates used to form the HPDLC cell provide a total internal reflection (TIR) light guiding structure. Light is “coupled” out of the SBG when the switchable grating diffracts the light at an angle beyond the TIR condition. SGOs are currently of interest in a range of display and sensor applications. Although much of the earlier work on HPDLC has been directed at reflection holograms transmission devices are proving to be much more versatile as optical system building blocks.


The HPDLC used in SBGs may comprise liquid crystal (LC), monomers, photoinitiator dyes, and coinitiators. The mixture may include a surfactant. The patent and scientific literature contains many examples of material systems and processes that may be used to fabricate SBGs. Two fundamental patents are: U.S. Pat. No. 5,942,157 by Sutherland, and U.S. Pat. No. 5,751,452 by Tanaka et al. both filings describe monomer and liquid crystal material combinations suitable for fabricating SBG devices.


One of the known attributes of transmission SBGs is that the LC molecules tend to align normal to the grating fringe planes. The effect of the LC molecule alignment is that transmission SBGs efficiently diffract P polarized light (i.e., light with the polarization vector in the plane of incidence) but have nearly zero diffraction efficiency for S polarized light (i.e., light with the polarization vector normal to the plane of incidence. A glass light guide in air will propagate light by total internal reflection if the internal incidence angle is greater than about 42 degrees. Thus, typically the embodiments using transmission SBGs described herein will use SBGs design to diffract input P-polarized light entering the waveguide into TIR angles of about 42 to about 70 degrees, or diffract TIR light at said angles into output light paths.


Normally SBGs diffract when no voltage is applied and are switching into their optically passive state when a voltage is application other times. However SBGs can be designed to operate in reverse mode such that they diffract when a voltage is applied and remain optically passive at all other times. Methods for fabricating reverse mode SBGs may be any suitable methods, such as for example those disclosed in PCT/GB2012/000680 by Popovich et al. The same reference also discloses how SBGs may be fabricated using flexible plastic substrates to provide the benefits of improved ruggedness, reduce weight and safety in near eye applications.


The invention will now be further described by way of example only with reference to the accompanying drawings. It will be apparent to those skilled in the art that the present invention may be practiced with some or all of the present invention as disclosed in the following description. For the purposes of explaining the invention well-known features of optical technology known to those skilled in the art of optical design and visual displays have been omitted or simplified in order not to obscure the basic principles of the invention. Unless otherwise stated the term “on-axis” in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components described in relation to the invention. In the following description the terms light, ray, beam and direction may be used interchangeably and in association with each other to indicate the direction of propagation of light energy along rectilinear trajectories. Parts of the following description will be presented using terminology commonly employed by those skilled in the art of optical design. It should also be noted that in the following description repeated usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment.


One important feature of the embodiments provided herein is the realization that one way to create a much larger field of view is to parse it into a set of smaller fields of view (each compatible with the optical limitations of the waveguide) and to (time) sequentially display them so fast that the eye perceives them as a unified image.


One way to do this is with holographic elements that can be sequentially switched on and off very rapidly. U.S. Provisional Patent Application No. 61/687,436, filed 25 Apr. 2012, shows that multiple SBGs can be stacked together in the same waveguide and activated in rapid succession to time-sequentially tile a high-resolution, ultra-wide-field of view. Moreover, each subfield of view has the full digital resolution of the associated imager, allowing the formation of images that approach or even exceed the visual acuity limit of the human eye.


While the tiling disclosed in this earlier filing overcomes the twin deficiencies of standard guided-wave architectures (i.e., limited field of view and limited pixel resolution), it has limitations when it is necessary to tile vertically and horizontally over large fields of view. For monochrome displays with modest FOV and expansion in only one direction, tiling can be accomplished by simply stacking the grating planes. However, when the field of view is expanded in both directions and color is added, the number of layers needed with this approach quickly becomes impractical. For example, consider FIG. 1 which shows is a schematic illustration of a beam defection system for providing a display. The display is based on the principle of using a stack 1 of electrically switchable gratings SBGs to deflect input light 100 from an image generator 2 into FOV regions or tiles. In one embodiment, each SBG is essentially a planar grating beam deflector that deflects incident TIR light into output light forming a unique FOV tile. The SBG elements 10A-10D provide a first row of four FOV tiles, elements 11A-11D provide a second row of four FOV tiles, and elements 12A-12D provide a third row of four FOV tiles, Advantageously, the image light is collimated and may be delivered to the SBG stack by, for example, a light guide or Substrate Guided Optics. The substrates used to containing the SBGs may provide the light-guiding substrate. FIG. 2 shows how a horizontal field of view can be generated using 4 SBGs 10A-10D configured in four separate layers. One input SBG is to provide for directing input image light from the image generator into a TIR path. The input image generator may comprise a laser module, microdisplay and optics for collimation and beam expansion. The output SBGs may be staggered horizontally to provide image continuity in FOV space. FIG. 2 shows the limiting rays in one plane for the SBG group 3 corresponding to one row of FOV tiles 10A-10D. The limiting rays 101A-101D and the maximum angular extent θ1 relative to the normal 102, 103 the display are shown. The rays define the exit pupil 104.


In one embodiment, each subfield of view is limited by the diffraction efficiency and angular bandwidth of the SBG. SBG grating devices may have angular bandwidths in air of approximately ±5° (subject to material properties, index modulation beam geometry and thickness). In one embodiment, larger angles can be achieved in practice by using thinner SBGs. In one embodiment the SBG may have a thickness less than or equal to about 4 μm—e.g., less than or equal to about 3.5 μm, 3 μm, 2.5 μm, 2 μm, 1.5 μm, 1 μm, 0.5 μm or smaller. The increased bandwidth resulting from thinner SBGs may result in lower peak diffraction efficient. In one embodiment, it may be desired to increase the refractive indeed modulation.


In one embodiment, the top SBG 10A provides a field of view of −20° to −10°; the next SBG 10B provides the field of view −10° to 0°; the next SBG 10C provides the field of view 0° to 10°; the and the lower SBG 10D provides the field of view 10° to 20°; one provides the right 20°. Each output put FOV provides a FOV tile of horizontal extent 10 degrees and a vertical extent set by the input collimation optics and the waveguide limitations typically 10 degrees. When the SBG elements are rapidly displayed in sequence (SBGs have a switching speed of as little as, for example, 35 microseconds), the eye integrates the separate optical outputs, and a 40° horizontal field of view by 10 degree vertical field of view is perceived. Each time a new output SBG is activated the input image generator generally indicated by 2 is update with a new digital image. In one embodiment, the input image generator provides an image of approximately 1000 pixels horizontal by 800 pixels vertical resolution. Hence the complete perceived image has a resolution of 4000×800 pixels. The tiles may abut in FOV space through the exit pupil defined by the overlapping light rays from the SBG layers. A HMD based on the above principles is disclosed in a PCT Application No.: PCT/GB2010/000835 with International Filing Date: 26 Apr. 2010 by the present inventors entitled COMPACT HOLOGRAPHIC EDGE ILLUMINATED EYEGLASS DISPLAY which is incorporated by reference herein in its entirety.


The stacking approach shown in FIG. 1 may be suitable for relatively modest FOV. In one embodiment, horizontal field of view of around 60 degrees by 10 degree vertical is feasible. As the field of view increases, the number of SBG layers needed becomes impractical: six layers is the current practical limit before the performance of the display is compromised by scatter, absorption, and other optical losses. If additional layers for blue and green are added as schematically indicated by 13, 14, the number of tiles would be increased by ×3.


One method to avoid using separate RGB SBGs is to use multiplexed SBGs, in which the illumination is provided from opposite ends of the lightguide as R and B/G illumination, compromising the color gamut somewhat. However, multiplexed gratings raise issues of fabrication complexity and cross talk.


One benefit of the embodiments described herein is minimizing the need for very large numbers of SBG layers. One embodiment provides compressing the stack by interlacing the SBGs, as shown in FIG. 3, as opposed to simply stacking the gratings, as illustrated in FIGS. 1-2. Referring to the simple stacking scheme discussed above (inset), it can be seen that the optical process which would ordinarily need a stack of four holographic planes to produce one color channel can be accomplished with a single layer of interleaved gratings. Note that in FIGS. 1-3, the shading patterns of the holograms is merely for the purposes of distinguish the four different types and does not represent the geometry of the gratings.


Turning first to the schematic side elevation view of FIG. 3A, there is provided an apparatus for displaying an image comprising a multiplicity of groups of selectively switchable beam deflecting elements. In a preferred embodiment, the beam deflectors are SBGs having a first diffracting state and a second diffracting state. The first diffracting state may exhibit high diffraction efficiency and the second diffraction state may exhibit low diffraction efficiency.


In one embodiment, the SBGs may operate in reverse mode such that they diffract when a voltage is applied and remain optically passive at all other times. The SBGs may be implemented as continuous SBG lamina separated by thin (as thin as 100 microns) substrate layers. In one embodiment, the substrate may comprise plastic. In one embodiment the substrate may comprise plastic substrates with transmissive conductive coatings (instead of ITO).


For simplicity four groups of SBG elements indicated by the numerals 15-18 are illustrated, each group comprising four elements labelled by the characters A-D. The repetition of the pattern of SBG elements is indicated by the dotted line. The number of groups of beam deflecting elements or the number of elements per group is not limited. The elements are forming in a thin HPDLC grating lamina 15 sandwiched by the transparent substrates 14A, 14B. Transparent electrodes are applied to opposing faces of the substrates with at least one of the electrodes being patterned to overlap the SBG elements.


An input image generator, which will be described in more detail later, provides collimated image light generally indicated by 100. Each group of beam deflecting elements diffracts image light into a multiplicity of rays providing a set of FOV tiles. Elements corresponding to a given tile will have a unique grating prescription. The rays may define an exit pupil according to geometrical optical principles. The limiting rays from the group 15 and 18 in the projection of the drawing are indicated by 107, 108. Each element has a diffraction efficiency angular bandwidth ±θ. Comparing FIG. 3 with FIG. 2, it should be apparent that the embodiment of FIG. 3 is equivalent to interspersing the SBG layers shown in FIG. 2 within a single SBG lamina. In one embodiment, the first multiplicity of beam deflecting elements and the second multiplicity of beam deflecting elements are uniformly interspersed a shown in FIG. 3B. In one embodiment, the first multiplicity of beam deflecting elements and the second of multiplicity beam deflecting elements are randomly interspersed as shown in FIG. 3C.



FIG. 3 shows the principles of an HIVID. A display based on the above principles may comprise two sub systems: a color waveguide (which herein also refers to a DigiLens) and a device configured to inject an input image into the color waveguide (also referred herein to an Image Injection Node).


The basic principles of the display in one embodiment are illustrated in more detail using the front elevation views of FIGS. 4-7. In a color display, the DigiLens comprises a stack of three separate RGB waveguides each providing a red, green or blue color imaging channel. In one embodiment, each waveguide is further divided into two holographic layers (to be referred to as a doublet). In one embodiment, the description will assume double layers unless stated otherwise. Hence in FIG. 4 the DigiLens 2 comprises the doublet further comprising layers 21, 22. The apparatus further comprises the IIN 3, DigiLens drive electronics 4, and a coupler for admitting light from the IIN into the DigiLens. The IIN and the DigiLens drive electronics are connected by the communication link 103. Each SBG layer contains arrays of SBGs comprising sets of sub arrays, where the members of any given sub array have one of a predefined set of optical prescriptions, each prescription corresponding to a unique FOV tile. The number of SBG prescriptions equals the number of FOV tiles. In some embodiments, a prescription defines the Bragg grating geometry needed to deflect incident TIR input light from the TIN into output light that defines a FOV tile. For simplicity three sub arrays of SBG elements indicated by the numerals 200-202 are illustrated. Three elements of each sub array are illustrated labelled by the characters A-C. The drive electronics provides voltage outputs 103A-103C. The connections 104A-104C to the SBG elements 300A-300C is shown. The distribution of the array elements depends on the FOV tile with, for example, FOV tiles near the central region of the FOV needing that the corresponding SBG elements are distributed near the center of the DigiLens. The spatial configuration of the array elements will be discussed in more detail later. FIG. 5 shows input collimated image light 200 from the IIN being coupled into the DigiLens to provide the collimated image light 201 at the input to the waveguide 2. Typical collimated output beams from the waveguide for the SBG sub arrays 200-202 are generally indicated by 202A-202C.


In one embodiment, the SBGs operate in reverse mode such that they diffract when a voltage is applied and remain optically passive at all other times.


The SBGs may be implemented as continuous SBG lamina separated by thin substrate layers (as thin as 100 microns) as shown. This is a planar monolithic design harnessing the full assets of narrow band laser illumination with monolithic holographic optics. The motivation for configuring the SBGs as monochromatic layers is to enable the use of holographic optics and SBG beam splitter to provide a flat, solid state, precision-aligned display, minimizing the need for bulky refractive optics. In one embodiment, the resolution of the display is only limited by that of the microdisplay. The design is scalable to a larger FOV by interlacing more tiles in each layer and/or adding new layers. Likewise the pupil, eye-relief and FOV aspect ratio can be tailored to suit the application.



FIG. 6 shows the IIN in more detail in one embodiment. The role of IIN is to form a digital image, collimate it, and inject it into the DigiLens. Two separate optical subsystems may be employed: one to illuminate the microdisplay and one to collimate the image. The IIN may comprise an image processor 3A, input image generator 3B, and a vertical beam expander (VBE) 3C. The image processor provides image data to the input image generator via the communication link 150. The image processor also controls the switching of the SBG elements in the DigiLens by means of an electronic link to the DigiLens drive electronics. The input image generator, which will be discussed in more detail in the following description, may comprise a laser module and microdisplay. Collimated image light 203 from the input generator is coupled into the beam expander 3C, which is itself optically connected to the coupler 5. FIG. 7 illustrates the operation of the IIN in further detail concentrating on the input image generator and the VBE and referring to the XYZ orthogonal coordinate axes provided in the drawings. The front elevation view corresponds to the YX plane, and the Y axes refer to the vertical direction as perceived by the viewer of the display.


The VBE comprises a SBG 60 sandwiched by substrates 61A, 61B. Image light from the image generator undergoes TIR, as indicated by 204 within the waveguide formed by the substrates. The VBE is designed to be lossy. In other words, the diffraction efficiency of the grating is low at the end nearest the image generator and highest at the furthest extremity. One effect is that it couples light, such as 204A, 204B, out towards the couple 5 along its entire length providing a vertical beam expansion (in the Y direction) to match the height of the DigiLens waveguide. Image light may be coupled into the VBE by a grating coupler 31A. Referring to the drawing inset 62, there is further holographic objective 31 and a holographic field lens 32 both optically connected to light guiding device 33. Image light from the microdisplay 207 is admitted to the light bide via the holographic objective and follows the TIR path 208 until it is directed out of the light guide into the VBE by the holographic objective 32 as output light 203. In one embodiment, the light guide 33 includes inclined surfaces at each end. The drawing inset 63 shows the configuration of the laser module and microdisplay. The illumination of the microdisplay 37 may be performed using a diode laser 34, a waveguide, and a SBG beam splitter. The SBG beam splitter may be formed as lamina 36 sandwiched between transparent substrates 35A, 35B forming the waveguide. A slanted SBG grating is recorded in the portion of the lamina 35A overlapping the microdisplay. Collimated P-polarised light 210 from the laser module is admitted into the waveguide by a coupler 36. The coupler may be a prism. In some embodiments, the coupler may be a grating device. The coupled light follows the TIR path 211 up the SBG beam splitter, where according to the properties of SBGs the P-polarised light is diffracted towards the microdisplay. On reflection the light becomes S-polarized and passes through the SBG beam splitter without substantial loss or deviation to emerge from the waveguide as the collimated image light 207.


It should be apparent to those skilled in the art of optical design that many alternative optical configurations and components may be used to provide an IIN according to the principles described herein.


For example, the reflective microdisplay could be replaced by a transmissive device. Alternatively, an emissive display may be used. It should also be apparent that components such as anamorphic lenses and light shaping diffusing elements may be used in certain applications to control image aspect ration and illumination uniformity. The apparatus may further include a despeckler. The IIN may comprise, or be, a diffractive optical device. The processes carried out by the IIN, as employed in pre-existing techniques, may use several refractive lenses, a polarizing beam splitter cube, and a precision housing for aligning and assembling the various components. Not only are the piece parts expensive, but the touch labor is excessive. In addition, the whole assembly is difficult to ruggedize and, in the end, heavy and bulky. Miniaturized components can reduce size and weight, but they also sharply increase component costs and assembly time.


It should further be apparent that the description of the IIN has referred to just one monochromatic microdisplay. In a color display the IIN optical components would need to be replicated for each color. Since the optical design uses substrate guided optics and diffractive optical elements, the combination of the red green and blue channels in one embodiment can be accomplished within a very compact form factor that is only limited by the size of the microdisplay and laser module and the overall system design needs.


The interlacing of the SBG elements in the DigiLens may be carried out in many different ways. For example, the interlaced gratings in the embodiment of FIG. 1 may be configured in the fashion of a Venetian blind (as disclosed in Provisional Patent Application No. 61/627,202 by the present inventors). However, the MTF associated with such geometry has notches in it at spatial frequencies traceable to the periodic nature of the interleaving. In one embodiment, introducing a complex tessellation of gratings, this deficiency can be rectified. “Tessellation” in at least some embodiments herein is defined as the process of creating a two-dimensional surface pattern using the repetition of a geometric shape with no overlaps and no gaps. However, it should be noted that the tessellation pattern is not limited to diamond shaped tessellation patterns of the type illustrated in FIG. 4-7. It will be appreciated that patterns based on squares, rectangles, triangles may be used. While a regular patterning is implied in the drawings, it may be advantageous in certain cases to have a randomly distributed pattern. In one embodiment, it may also be possible to use elements of different sizes and geometries in a given pattern. Many possible schemes exist. The elements may have vertically or horizontally biased aspect ratios. In one embodiment, a broader horizontal aspect ratio results in a better horizontal resolution. As will be shown below 1.38 mm.×0.8 mm, diamonds give acceptable resolution. Since there is not expected to be any benefit in having better horizontal resolution than vertical, it may even be adequate to use 1 mm squares (side on), rather than diamonds. For the purposes of mere illustration, the description refers to tessellated tiling based on diamond shaped or square-shaped elements. In one embodiment of tessellated patterns, there will be a small gap to allow for electrode addressing circuitry, as will be discussed later. Examples of SBG element patterning are illustrated in FIGS. 8-10. FIG. 8A shows a tiling pattern 304 comprising rectangular shapes 304A-304F having a multiplicity of vertical and horizontal dimensions. FIG. 8B shows a tiling pattern 305 known as Penrose tiling comprising elements 305A-305J. FIG. 8C shows a tiling pattern 306 based on regular hexagons comprising elements 306A-306C. FIG. 8D shows a tiling pattern 306 based on squares comprising elements 307A-306D. FIG. 9A shows a tiling pattern 308 based on diamond shapes comprising elements 308A-308D. FIG. 9B shows a tiling pattern 309 based on isosceles triangle shapes comprising elements 309A-309D. FIG. 10A shows a tiling pattern 310 based on horizontally elongated hexagons comprising elements 310A-310C. FIG. 10B shows a tiling pattern 311 based on rectangles with horizontally biased aspect ratios comprising elements 311A-311D. FIG. 10C shows a tiling pattern 312 based on rectangles horizontally elongated diamond elements 312A-312D.


In one embodiment, the technology used for fabricating SBG arrays regularly produces features as small as 50 microns (500 dpi), so that interlacing features in the manner described above is not an issue. One important condition is that the distance between gratings of like prescription should be small compared to the size of the eye pupil under bright conditions (assumed to be 3 mm in bright sunlight). In one embodiment, when this condition is met, banding is not observable. Importantly, in one embodiment as the eye moves around in the eye box, light lost from a band moving beyond the pupil of the eye is offset by light gained from another band moving into the pupil. The luminosity variation anticipated from this effect, assuming uniform illumination across the waveguide, is approximately ±1% of the average brightness level. The concept of banding may be most readily understood in embodiments where the SBG elements comprise columns. However, the basic principle may apply to any type of patterning that may be used with any embodiments described herein.


In some embodiments, image light is admitted into one end of the DigiLens only. Each waveguide in the DigiLens may generally comprise two SBG layers. It should be apparent from consideration of the drawings and description that in such embodiments the layers may comprise SBG arrays of identical prescription with one reversed and the image injection node being configured in two symmetrical portions to provide separate image light in opposing paths to the two holographic layers. Such embodiments may need duplication of components and are therefore likely more expensive to implement.


In some embodiments, each DigiLens doublet waveguide is 2.8 mm thick. The SBG layers may in theory be separated by low index substrates or air gaps. In one embodiment, in many practical applications that need TIR beam geometry cannot be supported without an air interface. Note also the thickness of the holograms has been exaggerated. In one embodiment, the gratings may be 3 microns in thickness sandwiched by substrates of thickness 100-200 microns. The thicknesses of the transparent electrodes applied to opposing faces of the substrates are measured in nanometers.



FIG. 11 is a schematic cross-sectional view of a DigiLens waveguide comprising two layers 20, 21 in one embodiment. Layer 20 comprises transparent substrate 20A, transparent patterned electrode layer 20B, SBG array 20C containing elements such as 20F, a transparent electrode layer 20D, and a second substrate 20E. Layer 21 comprises transparent substrate 21A, transparent patterned electrode layer 21B, SBG array 21C containing elements such as 21F, a transparent electrode layer 21D, and a second substrate 21E. In one embodiment, the substrates 20E and 21A may be combined into a single layer.



FIGS. 12A-12D shows examples of tessellation patterns in the regions containing SBG elements of types labelled 1-4. The eye pupil 311 is overlaid. FIGS. 13-14 shows MTF data for one particular SBG element type configured as shown in FIG. 13 at one eye pupil location in the display exit pupil. The SBG elements are labelled by 313A-313I. FIG. 14 shows the MTF curves. In this embodiment, the upper curve 314A is the diffraction limited MTF, and the lower curve is the estimated SBG array MTF allowing for aberrations. The diamond shapes are based on triangles of triangles of side=0.8 mm, and therefore, length=1.38 mm. This architecture is applicable to a 2 layer (1 doublet) monochrome design, or a single color layer in the R, G, B color design. Three stacked doublet layers give the composite performance. The exit pupil 311 is 3 mm in diameter in this embodiment.


The DigiLens architecture corresponding to FIGS. 13-14 tiles 12 SGB elements on 2 monochromatic SBG layers. Referring to FIG. 18, the first layer, which is illustrated in FIG. 13, tiles all of the horizontal (lower) tiles: L1-4 and the horizontal (middle) tiles (MID,1), (MID,2). The second layer tiles the horizontal (middle) tiles: (MID,3), (MID,4), and all of the horizontal (upper) tiles: U1-4.



FIG. 15 shows an example of tiling using rectangular SBGs with horizontally biased aspect ratios. The tiling pattern 315 comprises element types 1-5 also labelled by the numerals 315A-315E.



FIG. 16 illustrates in one embodiment how the DigiLens tiles the FOV in the exit pupil in three consecutive stages of the formation of a monochromatic image. The writing of images of each primary color will follow a similar process. FIGS. 16A-16C show three types of SBG 1-3 also indicated by the labels 315A-315C being activated. The eye pupil 311 and the exit pupil 316 are overlaid in each case. The corresponding FOV tiles 319A-319C in FOV space indicated by the rectangle 319 are shown in FIGS. 16D-16F. Only a small number of SBG elements are illustrated to simplify the understanding of the switching process. Note that all SBG elements of a given type can all couple light out simultaneously owing to the “lossy” coupling between the beam and grating. In other words, the diffraction efficiency of individual elements is modulated to extract a fraction of light the light available from the guided beam. In one embodiment, the first elements the guide beam interacts with have the weakest coupling efficiency, while the elements at the other extremity of the beam path have the strongest.


The area of the pupil filled by light from SBGs of a given type is roughly fixed. As the eye moves from left to right, light is lost from the leftmost SBG elements, but is gained on the right hand edge. The luminosity variation arising from this effect, assuming uniform illumination across all elements, is approximately 2% (+/−1% of the average brightness level).


In some embodiments, the periodicity of the SBG elements could yield unwanted artifacts resulting from diffraction by the element apertures or even interference effects. The latter is believed to be unlikely because light propagating in the planar waveguide structure will not necessarily be in phase with light from the next aperture because of the unequal optical path lengths inherent in planar waveguide structures. Light exiting each periodic aperture is therefore expected to combine incoherently (even if the coherence length of the laser is reasonably long with respect to the planar waveguide structure) when considered across all SBG elements. In the event that an unwanted artifact does arise from the SBG element, periodicity on the proposed strategy would involve randomizing the elements.


Points across the DigiLens aperture contribute angular information to the 10 mm eye box progressively differently because of the 25 mm eye relief. Points towards the left of the display do not contribute angular content from the right of the FOV, and vice versa. To maximize optical efficiency, the DigiLens in one embodiment may be optimized to fill the desired eyebox at the prescribed eye relief. FIGS. 10A-10D indicate the portions of the SBG aperture that contribute to the eyebox in one embodiment.


Not all positions across the surface of the DigiLens contribute pupil filling content at the eyebox. To fill the 10 mm pupil at 25 mm (eye relief), the minimum size of the outcoupling SBG is just less than 30 mm wide. However, only a very small region in the center of the DigiLens provides content at all field angles, e.g.: −15°±5°, −5°±5°, +5°±5° and +15°±5°. These angular bands correspond to outcoupling SBG columns 1, 2, 3, and 4 (found for each of Upper (+10°), Mid (+0°) and Down (−10°) fields).



FIG. 17 shows the distribution of SBG tile types for the 3 vertical×4 horizontal FOV tiling pattern of FIG. 18. As shown in the drawing in this case all 12 SBG prescriptions are needed in the centre of the FOV, while the number needed falls to just one at the horizontal limits of the FOV



FIG. 18 shows an exemplary FOV tiling pattern that may be used to tile a 52°×30° FOV (assuming each SBG prescription provides 13°×10°). A total of 12 different types of SBG prescriptions need to be provided comprising “UP”, “MIDDLE” and “DOWN” elements for vertical tiling and four horizontal tiling prescriptions for each of the vertical tiling SBGs tiles (labeled 1-4). Each type of SBG will be represented by more than one SBG element. Hence to view the FOV tile at [UP,1], it is needed to sequentially activate each element “1” in each column group “UP” in this embodiment.



FIGS. 19-23 illustrate SBG patterns, which correspond to each of the tiling regions defined in FIGS. 17-18. In each case, the single layer pattern and two overlaid patterns for on SBG type are illustrated. Square elements have been assumed in this embodiment. FIG. 19 shows patterns corresponding to regions 1 and 7 (3 tile types). The two layers are indicated by 326, 327, each layer comprising type 1 elements 326A, 327A and spaces 326B, 327B (to be occupied by elements of other types). In this case, one layer achieves 33% aperture fill and one doublet achieves 66% aperture fill. FIG. 20 shows patterns corresponding to regions 2 and 6 (6 tile types). The two layers are indicated by 328, 329, each layer comprising type 1 elements 328A, 329A and spaces 328B, 329B. In this case, one layer achieves 16.7% aperture fill and one doublet achieves 33% aperture fill. FIG. 21 shows patterns corresponding to regions 3 and 5 (9 tile types). The two layers are indicated by 330, 331, each layer comprising type 1 elements 330A, 331A and spaces 330B, 331B. In this case, one layer achieves 11.1% aperture fill and one doublet achieves 22.2% aperture fill. Finally, FIG. 22 shows patterns corresponding to region 4 (12 tile types). The two layers are indicated by 332, 333, each layer comprising type 1 elements 332A, 333A and spaces 332B, 333B. In this case, one layer achieves 8.33% aperture fill and one doublet achieves 16.7% aperture fill.


The resulting composite pattern 340 is shown FIG. 23. An example of the coverage of a single SBG type in a three layer waveguide 341 is shown in FIG. 24.



FIGS. 25-26 show SBG patterns for each layer of a two layer waveguide in one embodiment.


A typical estimate of the human visual acuity limit is about 1 arc minutes/line pair=60 cyc/deg; this is a generally accepted performance limit and equates to 3.4 cyc/mr. This can be achieved with 20/20 vision under bright conditions where the eye pupil is constricted to 3 mm diameter. The eye is photoreceptor limited. Cone spacing at the fovea can be as small as 2.5 μm, equivalent to 60 cyc/deg. At larger pupil apertures, the eye's performance degrades significantly due to aberration in the eye. At about 3 mm, the eye's performance is close to diffraction limited. It is noted that diffraction limit cut off at 532 nm for an f/5.6 eye (3 mm pupil with f=17 mm) is about 320 lp/m, which is significantly higher than the retina limit. The eye is therefore photoreceptor density limited in this embodiment. In considering this, it is realized that if the eye's pupil, or the display limiting the eye's pupil, is greater than 0.75 mm (equates to 1.4 cyc/mr cut off), then the blur spot size at the retina will not be affected. This establishes a minimum aperture requirement for the display. A 12 μm pitch LCoS microdisplay with 4H×3V tiles, where each tile has 640H×480V pixels may yield 2560H×1440V pixels over 52 degH×30 degV. The display projection magnification from the microdisplay to the retina is approximately 2. Hence the angular size of the microdisplay pixels at the eye is 6.0 μm giving a display 83 cyc/mm Nyquist frequency at the retina (1.4 cyc/mr). Image sharpness may be assessed to be sharp when contrast is maximized (and is high) at the half Nyquist limit (i.e., about 40 cyc/mm in the following plots showing image quality at the retina).


The concern that the periodic structure of the Color Waveguide SBG Layers will act as a diffraction grating has been addressed. Many of the potential sources diffractive artifacts in the Color Waveguide, such as higher order diffraction, zero orders beams in the waveguide, and the apertures of the SBG elements, may be minimized (or even eliminated) on closer inspection SBGs are Volume Bragg gratings, and in one embodiment may not support higher orders as would be found with blazed or thin grating. The absence of higher orders may minimize (or even eliminate) ghost images. In one embodiment, within the waveguide light which continues to be wave guided (in the lossy waveguide) will not ‘see’ the output apertures of the tiles. Build-up of diffraction orders within the waveguiding beam will therefore not occur. Light output from different SBG element apertures will not be in phase (apart from perhaps in a unique case). The optical path will change as a function of field angle. It is therefore reasonable to expect the outputs from the apertures to be out of phase, and therefore to combine incoherently. Diffractive artifacts are therefore not anticipated.


Earlier concerns about the periodic structure were based on 50 um column widths. The new SBG feature sizes are now in the range 800 um to 1380 um. Diffraction angles predicted by the grating equation are significantly smaller. For example, for 50 um features with a 52° input angle, the diffraction angle would be 1 degree (equivalent to 74 pixels). For 1000 um features at 52° input angle, the diffraction angle reduces to 0.05° (3.7 pixels). In the very worst case, in this embodiment, if a diffractive ghost appears under conditions of say, a very bright object against a dark background, it will appear like near object lens flare, and not as a double image well separated from the original.


Although a despeckler may be incorporated into the TIN to overcome laser speckle, there is a reasonably high expectation that the design is inherently despeckled. Phase diversity should exist across the output SBG apertures. Polarization diversity will further assist with the despeckling, and hence minimize the effects of any diffractive artifacts from the structure. As a further safeguard, noting that it is not essential to have straight edges on the SBG apertures, the edges will be patterned to randomize any artifacts.


Several factors may influence design layout. It may be needed to take into account tessellation limitations to maximize pupil fill. Importantly, it may be needed to have 3, 6, 9, and 12 tile each pattern on 2 layers of a single doublet, and create a maximized pupil fill condition for any position in the display exit pupil for a 3 mm diameter projected eye pupil. The offsets between the SBG patterns in the two layers need not have a non-integer offset to tessellation pattern design in x or y. In one embodiment, an x offset will in effect cause a half pixel on one side or another of a region, and would then need ITO addressing for half of a pixel in that area alone. In one embodiment, it is better to avoid this to retain a uniform addressing pitch. In one embodiment, an offset in y of the pattern would similarly need half pixel vertical addressing. Similarly, it would be desirable to avoid this. It is acceptable to have a half pixel offset in y to maximize coverage, but then all patterns need to have half pixel offset in same direction. In one embodiment, all 12 tile types are employed on each doublet. However, the maximum tile type fill is obtained for 9 tiles types on two layers. We also have cases where 6 tile types and 3 tile types need to be configured, for example, on two layers. Consider, for example, a region where three horizontal tile types to fill eye pupil for a single vertical tile band in one embodiment. Note that other layers of doublets address the other two vertical tile bands. Layers 1 and 2 both contain the same tiles, but in an offset arrangement to achieve the desired pupil filling. A single tile has dimensions: (H,V)=(0.8*sqrt(3), 0.8)=(1.386, 0.8). The offset on a single layer of 1 tile type is given by: (dx,dy)=(0,3V). The offset of layer 1 with respect to layer 2 is given by: (dx,dy)=(0.5H, 1.5V)=(0.693, 0.4). In the analysis that follows, 1 mm×1 mm squares have been used to simplify the optical modeling; however, the principles are identical no matter the shape. However, it should be noted that certain shapes will pack preferentially.



FIGS. 27-29 illustrate some embodiments of the IIN comprising a input image generator comprising the diode laser module 34, coupling prism 34A, SBG beam splitter layer 35 sandwiched between substrates 35A, 35B, microdisplay module 38, light guide 41 contain include surfaces 42A, 42B, input coupling, holographic objective, spacer half wave plate, holographic field lens.


Advantageously, in one embodiment the IIN provides a telecentric (slightly projected) pupil to allow better coma control and better packaging with the pupil vertical beam expander.



FIG. 28A is a cross sectional view illustrating the coupling from the Input Image Node to the DigiLens via the VBE in one embodiment. FIG. 28B shows a detailed ray trace of the embodiment of FIG. 28A. The VBE may comprise, or is, a lossy grating extracting light from the beam over a distance corresponding to the height of the DigiLens. At the objective input, the light is well ordered in that light across the pupil is arranged in tight field bundles. At the far end of the VBE, the different numbers of bundles of light with different field angles may cause the bundles to be more distributed. At the objective end, the pink ray with the highest waveguide angle may be furthest from the rest of the VBE waveguide. The steepest ray in waveguide starts furthest to the left. This may help keep the passive input coupler (and VBE thickness) down. At the far end (fully to the left) coupling out of the VBE into the waveguide is hampered by the loss of order, as found at the input. To prevent a doubling in the thickness of the waveguide, a 50/50 active coupler is used in one embodiment at the VBE to DigiLens coupling stage.



FIG. 29 is a plan view of the DigiLens and the VBE showing how the latter is split into two switchable elements. This reduces the waveguide thickness. Each DigiLens doublet waveguide is 2.8 mm thick. Without the switch, the thickness doubles such that the total waveguide thickness increases from around 10 mm, to about 18 mm. FIG. 10 shows rays traced from the VBE to the DigiLens.


Several embodiments provided herein may have to be well suited for substrate guided optics. First, component costs may be reduced. The optical complexity is contained in the various holographic optical elements. Once the non-recurring engineering (NRE) associated with creating a set of masters is complete, the replication costs are relatively insignificant, as compared to the recurring material costs associated with discrete refractive components. Second, assembly time may be reduced. Not only is part count reduced, but the assembly process is also much faster. The planar structures can be cost-effectively laminated together with very high optical precision using alignment fiducials. The touch labor is greatly reduced, as compared to that of building a piece-part assembly to exacting standards. Third, the optical precision is greater. One of the biggest challenges in designing a new optical design is controlling the roll-up of tolerances on the piece parts, the mechanical housings, and the assembly procedure. With holographic optical elements (HOEs), “gold standards” can be assembled by senior engineers and this level of quality captured in the HOE masters during the NRE phase. Beside the fact that optical alignment of the HOEs can be accomplished with great precision, the individual HOEs are more tolerant of variations in alignment. Thus, the overall yield of high quality devices is much higher. Lastly, size and weight are greatly reduced by this monolithic design, as is the ruggedness of the entire subsystem.


One important performance parameter is the see-through transmission of the display. The variables that have an impact on transmission are the ITO coating (0.995), the AR coatings (0.99), and the absorption of the substrates and holographic layers. There will also be Fresnel losses at the interfaces between the waveguides and the low-index bonding layers. In one embodiment, the desired transmission for the color display is >70%, with an objective of >90%. Assuming three waveguides per display and two substrates per waveguide, the calculated transmission is 93%, meeting the stipulated objective. In one embodiment, the design described herein may use 100-micron glass substrates. With three waveguides and three substrates per waveguide (note: two holographic layers may need three substrates), the total thickness of the display of the color display may be still less than 1 mm. The thicknesses of the holographic layers (including the coatings) are negligible; each contributes only 4-5 microns to the overall thickness. Since weight is always an issue, this may be an important feature of the embodiments described herein. In one embodiment where the substrate comprises plastic, the weight may be further reduced.


In one embodiment, the SBGs operate in reverse mode such that they diffract when a voltage is applied and remain optically passive at all other times. The SBGs may be implemented as continuous SBG lamina separated by thin (as thin as 100 micron) substrate layers as shown. Ultimately the design goal is to use plastic substrates with transmissive conductive coatings (to replace ITO). Plastic SBG technology suitable for the present application is being developed in a parallel SBIR project. In this embodiment, this is a planar monolithic design harnessing the full assets of narrow band laser illumination with monolithic holographic optics


Configuring the SBGs as monochromatic layers may enable the use of holographic optics and SBG beam splitter technology to provide a flat solid state precision aligned display totally eliminating the need for bulky refractive optics. The resolution of the display is only limited by that of the LCoS panels.


The design is scalable to a larger FOV by interlacing more tiles in each layer and/or adding new layers. Similarly, the pupil, eye-relief, and FOV aspect ratio can be tailored to suit the application. The design can be scaled down to a smaller FOV.



FIGS. 30A-30B illustrate a scheme for polarization recycling for use with at least some embodiments described herein. This may be relevant in the event that polarization is not maintained with an SBG outcoupling waveguide, either by virtue of the properties of the SBG material (current or one developed in future), or where a polarization rotation component is deliberately introduced in the waveguide. Specifically, a thinner DigiLens waveguide can be used if linearly polarized light is input into the DigiLens waveguide (i.e., light coupled from VBE into the waveguide), and light is converted to a mixture of S and P polarized light. This may allow up to a factor of two times reduction thinness of the waveguide. FIG. 30A shows a waveguide 252 with input rays 354A, 354B directed into the TIR paths labelled by 355A, 355B by a coupling grating 353. The light may be of any polarization. However, for a SBG input grating P-polarzation may be desirable in one embodiment. The coupling grating aperture is A. For only explanation purpose, the TIR angle has been chosen to be 45° so that the thickness of the waveguide required for the limiting input ray to just skirt the edge of the coupling grating after the first TIR bounce is A/2.


Referring to FIG. 30B, the waveguide 356 has input coupling optics comprising the first and second gratings 357A, 357B disposed adjacent each other, the half wave film 357C sandwiched by the waveguide and the first grating; and a polarizing beam splitter (PBS) film 357D sandwiched by the waveguide and the second. The PBS is design to transmit P-polarized light and reflect S-polarized light. Again the TIR angle is chosen to be 45° only for illustration purpose. Input P-polarized collimated light 358A, 358B is coupled in to the waveguide via the first grating and half wave film (HWF) to provide S-polarized light 359A, and via the second grating and PBS to provide P-polarized light 359C, 359D. Comparing the embodiments of FIG. 30A and FIG. 30B, it should be apparent that in the second the input coupling aperture can be the equal to the length of two TIR bounces owing to the polarization recovery by the HWF and PBS. In the embodiment of FIG. 30A. the input couplet cannot be longer than one TIR bounce because grating reciprocity would result in the light being diffracted downwards out of the waveguide. One benefit of the embodiment of FIG. 30B is that the waveguide thickness can be reduced by 50%; that is, for a coupler length equal to A the waveguide thickness (for 45° TIR) is A/4. At this in some embodiments, S and P lights in the waveguide are not separated. Typically, the input light will be divergent resulting in the S and P light quickly becoming spatially mixed. However, if the waveguide rotates the polarization, because more P is out coupled, there will be more conversion of S to P than P to S, thus yielding a net gain. The polarization rotation may arise from the reflective characteristics of the waveguide walls and from the birefringence of the holographic material where SBGs are used. In one embodiment, polarization rotation is provided by applying a quarter wave film (QWF) to the lower face of the waveguide. HWFs and QWFs may be about 0.125 mm thick. A typical adhesive layer may be about 75 microns. Hence in some embodiments, the polarization control films do not contribute significantly to the overall waveguide thickness. In certain cases the films can be can be immersed in an adhesive layer used for lamination.



FIG. 31 illustrates a counter-propagation waveguide for use in some embodiments. The waveguide comprises adjacent grating laminas 51A, 51B of identical but opposing prescriptions sandwiched by substrates 52A, 52B. Wave guided light 362 propagating from left to right interacts with the grating 51A to provide continuously extracted light 360A-360C to provide the expanded output beam 360. Wave guided light 368 propagating from right to left interacts with the grating 51B to provide continuously extracted light 361A-361C to provide the expanded output beam 361. Note that a small amount of light that is not extracted from each of the left/right propagation directions will interact with an opposing grating and get diffracted out of the grating in the opposite direction to that of the expanded beams 360,361, as indicated by the rays 363-366.



FIG. 32 illustrates the use of a beam splitter in a waveguide in one embodiment to achieve uniformity. This principle may be applied both expansion axes. As a further refinement, a beam splitter offset may be employed in waveguide (i.e., not in middle of waveguiding surfaces, but offset from waveguide midpoint to maximize uniformity following multiple bounce interactions). A yet further refinement is to use different reflectivities in beam splitter to optimize and tailor beam mixing. Not to be bound by any particular theory, but by varying the reflectivity % of the beam splitter to something other than 50/50, or by varying the transmission/reflection split along a B/S length, the pupil fill can be homogenized and optimized. For example, in FIG. 32 the waveguide 353 contains a beam splitter layer 352. In some embodiments, the beam splitter may be provided using a thin film coating. A TIR ray such as 370 may then undergo beam splitting, which results in waveguiding occurring between the upper and lower walls of the waveguide; between the upper wall of the waveguide and the beam splitter, and between the beam splitter and the lower wall of the waveguide as indicated by rays 371-373.


The IIN stop is formed by controlling the profile of the input illumination. In at least some embodiments there is no hard physical stop in the projection optics. The benefits of projected stop include decreased waveguide thickness. The stop is projected midway up the VBE to minimize aperture diameter within the VBE, and hence minimizing the aperture width of the VBE to DigiLens waveguide coupler (e.g., reducing the width of the 1st axis expander) limits the thickness of the 2nd axis expansion optic.



FIGS. 33-36 show details of an ITO in some embodiments addressing architecture for use in a DigiLens.



FIG. 33 shows a method of reducing the number of tracks in a given ITO layer, which method uses dual sided addressing of ITO, and super pixel addressing to reduce the number of tracks by approximately one third. The pixels are provide in a first group 35,0 comprising: elements of dimension 3 units×1 unit such as the ones labelled by 350A, 350B; and elements of dimension 1 unit×1 unit, such as the ones labelled 350C-350H, and a second overlapping inverted group 351 of identical pixel geometry as indicated by 351A-351G.



FIGS. 34-36 show how interleaving of electrode wiring tracks may be used to permit a 2D electrode structure to address (switch) multiple different tessellation types. FIG. 34 shows a wiring scheme used in embodiment, in which electrode elements such as 401 are connected by tracks 402-404. FIG. 35 shows a wiring scheme in another embodiment with electrodes 407-409 and track portions 410,411 indicated. FIG. 36 shows the electrodes and tracks of the embodiment of FIG. 33 in more details with the elements and tracks indicated by the numerals 421-434.


The electrode architecture may benefit in terms of reduction of part complexity from using identical pattern technique, and flip symmetry to create full addressing network. This is not needed to make design work, but may limit number of parts that need to be designed and handled.


In one embodiment, a graduated reflection profile underneath SBG layer is used to control (or assist) with grating DE variation along length (normally achieved in SBG grating using index modulation). This may be useful in cases such as the VBE where low percentage of light is out coupled in the first bounce, but high percentage is coupled out at the other end of the expander.


In one embodiment, 1D expansion engines are used to double input power and/or minimize 1D aperture width.


In one embodiment, the display is configured as a “visor”. The color waveguide is curved in at least one plane. In general, such an embodiment may have a large (30 mm) eye relief and a large exit pupil. The large exit pupil may reduce (or even eliminate) the need for IPD adjustment. FIG. 37A-37B are schematic plan and side elevation views of a curved visor comprising a DigiLens 71 and optical-electronic modules 70A, 70B to either sides. One module will comprise the IIN. The second module may contain auxiliary optics and electronics.



FIG. 38 shows the DigiLens of a curved visor in one embodiment in more detail. The DigiLens may comprise laminated waveguides, each containing SBG arrays 73A-73C. In this case the three SBG layers are isolated from each other by the cladding layers 72A-72D. The ray paths are indicated by 381A-381C. In the embodiment of FIG. 39, the SBG layers are stacked without cladding layers to form a single waveguiding structure. The ray paths are indicated by 382A-382C.


In one embodiment as shown in FIG. 40, a visor DigiLens is shaped facetted planar elements 76A, 76B allowing the waveguides to be planar. As shown in the insets B and C, gratings 77A, 77B are provided at the optical interfaces 77 between the facets to control the beam angles to ensure efficient coupling of guided image light to the SBG array elements. The gratings 77A, 77B may be Bragg gratings. In one embodiment as shown in FIG. 41, a facetted DigiLens comprising planar facets, such as 76A, 76B, is embedded with a curved lightguide 79.


The embodiments may rely on monochromatic waveguides. However it should be apparent from consideration of the description that in alternative embodiments the waveguides could operate on more than color. Such embodiments may involve a more complicated IIN design.


In at least some embodiments the multilayer architectures described herein may not be used with conventional holograms, because they would interfere with each other. Thus, SBG, which can be switched clear to allow time-domain integration of the field of view, may be employed to overcome this challenge.


One embodiment described herein is related to a HMD, such as one with the following specification:


a) 180° see-through visibility;


b) full color;


c) 52°×30° FOV;


d) 30 mm×30 mm eye box;


e) 2560×1440 resolution;


f) Snellen 20/20 acuity;


g) 30 mm eye relief;


h) universal IPD;


i) binocular; and


j) polycarbonate optics.


One important feature of at least some of the embodiments described herein is that they provide the benefit of see-through. The latter is of great importance in Head Up Displays for automobile, aviation and other transport applications; private see-through displays such for security sensitive applications; architectural interior signage and many other applications. With the addition of a holographic brightness enhancing film, or other narrow band reflector affixed to one side of the display, the purpose of which is to reflect the display illumination wavelength light only, the see-through display can be made invisible (and hence secure) in the opposite direction of view. The reflected display illumination may be effectively mirrored and therefore blocked in one direction, making it desirable for transparent desktop display applications in customer or personal interview settings common in bank or financial services settings.


Although some of the embodiments above describe wearable displays, it will be clear that in any of the above embodiments the eye lens and retina may be replaced by any type of imaging lens and a screen. Any of the above described embodiments may be used in either directly viewed or virtual image displays. Possible applications range from miniature displays, such as those used in viewfinders, to large area public information displays. The above described embodiments may be used in applications where a transparent display is desired. For example, some embodiments may be employed in applications where the displayed imagery is superimposed on a background scene such as heads up displays and teleprompters. Some embodiments may be used to provide a display device that is located at or near to an internal image plane of an optical system. For example, any of the above described embodiments may be used to provide a symbolic data display for a camera viewfinder in which symbol data is projected at an intermediate image plane and then magnified by a viewfinder eyepiece. One embodiment may be applied in biocular or monocular displays. Another embodiment may also be used in a stereoscopic wearable display. Some embodiments may be used in a rear projection television. One embodiment may be applied in avionic, industrial and medical displays. There are applications in entertainment, simulation, virtual reality, training systems and sport.


Any of the above-described embodiments using laser illumination may incorporate a despeckler device for eliminating laser speckle disposed at any point in the illumination path from the laser path to the eyeglass. Advantageously, the despeckler is an electro-optic device. Desirable the despeckler is based on a HPDLC device.


REFERENCES

The following patent applications are incorporated by reference herein in their entireties:


U.S. Provisional Patent Application No. 61/627,202 with filing date 7 Oct. 2011 by the present inventors entitled WIDE ANGLE COLOR HEAD MOUNTED DISPLAY;


PCT Application No. US2008/001909, with International Filing Date: 22 Jul. 2008, entitled LASER ILLUMINATION DEVICE; PCT Application No. US2006/043938, entitled METHOD AND APPARATUS FOR PROVIDING A TRANSPARENT DISPLAY;


PCT Application No. PCT/GB2010/001982 entitled COMPACT EDGE ILLUMINATED EYEGLASS DISPLAY; PCT Application No. PCT/GB2010/000835 with International Filing Date: 26 Apr. 2010 entitled Compact holographic edge illuminated eyeglass display;


PCT Application No. PCT/GB2010/002023 filed on 2 Nov. 2010 entitled APPARATUS FOR REDUCING LASER SPECKLE; U.S. patent application Ser. No. 10/555,661 filed 4 Nov. 2005 entitled SWITCHABLE VIEWFINDER DISPLAY;


U.S. Provisional Patent Application No. 61/344,748 with filing date 28 Sep. 2010 entitled Eye Tracked Holographic Edge Illuminated Eyeglass Display;


U.S. Provisional Patent Application 61/573,066 with filing date 24 Aug. 2011 by the present inventors entitled HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES;


U.S. Provisional Patent Applications No. 61/457,835 with filing date 16 Jun. 2011 entitled HOLOGRAPHIC BEAM STEERING DEVICE FOR AUTOSTEREOSCOPIC DISPLAYS; PCT Application No. US2008/001909, with International Filing Date: 22 Jul. 2008, entitled LASER ILLUMINATION DEVICE;


PCT Application No. PCT/GB2010/002023 filed on 2 Nov. 2010 by the present inventors entitled APPARATUS FOR REDUCING LASER SPECKLE;


U.S. Provisional Patent Application No 61/573,121 with filing date 7 Sep. 2011 by the present inventors entitled METHOD AND APPARATUS FOR SWITCHING HPDLC ARRAY DEVICES;


PCT Application No. PCT/GB2010/000835 with International Filing Date: 26 Apr. 2010 entitled COMPACT HOLOGRAPHIC EDGE ILLUMINATED EYEGLASS DISPLAY; and


U.S. Provisional Patent Application 61/573,082 with filing date 29 Aug. 2011 by the present inventors entitled CONTACT IMAGE SENSORS.


Micro-Tessellations


One set of embodiments uses Micro Tessellations. The performance of microtessellations gratings in the context of a Switchable Bragg Grating DigiLens™ waveguide device will now be explored. Tessellation is a pattern of repeating shapes that fit together without gaps. Use of the term ‘tessellation’ may refer to a single element of a tessellation pattern. In the practical application of tessellations pertaining to DigiLens™ devices tessellation also means the creation of patterns without substantial gaps between tessellation elements—i.e., where there is high overall aperture fill factor.


A tessellation element is a region (aperture) of diffraction grating or diffraction gratings, which may be a switchable diffraction grating (SBG). The tessellation will diffract light over all regions of the tessellation at the same time. The diffraction grating may be switchable or non-switchable.


Micro-Tessellation: this is a small tessellation that exists within a larger primary tessellation element. The microtessellations within a primary tessellation may have different grating prescriptions. Micro-tessellation elements that exist within a primary tessellation element all diffract at the same time. The performance of tessellations and their impact on MTF has been described in earlier documents, wherein a single grating was written into the tessellation.


Microtessellations within a Primary Tessellation Structure


Performance considerations of interest are: MTF (resolution) and uniformity of field angles.


In a tiled substrate guided (SGO), a single field of view will exist in the waveguide. At any given moment in time, this will carry field of view information for a portion of the overall field of view. In the case of an eye display, this is a portion of the projected field that is out coupled from the SGO. The out-coupling gratings need to out-couple this field of view content such that the eye can see this field of view information across the eye box, desirably with the same flux entering the eye for each field angle and for all field angles at any position of the eye pupil within the eyebox. From earlier work it is recognized that larger tessellations yield superior MTF (resolution) performance, and field of view irradiance on the eye's pupil is more uniform with smaller tessellations. Outcoupling gratings angular bandwidth leads to a fall off in the output light with field angle. A minimum tessellation size to yield sufficient resolution is dependent on the system resolution sought. However, a minimum tessellation aperture size of 0.5 mm to 1 mm width (or diameter) will approximately be needed to support 0.7 to 1.4 lp/mr resolutions, with larger apertures being preferred in one embodiment. This particularly affects high spatial frequency performance.


A tessellation is a region of the out-coupling grating that, when in a diffracting state, will diffractively out-couple the light at all points in that tessellation aperture region at the same time. The regions within a tessellation may contain with one grating prescription or a plurality of grating prescriptions. This plurality of grating prescriptions may be achieved either by multiplexing the gratings (grating prescriptions share the same area of the tessellation), or by having spatially discrete regions of the tessellation into which is written a single grating only. A microtessellation is small tessellation that is switched at the same time as other small tessellation areas. The case of spatially discrete micro-tessellations (μT) is examined following.


μT gratings may be designed to have angular bandwidth overlap with the neighboring μTs (in angular field). Modeling micro-tessellations for a given field angle in one embodiment is described below. One case to consider is FoV overlap of micro-tessellations causing different field angles to be output at different points. Another case to consider is equal irradiance of eye pupil from multiple micro-tessellations for a given field angle. Some field angles would output light equally from multiple micro-tessellations, thereby providing the same irradiance of the eye pupil. It is assumed that some micro-tessellations would then provide less, or no, irradiance of the eye pupil. A top hat model would be appropriate to model this case.


Unequal irradiance of eye pupil from multiple micro-tessellations for a given field angle is investigated. To model this case, an unequal aperture weighting needs to be modeled. For any given single field angle, the output from micro-tessellations to micro-tessellations may not be a smooth function, but rather a step function, as shown in the spatial distribution plots below.


NON-LIMITING WORKING EXAMPLES

The modeling that follows firstly evaluated the equal irradiance case for 25%, 50% and 75% aperture fill. Most field angle cases will not be top hat, and must be evaluated with a representative field angle weighting function for different micro-tessellations.


A typical angular distribution is shown in FIG. 42A. The corresponding spatial distribution is shown in FIG. 42B. In Case A, a top hat function for this field angle gives 50% aperture fill. In Case B, the tiles have different weighting. Aperture therefore is not a top hat function. Note that micro tessellations do not need to be square or in the order as shown and may have any shape or order, such as a 2D distribution.


Structured and random arrangements were investigated. The following Figures show Non-Random, Regular Repeating Micro-Tessellation Patterns.



FIG. 43 illustrates MTF curves (FIG. 43A) and a 3D layout drawing FIG. 43B showing the effects of 50% aperture fill: 50 um apertures on a 100 um pitch, 3 mm eye pupil. It was assumed 10 um apertures on 40 um pitch (25% fill factor) and green light (532 nm) only. Note the high modulation in the resulting frequency space. FIG. 44 shows the effects of 25% aperture fill: 10 um apertures on 40 um pitch, 3 mm eye pupil. MTF and 3D layout plots are provided. 10 um apertures on 40 um pitch (25% fill factor). Green (532 nm) are assumed. FIG. 45 shows the effects 50% aperture fill: 125 um apertures on 250 um pitch, 3 mm eye pupil using a MTF plot (FIG. 45A) and a footprint diagram (FIG. 45B). 125 um stripe apertures on 250 um pitch (50% fill factor) and Green (532 nm) are assumed. The non-randomized, regular periodic structures exhibit dips in the MTF through out the angular frequency range of interest, typically: 1.4 cyc/mr.


Random Micro-Tessellation Patterns were considered next. Results from periodic aperture functions show ‘holes’ in the MTF. The following investigates randomization of the eye pupil fill using micro tessellations. Tessellation % fill of 25%, 50% and 75% are considered. For this initial analysis, the tessellation was considered to be 100% of the eye pupil. Later cases consider a 1 mm square tessellation that contains micro tessellations with a 3 mm eye pupil.


The following illustrations illustrate the characteristics of 50 micron micro-tessellations. FIG. 46A is a footprint diagram showing the effect of 75% aperture fill of 50 um micro tessellations in 3 mm eye pupil. FIG. 46B is a MTF plot showing the effect of 75% aperture fill of 50 um micro tessellations in 3 mm eye pupil FIG. 47A is a footprint diagram showing the effect of 50% aperture fill of 50 um micro tessellations in 3 mm eye pupil FIG. 47B is a MTF plot showing the effect of 50% aperture fill of 50 um micro tessellations in 3 mm eye pupil FIG. 48A is a footprint diagram showing the effect of 25% aperture fill of 50 um micro tessellations in 3 mm eye pupil FIG. 48B is a MTF plot showing the effect of 25% aperture fill of 50 um micro tessellations in 3 mm eye pupil.


125 micron micro-tessellation was investigated next. FIG. 49A is a footprint diagram showing the effect of 75% Aperture Fill of 125 um micro tessellations 3 mm Eye Pupil. FIG. 49B is a footprint diagram showing the effect of 75% Aperture Fill of 125 um micro tessellations 3 mm Eye Pupil. FIG. 50A is a footprint diagram showing the effect of 50% Aperture Fill of 125 um micro tessellations 3 mm Eye Pupil. FIG. 50B is a MTF plot showing the effect of 50% Aperture Fill of 125 um micro tessellations 3 mm Eye Pupil. FIG. 51A is a footprint diagram showing the effect of 25% Aperture Fill of 125 um micro tessellations 3 mm Eye Pupil. FIG. 51B is a MTF plot showing the effect of 25% Aperture Fill of 125 um micro tessellations 3 mm Eye Pupil.


250 micron micro-tessellations were investigated next. FIG. 52A is a footprint diagram showing the effect of 75% Aperture Fill of 250 um micro tessellations 3 mm Eye Pupil. FIG. 52B is a footprint diagram showing the effect of 75% Aperture Fill of 250 um micro tessellations 3 mm Eye Pupil. FIG. 53A is a footprint diagram showing the effect of 50% Aperture Fill of 250 um micro tessellations 3 mm Eye Pupil. FIG. 53B is a MTF plot showing the effect of 50% Aperture Fill of 250 um micro tessellations 3 mm Eye Pupil. FIG. 54A is a footprint diagram showing the effect of 25% Aperture Fill of 250 um micro tessellations 3 mm Eye Pupil. FIG. 54B is a MTF plot showing the effect of 25% Aperture Fill of 250 um micro tessellations 3 mm Eye Pupil.


Tessellations smaller than the eye pupil diameter and micro tessellations were also investigated. FIG. 55A is a footprint diagram showing the effect of 1 mm tessellation with 50% fill of 125 um micro tessellations using 3 mm Eye Pupil Diameter. FIG. 55B is a MTF plot showing the effect of 1 mm tessellation with 50% fill of 125 um micro tessellations using 3 mm Eye Pupil Diameter. FIG. 56A is a footprint diagram showing the effect of 1.5 mm tessellation with 50% fill of 125 um micro tessellations using 3 mm eye pupil diameter. FIG. 56B is a footprint diagram showing the effect of 1 mm tessellation with 50% fill of 125 um micro tessellations using 3 mm eye pupil diameter. FIG. 57A is a footprint diagram showing the effect of 1 mm tessellation with 50% fill of 125 um micro tessellations using 3 mm eye pupil diameter. FIG. 57B is a MTF Plot showing the effect of 1 mm tessellation with 50% fill of 125 um micro tessellations using 3 mm eye pupil diameter.


Spatially randomized variable transmission apertures were investigated. The first step is checking the model validity: change from UDAs to Bitmap Greyscale Transmission Apertures. Horizontal strips over 1.5 mm aperture (125 μm μTs) in 3 mm diameter eye pupil.


The following modeling techniques were compared: Implement model as UDAs (User Defined Apertures); implement models using bitmap model as transmission aperture. Here bitmap levels are binary. The MTF results predicted are identical, so modeling tools equivalent. FIG. 58A shows a MTF plot of a UDA. FIG. 58B shows a Bitmap Aperture Function.



FIG. 59 shows 1.0 mm tessellation using 125 um micro tessellations randomly positioned with variable transmission and 3 mm eye pupil. Using a variable aperture transmissions improves the model to better represent non-top hat model cases (which are the majority of tessellations). DE values of 0%, 50% and 100% are equivalent to the field angle case shown in FIG. 59A.


It is noted that this represents the spatially broadest possible case of 3 overlapping gratings—i.e., the field angle is output by 75% of the primary tessellation area (albeit that there is a 50% contribution from two of micro-tessellations). 4 tile types are represented here. Transmission values of each were: 50%; 100%; 50%; 0%. Micro tessellation apertures are 125 um squares. The grid was 8×8 pixels, so the tessellation aperture is 1 mm×1 mm square.



FIG. 60 is a MTF plot showing the effect of 1.0 mm tessellation using 125 um μTs randomly positioned with variable transmission and a 3 mm eye pupil. Note that spatial frequencies in the upper boxed region fall in between prediction shown in the figures relating to top hat predictions for 125 um pixels with 50% and 75% aperture fill). Higher spatial frequencies shown in the lower boxed region are most affected by the primary tessellation shape. The reader is referred to the figures showing for 50% aperture fill. It should also be noted that there is MTF improvement for 75% aperture fill.


Referring next to FIG. 61, a 1.5 mm tessellation using 125 um micro tessellations randomly positioned with variable transmission and 3 mm eye pupil was considered. Four different tile types are represented in FIG. 61. The transmission values of each were: 50%; 100%; 50%; 0%. The micro tessellations apertures were 125 um squares. The grid is 12×12 pixels, so the tessellation aperture is 1.5 mm×1.5 mm square.



FIG. 62 is a MTF showing the effect of 1.5 mm tessellation using 125 um micro tessellations randomly positioned with variable transmission and 3 mm eye pupil. It should be noted that high spatial frequencies most affected by the primary tessellation shape, so increasing underlying tessellation from 1.0 mm to 1.5 mm improved high frequency response.


In summary:

    • a) Diffraction effects of micro tessellations need to be accounted for.
    • b) Diffraction effects of micro tessellations are distinct from the diffraction effects of the underlying primary tessellation pattern.
    • c) Use of μTs degrades MTF compared to that of an single tessellation that does not contain micro tessellations. However, micro tessellations enable the tessellation to have a larger angular bandwidth, thereby reducing the overall number of tessellations desired. In turn this permits larger tessellations.
    • d) A regular pattern of μTs will lead to an MTF modulation that leads to unacceptable dips in the MTF frequency response.
    • e) MTF dips can be averaged out by spatially randomizing the micro tessellations. Note that the μTs need to be sufficiently small to permit reasonable randomization. About an 8:1 ratio of tessellation to μT width appears to be sufficient, although this has not been explored fully.
    • f) The amount of angular field overlap between tessellations is crucial to the successful implementation of μTs. In cases modeled the ABW of micro tessellations is at least half of the overall tessellation ABW. Greater overlap will lead to improved MTF performance because this effectively increases the available aperture for a given field angle.
    • g) Tools are now established to model trade off cases for different grating configurations.


Implementation of micro-tessellation structures with spatial randomization across a tessellation provides additional design flexibility. In effect tessellation angular bandwidth (ABW) is enhanced at the expense of MTF. Results show that Randomization of micro tessellation features permits homogenization (roughly an averaging) of MTF oscillations found in non-randomized patterns. Furthermore, MTF at spatial frequencies that are of less interest can be sacrificed for improved tessellation ABW. Different cases of relevant overlapping gratings need to be considered. The MTF supported by micro-tessellation is dependent on micro-tessellation size and overlapping %. The ABW of representative cases of overlapping tessellations need to be considered in more detail, in conjunction with the fold gratings desired to support the desired architecture. Micro-tessellations with feature sizes of 50 μm, 125 μm and 250 μm have been considered in the context of a 3 mm eye pupil and 0.5 mm, 1.0 mm and <3 mm sized primarily tessellation elements. These are practical numbers to work with in the context of a near eye display. Tessellations may however be any size or shape, and micro-tessellation may be any size or shape smaller than the primary tessellation.


An Illumination Uniformity Analysis of the tessellation pattern was conducted next. Referring to FIG. 63, Case 1, which comprises 1 mm tessellations, was considered. The fill per the overlaid reference designs in the Figure. FIG. 63 represents 6 layer, 12 tile, monochrome reference design. It was assumed a single tile with 50% Aperture Fill. It was further assumed: 17 mm eye relief; 3 mm eye pupil; 6 layer monochrome reference design; 1 mm tessellations, and an offset reference design. The unit cell is 2×3. The overlay is shown in the FIG. 63 to generate the tiled overlay pattern. With 1 mm tessellations, min to max best uniformity is +/−12% with 50% aperture fill i.e. +/−12% uniformity variation=24% p-p.



FIG. 64 shows Case 1b repeated on axis for a 3 mm eye pupil at 30 mm eye relief. Eye relief impacts the spatial frequency of the variation. The larger eye relief causes higher spatial frequency ripple. Uniformity magnitude is unaffected. The maximum ripple is 56.6% of pupil fill. Minimum ripple is 43.4% of pupil fill. Uniformity is +/−13.2%, 26.4% peak-to-peak.



FIG. 65 shows Case 2: 1 mm tessellations; fill optimized. The Figures represent a 6 layer, 12 tile monochrome reference design with grating positions reoptimized. A single tile has 50% aperture fill. A 3 mm eye pupil and 1 mm tessellations were assumed. The tessellations are spatially uniform.



FIG. 66 illustrates Case 2: consideration of maximum and minimum situations. Footprint diagrams corresponding to a minimum 45.1% and a maximum 54.9% are shown. With 1 mm tessellations, minimum to maximum best uniformity is +/−5% with 50% aperture fill, i.e., +/−10% uniformity variation (20% p-p).



FIG. 67 illustrates Case 3: 0.5 mm tessellations with 50% aperture fill, off axis. FIG. 67 represents a 6 layer, 12 tile, monochrome reference design but with 0.5 mm tessellations. A single tile: 50% aperture fill and 3 mm eye pupil are assumed. This calculation simulates 50% aperture fill with 0.5 mm wide tessellations. Ripple is calculated as: maximum=50.4; minimum=49.6. Ripple magnitude is about +/−0.8% (1.6% P-P). The field range measured was ˜11 deg to 24 deg. Ripple frequency is ˜1 cycle for 1.25 deg.



FIG. 68 illustrates Case 3b: 0.5 mm tessellations with 50% aperture fill, on axis. FIG. 68 represents a 6 layer, 12 tile, monochrome reference design but with 0.5 mm tessellations. A single tile: 50% aperture fill; and 3 mm eye pupil were assumed. This simulates 50% aperture fill with 0.5 mm wide tessellations. Ripple was calculated as: maximum=50.9; minimum=49.6. Ripple magnitude is about +/−1.5% (3% P-P). The field range measured was ˜+/−6.5 deg. Off axis, tessellations are foreshortened, and thus uniformity improves. Ripple frequency is ˜1 cycle for 1.25 deg.



FIG. 69 illustrates a 4 mm eye pupil, 0.5 mm tessellations, 50% aperture fill. As shown in the drawings the characteristics are: maximum: 51.97%; minimum: 48.03%; and ripple: +/−2% (=4% p-p).



FIG. 70 illustrates a 3 mm eye pupil, 33% aperture fill (3 layers, 9 tile types). FIG. 70 represents 3 layer, 9 tile, monochrome reference design but with 0.5 mm tessellations. A single tile: 33% Aperture Fill; and a 3 mm eye pupil were assumed. Ripple was calculated at: maximum=36.9; minimum=30.4. Ripple magnitude is ˜6.5%/33%=+/−9.75% (=19.5% P-P). Ripple frequency is ˜1 cycle for 5 deg.



FIG. 71 illustrates a 4 mm eye pupil, 33% aperture fill (3 layers, 9 tile types). A single tile: 33% Aperture Fill and 4 mm eye pupil were assumed. Ripple was calculated as: maximum=35; minimum=30.8. Ripple magnitude is ˜4.2%/33%=+/−6.3%=12.6% P-P. The ripple frequency is ˜1 cycle for 5 deg.



FIG. 72 illustrates a 3 mm eye pupil, 33% aperture fill (3 layers, 9 tile types). A single tile: 33% aperture fill and 3 mm eye pupil were assumed. The computed characteristics are: ripple maximum: 35.2%; ripple minimum: 29.7%; uniformity: 5.5%/33.3%=+/−8.25%=16.5%.



FIG. 73 illustrates how a unit cell forms an evenly distributed pattern.



FIG. 74 is a recalculation of the embodiment using a 4 mm eye pupil, 33% aperture fill (3 layers, 9 tile types). This needs the pattern to have 1×3 unit cell, with even columns offset by 0.5 pixel.


A grid distribution using even column half pixel offsets gives a more even distribution. The computed characteristics are: ripple maximum: 35.0%; ripple minimum: 31.0%; uniformity: 4.0%/33.3%=+/−6%=12%.



FIG. 75 illustrates a 4 mm eye pupil, 33% aperture fill (3 layers, 9 tile types). This embodiment needs the pattern to have 1×3 unit cell, with even columns offset by 0.5 pixel.


Grid distribution using even column half pixel offsets gives a more even distribution. The computed characteristics are: ripple maximum: 34.6%; ripple minimum: 32.7%; uniformity: 1.9%/33.3%=+/−2.85%=5.7%.


A series of reference designs based on micro-tessellation principles have been developed and are summarised below


1. Reference design:

    • Monochromatic, 6 layer, 12 tiles (50% aperture fill), 1 mm tessellations:
    • 3 mm eye pupil: 24% uniformity


2. Reference design with reoptimized grating locations on different layers:

    • Monochromatic, 6 layer, 12 tiles (50% aperture fill), 1 mm tessellations:
    • 3 mm eye pupil: 20% uniformity


3. Reference design using 0.5 mm tessellations:

    • Monochromatic, 6 layer, 12 tiles (50% aperture fill), 0.5 mm tessellations:
    • 3 mm eye pupil: ˜3% to 2% uniformity across field.


4. 3 mm eye pupil (Target: C AR Outdoor)

    • 3 layer, 9 tiles (33% aperture fill), 0.5 mm tessellations:
    • Up to 16.5% uniformity


5. 4 mm eye pupil [Target: C Movie Indoor]

    • 3 layer, 9 tiles (33% aperture fill), 0.5 mm tessellations:
    • Up to 12% uniformity


Achieving 50% aperture fill of a single tile provides significantly improved uniformity over even 33% aperture fill (˜5× uniformity improvement on 3 mm eye pupil). For 50% aperture fill, 0.5 mm performs significantly better than a 1 mm tessellation: 3% vs. 20% for a 3 mm eye pupil.


50% aperture fill for 9 tiles need ‘4.5’ (i.e., 5 layers).


Eye pupil irradiance uniformity with field angle improves with decreased primary tessellation element size and increase primary tessellation element aperture fill. It is noted that decreased tile type density on a given layer will then improve the irradiance uniformity with field angle because fewer tile types will increase the aperture fill of any single primary tessellation element type. Decreased primary tessellation element size degrades MTF (resolution). It is noted that decreased primary tessellation element size, and increased density of a primary tessellation element type permits irregular patterns. This in turn permits homogenization of MTF of primary tessellations, and the opportunity to vary the irradiance uniformity field angular ripple frequency. The use of small (micro tessellations) inside the aperture of a primary tessellation may improve the overall angular bandwidth of a primary tessellation element, thereby presenting the opportunity to reduce the number of primary tessellation element types desired.


REFERENCES

The following patent applications are incorporated by reference herein in their entireties:


U.S. Provisional Patent Application No. 61/627,202 with filing date 7 Oct. 2011 by the present inventors entitled WIDE ANGLE COLOR HEAD MOUNTED DISPLAY;


PCT Application No.: US2008/001909, with International Filing Date: 22 Jul. 2008, entitled LASER ILLUMINATION DEVICE;


PCT Application No.: US2006/043938, entitled METHOD AND APPARATUS FOR PROVIDING A TRANSPARENT DISPLAY;


PCT Application No.: PCT/GB2010/001982 entitled COMPACT EDGE ILLUMINATED EYEGLASS DISPLAY;


PCT Application No.: PCT/GB2010/000835 with International Filing Date: 26 Apr. 2010 entitled Compact holographic edge illuminated eyeglass display;


PCT Application No.: PCT/GB2010/002023 filed on 2 Nov. 2010 entitled APPARATUS FOR REDUCING LASER SPECKLE.


U.S. patent application Ser. No. 10/555,661 filed 4 Nov. 2005 entitled SWITCHABLE VIEWFINDER DISPLAY.


U.S. Provisional Patent Application No. 61/344,748 with filing date 28 Sep. 2010 entitled Eye Tracked Holographic Edge Illuminated Eyeglass Display;


U.S. Provisional Patent Application 61/573,066 with filing date 24 Aug. 2011 by the present inventors entitled HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES;


U.S. Provisional Patent Applications No. 61/457,835 with filing date 16 Jun. 2011 entitled HOLOGRAPHIC BEAM STEERING DEVICE FOR AUTOSTEREOSCOPIC DISPLAYS;


PCT Application No.: US2008/001909, with International Filing Date: 22 Jul. 2008, entitled LASER ILLUMINATION DEVICE


PCT Application No.: PCT/GB2010/002023 filed on 2 Nov. 2010 by the present inventors entitled APPARATUS FOR REDUCING LASER SPECKLE.


U.S. Provisional Patent Application No. 61/573,121 with filing date 7 Sep. 2011 by the present inventors entitled METHOD AND APPARATUS FOR SWITCHING HPDLC ARRAY DEVICES;


PCT Application No.: PCT/GB2010/000835 with International Filing Date: 26 Apr. 2010 entitled COMPACT HOLOGRAPHIC EDGE ILLUMINATED EYEGLASS DISPLAY;


a U.S. Provisional Patent Application 61/573,082 with filing date 29 Aug. 2011 by the present inventors entitled CONTACT IMAGE SENSORS;


U.S. Provisional Patent Application No. 61/573,156 filed on 16 Sep. 2011, entitled “Holographic wide angle near eye display” (SBG Labs Reference No. SBG106A);


U.S. Provisional Patent Application No. 61/573,175 filed on 19 Sep. 2011, entitled “Holographic wide angle near eye display” (SBG Labs Reference No. SBG106B);


U.S. Provisional Patent Application No. 61/573,176 filed on 19 Sep. 2011, entitled “Holographic wide angle near eye display” (SBG Labs Reference No. SBG106C);


U.S. Provisional Patent Application No. 61/573,196 filed on 25 Sep. 2011, entitled “Further improvements to holographic wide angle near eye display” (SBG Labs Reference No. SBG106D);


U.S. Provisional Patent Application No. 61/627,202 filed on 7 Oct. 2011, entitled “Wide angle color head mounted display” (SBG Labs Reference No. SBG106);


U.S. Provisional Patent Application No. 61/687,436 filed on 25 Apr. 2012, entitled “Improvements to holographic wide angle head mounted display” (SBG Labs Reference No. SBG109);


Conclusion


All literature and similar material cited in this application, including, but not limited to, patents, patent applications, articles, books, treatises, and web pages, regardless of the format of such literature and similar materials, are expressly incorporated by reference in their entirety. In the event that one or more of the incorporated literature and similar materials differs from or contradicts this application, including but not limited to defined terms, term usage, described techniques, or the like, this application controls.


While the present teachings have been described in conjunction with various embodiments and examples, it is not intended that the present teachings be limited to such embodiments or examples. On the contrary, the present teachings encompass various alternatives, modifications, and equivalents, as will be appreciated by those of skill in the art.


While various inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.


Also, the technology described herein may be embodied as a method, of which at least one example has been provided. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.


All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.


The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.” Any ranges cited herein are inclusive.


The terms “substantially” and “about” used throughout this Specification are used to describe and account for small fluctuations. For example, they can refer to less than or equal to ±5%, such as less than or equal to ±2%, such as less than or equal to ±1%, such as less than or equal to ±0.5%, such as less than or equal to ±0.2%, such as less than or equal to ±0.1%, such as less than or equal to ±0.05%.


The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.


As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.


As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.


In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.


The claims should not be read as limited to the described order or elements unless stated to that effect. It should be understood that various changes in form and detail may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims. All embodiments that come within the spirit and scope of the following claims and equivalents thereto are claimed.

Claims
  • 1. An apparatus for displaying an image, comprising: an input image node;a first waveguide arranged to propagate modulated light having a first color from the input image node in a first direction and expand a pupil in the first direction, the first waveguide comprising a plurality of first input diffraction gratings at a first input of the first waveguide and a plurality of first output diffraction gratings at a first output of the first waveguide, wherein each of the first input diffraction gratings and the first output diffraction gratings has a k-vector direction that varies along the first direction to provide coupling of angular content of the modulated light having the first color into the first waveguide with at least a selected efficiency;a second waveguide arranged to propagate the modulated light having the first color in a second direction and expand the pupil in the second direction, the second waveguide comprising a plurality of second input diffraction gratings at a second input of the second waveguide and a plurality of second output diffraction gratings at a second output of the second waveguide, wherein each of the second input diffraction gratings and the second output diffraction gratings has a k-vector that varies along the second direction to provide coupling of angular content of the modulated light having the first color into the second waveguide with at least a selected efficiency;one or more additional first waveguides arranged to propagate modulated light having a second color from the input image node along the first direction and expand the pupil in the first direction; andone or more additional second waveguides arranged to propagate the modulated light having the second color along the second direction and expand the pupil in the second direction.
  • 2. The apparatus of claim 1, wherein each of the first input diffraction gratings have a fixed frequency.
  • 3. The apparatus of claim 2, wherein each of the first output diffraction gratings, second input diffraction gratings, and second output diffraction gratings have a fixed frequency.
  • 4. The apparatus of claim 1, wherein each of the first input diffraction gratings, the first output diffraction gratings, second input diffraction gratings, and second output diffraction gratings are comprised of alternating bands of polymer and liquid crystal material.
  • 5. The apparatus of claim 1, wherein each first input diffraction grating of the input diffraction gratings provides a subset of the angular field of view.
  • 6. The apparatus of claim 1, wherein the apparatus is an avionic head up display.
  • 7. The apparatus of claim 1, wherein a thickness of at least one of the first input diffraction gratings or the first output diffraction gratings varies along the first direction, wherein a thickness of at least one of the second input diffraction gratings or the second output diffraction gratings varies along the second direction.
  • 8. The apparatus of claim 1, wherein the apparatus is a helmet mounted display.
  • 9. The apparatus of claim 1 wherein the plurality of waveguides comprise a visor of a helmet mounted display.
  • 10. A method of displaying an image, comprising: providing modulated light having a first color to a first waveguide comprising a plurality of first input diffraction gratings at a first input of the first waveguide and a plurality of first output diffraction gratings at a first output of the first waveguide, wherein each of the first input diffraction gratings and the first output diffraction gratings has a k-vector direction that varies along the first direction to provide coupling of angular content of the modulated light having the first color into the first waveguide with at least a selected efficiency;propagating the modulated light having the first color along the first waveguide in the first direction to expand a pupil in the first direction;deflecting the modulated light having the first color out of the first waveguide and into a second waveguide comprising a plurality of second input diffraction gratings at a second input of the second waveguide and a plurality of second output diffraction gratings at a second output of the second waveguide, wherein each of the second input diffraction gratings and the second output diffraction gratings has a k-vector direction that varies along the second direction to provide coupling of angular content of the modulated light having the first color into the second waveguide with at least a selected efficiency; andpropagating the modulated light having the second color along the second waveguide in the second direction to expand the pupil in the second direction direction;providing modulated light having a second color to an additional first waveguide;propagating the modulated light having the second color along the additional first waveguide in the first direction to expand the pupil in the first direction;deflecting the modulated light having the second color out of the additional first waveguide into an additional second waveguide; andpropagating the modulated light having the second color along the additional second waveguide to expand the pupil in the second direction.
  • 11. The method of claim 10, wherein each of the first input diffraction gratings, the first output diffraction gratings, second input diffraction gratings, and second output diffraction gratings are switchable Bragg gratings comprised of alternating bands of polymer and liquid crystal material.
  • 12. The method of claim 10, wherein adjacent waveguides of the first waveguide, the additional first waveguide, the second waveguide, and the additional second waveguide are separated by cladding layers.
  • 13. The method of claim 10, wherein adjacent waveguides of the first waveguide, the additional first waveguide, the second waveguide, and the additional second waveguide are in contact.
  • 14. An apparatus for displaying an image, comprising: a beam expander waveguide arranged to propagate light having a first color in a first direction and expand a pupil in the first direction, the beam expander waveguide comprising a plurality of first input diffraction gratings at a first input of the beam expander waveguide and a plurality of first output diffraction gratings at a first output of the beam expander waveguide, wherein each of the first input diffraction gratings and the first output diffraction gratings has a k-vector direction that varies along the first direction to provide coupling of angular content of the light having the first color into in the first waveguide with at least a selected efficiency;a second waveguide arranged to propagate the light having the first color in a second direction and expand the pupil in the second direction, the second waveguide comprising a plurality of second input diffraction gratings at a second input of the second waveguide and a plurality of second output diffraction gratings at a second output of the second waveguide, wherein each of the second input diffraction gratings and the second output diffraction gratings has a k-vector direction that varies along the second direction to provide coupling of angular content of the light having the first color into the second waveguide with at least a selected efficiency, the second waveguide being a combiner;one or more additional first waveguides arranged to propagate light having a second color from the input image node along the first direction and expand the pupil in the first direction; andone or more additional second waveguides arranged to propagate the light having the second color along the second direction and expand the pupil in the second direction.
  • 15. The apparatus of claim 14, wherein apparatus is a helmet mounted display.
  • 16. The apparatus of claim 15, wherein the apparatus is an avionic head up display.
  • 17. The apparatus of claim 14, wherein the second waveguide device has a curved convex output surface.
  • 18. The apparatus of claim 14, each of the first input diffraction gratings, the first output diffraction gratings, second input diffraction gratings, and second output diffraction gratings have a thickness of less than 1.2 microns.
  • 19. The apparatus of claim 14, each of the first input diffraction gratings, the first output diffraction gratings, second input diffraction gratings, and second output diffraction gratings have a thickness of less than 1.2 microns and are comprised of alternating bands of polymer and liquid crystal material.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/048,954, filed Feb. 19, 2016, which is a continuation of U.S. patent application Ser. No. 13/869,866, now U.S. Pat. No. 9,341,846, filed Apr. 24, 2013, which claims the benefit of and priority to U.S. Application No. 61/687,436, filed Apr. 25, 2012, and 61/689,907, filed Jun. 15, 2012, each of which is hereby incorporated by reference herein in their entirety.

US Referenced Citations (1231)
Number Name Date Kind
1043938 Huttenlocher Nov 1912 A
2141884 Sonnefeld Dec 1938 A
3482498 Becker Dec 1969 A
3620601 Waghorn Nov 1971 A
3741716 Johne et al. Jun 1973 A
3843231 Borel et al. Oct 1974 A
3851303 Muller Nov 1974 A
3885095 Wolfson et al. May 1975 A
3940204 Withrington Feb 1976 A
3965029 Arora Jun 1976 A
3975711 McMahon Aug 1976 A
4035068 Rawson Jul 1977 A
4066334 Fray et al. Jan 1978 A
4082432 Kirschner Apr 1978 A
4099841 Ellis Jul 1978 A
4178074 Heller Dec 1979 A
4218111 Withrington et al. Aug 1980 A
4232943 Rogers Nov 1980 A
4248093 Andersson et al. Feb 1981 A
4251137 Knop et al. Feb 1981 A
4309070 St. Leger Searle Jan 1982 A
4322163 Schiller Mar 1982 A
4386361 Simmonds May 1983 A
4389612 Simmonds et al. Jun 1983 A
4403189 Simmonds Sep 1983 A
4418993 Lipton Dec 1983 A
4472037 Lipton Sep 1984 A
4523226 Lipton et al. Jun 1985 A
4544267 Schiller Oct 1985 A
4562463 Lipton Dec 1985 A
4566758 Bos et al. Jan 1986 A
4583117 Lipton et al. Apr 1986 A
4643515 Upatnieks Feb 1987 A
4647967 Kirschner et al. Mar 1987 A
4688900 Doane et al. Aug 1987 A
4711512 Upatnieks Dec 1987 A
4714320 Banbury Dec 1987 A
4728547 Vaz et al. Mar 1988 A
4729640 Sakata et al. Mar 1988 A
4743083 Schimpe May 1988 A
4749256 Bell et al. Jun 1988 A
4765703 Suzuki et al. Aug 1988 A
4775218 Wood et al. Oct 1988 A
4791788 Sager et al. Dec 1988 A
4792850 Liptoh et al. Dec 1988 A
4799765 Ferrer Jan 1989 A
4811414 Fishbine et al. Mar 1989 A
4848093 Simmonds et al. Jul 1989 A
4854688 Hayford et al. Aug 1989 A
4860294 Winzer et al. Aug 1989 A
4884876 Lipton et al. Dec 1989 A
4890902 Doane et al. Jan 1990 A
4928301 Smoot May 1990 A
4933976 Fishbine et al. Jun 1990 A
4938568 Margerum et al. Jul 1990 A
4946245 Chamberlin et al. Aug 1990 A
4960311 Moss et al. Oct 1990 A
4964701 Dorschner et al. Oct 1990 A
4967268 Lipton et al. Oct 1990 A
4970129 Ingwall et al. Nov 1990 A
4971719 Vaz et al. Nov 1990 A
4994204 West Feb 1991 A
5004323 West Apr 1991 A
5007711 Wood et al. Apr 1991 A
5009483 Rockwell et al. Apr 1991 A
5035734 Honkanen et al. Jul 1991 A
5053834 Simmonds Oct 1991 A
5063441 Lipton et al. Nov 1991 A
5076664 Migozzi Dec 1991 A
5079416 Filipovich Jan 1992 A
5096282 Margerum et al. Mar 1992 A
5099343 Margerum et al. Mar 1992 A
5110034 Simmonds et al. May 1992 A
5117285 Nelson et al. May 1992 A
5117302 Lipton May 1992 A
5119454 McMahon et al. Jun 1992 A
5124821 Antier et al. Jun 1992 A
5139192 Simmonds et al. Aug 1992 A
5142357 Lipton et al. Aug 1992 A
5142644 Vansteenkiste et al. Aug 1992 A
5148302 Nagano et al. Sep 1992 A
5151958 Honkanen Sep 1992 A
5153751 Ishikawa et al. Oct 1992 A
5159445 Gitlin et al. Oct 1992 A
5160523 Honkanen et al. Nov 1992 A
5181133 Lipton Jan 1993 A
5183545 Branca et al. Feb 1993 A
5187597 Kato et al. Feb 1993 A
5193000 Lipton et al. Mar 1993 A
5198912 Ingwall et al. Mar 1993 A
5200861 Moskovich et al. Apr 1993 A
5210624 Matsumoto et al. May 1993 A
5218360 Goetz et al. Jun 1993 A
5218480 Moskovich et al. Jun 1993 A
5224198 Jachimowicz et al. Jun 1993 A
5239372 Lipton Aug 1993 A
5240636 Doane et al. Aug 1993 A
5241337 Betensky et al. Aug 1993 A
5242476 Bartel et al. Sep 1993 A
5243413 Gitlin et al. Sep 1993 A
5251048 Doane et al. Oct 1993 A
5264950 West et al. Nov 1993 A
5268792 Kreitzer et al. Dec 1993 A
5284499 Harvey et al. Feb 1994 A
5289315 Makita et al. Feb 1994 A
5295208 Caulfield et al. Mar 1994 A
5296967 Moskovich et al. Mar 1994 A
5299289 Omae et al. Mar 1994 A
5303085 Rallison Apr 1994 A
5306923 Kazmierski et al. Apr 1994 A
5309283 Kreitzer et al. May 1994 A
5313330 Betensky May 1994 A
5315324 Simmonds et al. May 1994 A
5315419 Saupe et al. May 1994 A
5315440 Betensky et al. May 1994 A
5317405 Kuriki et al. May 1994 A
5327269 Tilton et al. Jul 1994 A
5329363 Moskovich et al. Jul 1994 A
5341230 Smith Aug 1994 A
5343147 Sager et al. Aug 1994 A
5351151 Levy Sep 1994 A
5359362 Lewis et al. Oct 1994 A
5363220 Kuwayama et al. Nov 1994 A
5368770 Saupe et al. Nov 1994 A
5369511 Amos Nov 1994 A
5371626 Betensky Dec 1994 A
5400069 Braun et al. Mar 1995 A
5408346 Trissel et al. Apr 1995 A
5416510 Lipton et al. May 1995 A
5418584 Larson May 1995 A
5418871 Revelli et al. May 1995 A
5428480 Betensky et al. Jun 1995 A
5437811 Doane et al. Aug 1995 A
5438357 McNelley Aug 1995 A
5452385 Izumi et al. Sep 1995 A
5453863 West et al. Sep 1995 A
5455693 Wreede et al. Oct 1995 A
5455713 Kreitzer et al. Oct 1995 A
5463428 Lipton et al. Oct 1995 A
5465311 Caulfield et al. Nov 1995 A
5471326 Hall et al. Nov 1995 A
5473222 Thoeny et al. Dec 1995 A
5476611 Nolan et al. Dec 1995 A
5481321 Lipton Jan 1996 A
5485313 Betensky Jan 1996 A
5493430 Lu et al. Feb 1996 A
5493448 Betensky et al. Feb 1996 A
5496621 Makita et al. Mar 1996 A
5499140 Betensky Mar 1996 A
5500671 Andersson et al. Mar 1996 A
5500769 Betensky Mar 1996 A
5510913 Hashimoto et al. Apr 1996 A
5515184 Caulfield et al. May 1996 A
5516455 Rakas et al. May 1996 A
5524272 Podowski et al. Jun 1996 A
5530566 Kumar Jun 1996 A
5532736 Kuriki et al. Jul 1996 A
5532875 Betemsky Jul 1996 A
5537232 Biles Jul 1996 A
RE35310 Moskovich Aug 1996 E
5543950 Lavrentovich et al. Aug 1996 A
5559637 Moskovich et al. Sep 1996 A
5572248 Allen et al. Nov 1996 A
5572250 Lipton et al. Nov 1996 A
5576888 Betensky Nov 1996 A
5579026 Tabata Nov 1996 A
5583795 Smyth Dec 1996 A
5585035 Vesley et al. Dec 1996 A
5593615 Nerad et al. Jan 1997 A
5604611 Saburi et al. Feb 1997 A
5606433 Yin et al. Feb 1997 A
5612733 Flohr Mar 1997 A
5612734 Nelson et al. Mar 1997 A
5619254 McNelley Apr 1997 A
5619586 Sibbald et al. Apr 1997 A
5621529 Gordon et al. Apr 1997 A
5621552 Coates et al. Apr 1997 A
5625495 Moskovich et al. Apr 1997 A
5629259 Akada et al. May 1997 A
5631107 Tarumi et al. May 1997 A
5633100 Mickish et al. May 1997 A
5646785 Gilboa et al. Jul 1997 A
5648857 Ando et al. Jul 1997 A
5661577 Jenkins et al. Aug 1997 A
5661603 Hanano et al. Aug 1997 A
5665494 Kawabata et al. Sep 1997 A
5668614 Chien et al. Sep 1997 A
5668907 Veligdan Sep 1997 A
5677797 Betensky et al. Oct 1997 A
5680231 Grinberg et al. Oct 1997 A
5680411 Ramdane et al. Oct 1997 A
5682255 Friesem et al. Oct 1997 A
5686931 Fuenfschilling et al. Nov 1997 A
5686975 Lipton Nov 1997 A
5691795 Doane et al. Nov 1997 A
5694230 Welch Dec 1997 A
5695682 Doane et al. Dec 1997 A
5701132 Kollin et al. Dec 1997 A
5706108 Ando et al. Jan 1998 A
5706136 Okuyama et al. Jan 1998 A
5707925 Akada et al. Jan 1998 A
5710645 Phillips et al. Jan 1998 A
5724189 Ferrante Mar 1998 A
5726782 Kato et al. Mar 1998 A
5727098 Jacobson Mar 1998 A
5729242 Margerum et al. Mar 1998 A
5731060 Hirukawa et al. Mar 1998 A
5731853 Taketomi et al. Mar 1998 A
5742262 Tabata et al. Apr 1998 A
5745266 Smith et al. Apr 1998 A
5745301 Betensky et al. Apr 1998 A
5748272 Tanaka et al. May 1998 A
5748277 Huang et al. May 1998 A
5751452 Tanaka et al. May 1998 A
5757546 Lipton et al. May 1998 A
5760931 Saburi et al. Jun 1998 A
5764414 King et al. Jun 1998 A
5790288 Jager et al. Aug 1998 A
5790314 Duck et al. Aug 1998 A
5798641 Spagna et al. Aug 1998 A
5808804 Moskovich Sep 1998 A
5812608 Valimaki et al. Sep 1998 A
5822089 Phillips et al. Oct 1998 A
5822127 Chen et al. Oct 1998 A
5825448 Bos et al. Oct 1998 A
5831700 Li et al. Nov 1998 A
5835661 Tai et al. Nov 1998 A
5841507 Barnes Nov 1998 A
5841587 Moskovich et al. Nov 1998 A
5856842 Tedesco Jan 1999 A
5867238 Miller et al. Feb 1999 A
5867618 Ito et al. Feb 1999 A
5868951 Schuck et al. Feb 1999 A
5870228 Kreitzer et al. Feb 1999 A
5875012 Crawford et al. Feb 1999 A
5877826 Yang et al. Mar 1999 A
5892598 Asakawa et al. Apr 1999 A
5892599 Bahuguna Apr 1999 A
5898511 Mizutani et al. Apr 1999 A
5900987 Kreitzer et al. May 1999 A
5900989 Kreitzer May 1999 A
5903395 Rallison et al. May 1999 A
5907416 Hegg et al. May 1999 A
5907436 Perry et al. May 1999 A
5917459 Son et al. Jun 1999 A
5926147 Sehm et al. Jul 1999 A
5929946 Sharp et al. Jul 1999 A
5929960 West et al. Jul 1999 A
5930433 Williamson et al. Jul 1999 A
5936776 Kreitzer Aug 1999 A
5937115 Domash Aug 1999 A
5942157 Sutherland et al. Aug 1999 A
5945893 Plessky et al. Aug 1999 A
5949302 Sarkka Sep 1999 A
5949508 Kumar et al. Sep 1999 A
5956113 Crawford Sep 1999 A
5963375 Kreitzer Oct 1999 A
5966223 Friesem et al. Oct 1999 A
5969874 Moskovich Oct 1999 A
5969876 Kreitzer et al. Oct 1999 A
5973727 McGrew et al. Oct 1999 A
5974162 Metz et al. Oct 1999 A
5985422 Krauter Nov 1999 A
5986746 Metz et al. Nov 1999 A
5991087 Rallison Nov 1999 A
5999089 Carlson et al. Dec 1999 A
5999282 Suzuki et al. Dec 1999 A
5999314 Asakura et al. Dec 1999 A
6014187 Okuda et al. Jan 2000 A
6023375 Kreitzer Feb 2000 A
6042947 Asakura et al. Mar 2000 A
6043585 Plessky et al. Mar 2000 A
6046585 Simmonds Apr 2000 A
6052540 Koyama Apr 2000 A
6061107 Yang May 2000 A
6061463 Metz et al. May 2000 A
6075626 Mizutani et al. Jun 2000 A
6078427 Fontaine et al. Jun 2000 A
6094311 Moskovich Jul 2000 A
6097551 Kreitzer Aug 2000 A
6104448 Doane et al. Aug 2000 A
6115152 Popovich et al. Sep 2000 A
6127066 Ueda et al. Oct 2000 A
6128058 Walton et al. Oct 2000 A
6133971 Silverstein et al. Oct 2000 A
6133975 Li et al. Oct 2000 A
6137630 Tsou et al. Oct 2000 A
6141074 Bos et al. Oct 2000 A
6141154 Kreitzer et al. Oct 2000 A
6151142 Phillips et al. Nov 2000 A
6154190 Yang et al. Nov 2000 A
6156243 Kosuga et al. Dec 2000 A
6169594 Aye et al. Jan 2001 B1
6169613 Amitai et al. Jan 2001 B1
6169636 Kreitzer et al. Jan 2001 B1
6176837 Foxlin Jan 2001 B1
6188462 Lavrentovich et al. Feb 2001 B1
6191887 Michaloski et al. Feb 2001 B1
6195206 Yona et al. Feb 2001 B1
6195209 Kreitzer et al. Feb 2001 B1
6204835 Yang et al. Mar 2001 B1
6211976 Popovich et al. Apr 2001 B1
6222675 Mall et al. Apr 2001 B1
6222971 Veligdan et al. Apr 2001 B1
6249386 Yona et al. Jun 2001 B1
6259423 Tokito et al. Jul 2001 B1
6259559 Kobayashi et al. Jul 2001 B1
6268839 Yang et al. Jul 2001 B1
6269203 Davies et al. Jul 2001 B1
6275031 Simmonds et al. Aug 2001 B1
6278429 Ruth et al. Aug 2001 B1
6285813 Schultz et al. Sep 2001 B1
6297860 Moskovich et al. Oct 2001 B1
6301056 Kreitzer et al. Oct 2001 B1
6301057 Kreitzer et al. Oct 2001 B1
6317083 Johnson et al. Nov 2001 B1
6317227 Mizutani et al. Nov 2001 B1
6317228 Popovich et al. Nov 2001 B2
6317528 Gadkaree et al. Nov 2001 B1
6320563 Yang et al. Nov 2001 B1
6321069 Piirainen Nov 2001 B1
6324014 Moskovich et al. Nov 2001 B1
6327089 Hosaki et al. Dec 2001 B1
6330109 Ishii et al. Dec 2001 B1
6333819 Svedenkrans Dec 2001 B1
6340540 Ueda et al. Jan 2002 B1
6351333 Araki et al. Feb 2002 B2
6356172 Koivisto et al. Mar 2002 B1
6359730 Tervonen Mar 2002 B2
6359737 Stringfellow Mar 2002 B1
6366281 Lipton et al. Apr 2002 B1
6366378 Tervonen et al. Apr 2002 B1
6377238 McPheters Apr 2002 B1
6377321 Khan et al. Apr 2002 B1
6388797 Lipton et al. May 2002 B1
6392812 Howard May 2002 B1
6409687 Foxlin Jun 2002 B1
6411444 Moskovich et al. Jun 2002 B1
6414760 Lopez et al. Jul 2002 B1
6417971 Moskovich et al. Jul 2002 B1
6437563 Simmonds et al. Aug 2002 B1
6445512 Moskovich et al. Sep 2002 B1
6470132 Nousiainen et al. Oct 2002 B1
6476974 Kreitzer et al. Nov 2002 B1
6483303 Simmonds et al. Nov 2002 B2
6486997 Bruzzone et al. Nov 2002 B1
6504518 Kuwayama et al. Jan 2003 B1
6504629 Popovich et al. Jan 2003 B1
6509937 Moskovich et al. Jan 2003 B1
6518747 Sager et al. Feb 2003 B2
6519088 Lipton Feb 2003 B1
6522795 Jordan et al. Feb 2003 B1
6524771 Maeda et al. Feb 2003 B2
6529336 Kreitzer et al. Mar 2003 B1
6545778 Ono et al. Apr 2003 B2
6550949 Bauer et al. Apr 2003 B1
6557413 Nieminen et al. May 2003 B2
6559813 DeLuca et al. May 2003 B1
6560019 Nakai May 2003 B2
6563648 Gleckman et al. May 2003 B2
6563650 Moskovich et al. May 2003 B2
6567573 Domash et al. May 2003 B1
6577411 David et al. Jun 2003 B1
6577429 Kurtz et al. Jun 2003 B1
6580529 Amitai et al. Jun 2003 B1
6583838 Hoke et al. Jun 2003 B1
6583873 Goncharov et al. Jun 2003 B1
6587619 Kinoshita Jul 2003 B1
6594090 Kruschwitz et al. Jul 2003 B2
6597176 Simmonds et al. Jul 2003 B2
6597475 Shirakura et al. Jul 2003 B1
6598987 Parikka Jul 2003 B1
6600590 Roddy et al. Jul 2003 B2
6608720 Freeman Aug 2003 B1
6611253 Cohen Aug 2003 B1
6618104 Date et al. Sep 2003 B1
6624943 Nakai et al. Sep 2003 B2
6625381 Roddy et al. Sep 2003 B2
6646772 Popovich et al. Nov 2003 B1
6646810 Harter et al. Nov 2003 B2
6661578 Hedrick Dec 2003 B2
6667134 Sutherland et al. Dec 2003 B1
6674578 Sugiyama et al. Jan 2004 B2
6677086 Bunning et al. Jan 2004 B1
6686815 Mirshekarl-Syahkal et al. Feb 2004 B1
6692666 Sutherland et al. Feb 2004 B2
6699407 Bunning et al. Mar 2004 B1
6706086 Emig et al. Mar 2004 B2
6706451 Sutherland et al. Mar 2004 B1
6721096 Bruzzone et al. Apr 2004 B2
6730442 Sutherland et al. May 2004 B1
6731434 Hua et al. May 2004 B1
6738105 Hannah et al. May 2004 B1
6741189 Gibbons, II et al. May 2004 B1
6744478 Asakura et al. Jun 2004 B1
6747781 Trisnadi et al. Jun 2004 B2
6748342 Dickhaus Jun 2004 B1
6750941 Satoh et al. Jun 2004 B2
6750995 Dickson Jun 2004 B2
6757105 Niv et al. Jun 2004 B2
6771403 Endo et al. Aug 2004 B1
6776339 Piikivi Aug 2004 B2
6781701 Sweetser et al. Aug 2004 B1
6791629 Moskovich et al. Sep 2004 B2
6791739 Ramanujan et al. Sep 2004 B2
6804066 Ha et al. Oct 2004 B1
6805490 Levola Oct 2004 B2
6821457 Sutherland et al. Nov 2004 B1
6822713 Yaroshchuk et al. Nov 2004 B1
6825987 Repetto et al. Nov 2004 B2
6829095 Amitai Dec 2004 B2
6830789 Doane et al. Dec 2004 B2
6833955 Niv Dec 2004 B2
6836369 Fujikawa et al. Dec 2004 B2
6844212 Bond et al. Jan 2005 B2
6844980 He et al. Jan 2005 B2
6847274 Salmela et al. Jan 2005 B2
6847488 Travis Jan 2005 B2
6850210 Lipton et al. Feb 2005 B1
6853491 Ruhle et al. Feb 2005 B1
6853493 Kreitzer et al. Feb 2005 B2
6864927 Cathey Mar 2005 B1
6867888 Sutherland et al. Mar 2005 B2
6878494 Bunning et al. Apr 2005 B2
6885483 Takada Apr 2005 B2
6903872 Schrader Jun 2005 B2
6909345 Salmela et al. Jun 2005 B1
6917375 Akada et al. Jul 2005 B2
6922267 Endo et al. Jul 2005 B2
6926429 Barlow et al. Aug 2005 B2
6927570 Simmonds et al. Aug 2005 B2
6927694 Smith et al. Aug 2005 B1
6940361 Jokio et al. Sep 2005 B1
6950173 Sutherland et al. Sep 2005 B1
6950227 Schrader Sep 2005 B2
6951393 Koide Oct 2005 B2
6952312 Weber et al. Oct 2005 B2
6952435 Lai et al. Oct 2005 B2
6958662 Salmela et al. Oct 2005 B1
6958868 Pender Oct 2005 B1
6963454 Martins et al. Nov 2005 B1
6975345 Lipton et al. Dec 2005 B1
6980365 Moskovich Dec 2005 B2
6985296 Lipton et al. Jan 2006 B2
6987908 Bond et al. Jan 2006 B2
6999239 Martins et al. Feb 2006 B1
7002618 Lipton et al. Feb 2006 B2
7002753 Moskovich et al. Feb 2006 B2
7003075 Miyake et al. Feb 2006 B2
7003187 Frick et al. Feb 2006 B2
7009773 Chaoulov et al. Mar 2006 B2
7018563 Sutherland et al. Mar 2006 B1
7018686 Bunning et al. Mar 2006 B2
7018744 Otaki et al. Mar 2006 B2
7019793 Moskovich et al. Mar 2006 B2
7021777 Amitai Apr 2006 B2
7026892 Kajiya Apr 2006 B2
7027671 Huck et al. Apr 2006 B2
7034748 Kajiya Apr 2006 B2
7053735 Salmela et al. May 2006 B2
7054045 McPheters et al. May 2006 B2
7058434 Wang et al. Jun 2006 B2
7068405 Sutherland et al. Jun 2006 B2
7072020 Sutherland et al. Jul 2006 B1
7075273 O'Gorman et al. Jul 2006 B2
7077984 Natarajan et al. Jul 2006 B1
7081215 Natarajan et al. Jul 2006 B2
7088457 Zou et al. Aug 2006 B1
7088515 Lipton Aug 2006 B2
7095562 Peng et al. Aug 2006 B1
7099080 Lipton et al. Aug 2006 B2
7101048 Travis Sep 2006 B2
7108383 Mitchell et al. Sep 2006 B1
7110184 Yona et al. Sep 2006 B1
7119965 Rolland et al. Oct 2006 B1
7123418 Weber et al. Oct 2006 B2
7123421 Moskovich et al. Oct 2006 B1
7126418 Hunton et al. Oct 2006 B2
7126583 Breed Oct 2006 B1
7132200 Ueda et al. Nov 2006 B1
7133084 Moskovich et al. Nov 2006 B2
7139109 Mukawa Nov 2006 B2
RE39424 Moskovich Dec 2006 E
7145729 Kreitzer et al. Dec 2006 B2
7149385 Parikka et al. Dec 2006 B2
7151246 Fein et al. Dec 2006 B2
7158095 Jenson et al. Jan 2007 B2
7167286 Anderson et al. Jan 2007 B2
7175780 Sutherland et al. Feb 2007 B1
7181105 Teramura et al. Feb 2007 B2
7181108 Levola Feb 2007 B2
7184002 Lipton et al. Feb 2007 B2
7184615 Levola Feb 2007 B2
7186567 Sutherland et al. Mar 2007 B1
7190849 Katase Mar 2007 B2
7198737 Natarajan et al. Apr 2007 B2
7199934 Yamasaki Apr 2007 B2
7205960 David Apr 2007 B2
7205964 Yokoyama et al. Apr 2007 B1
7206107 Levola Apr 2007 B2
7230767 Walck et al. Jun 2007 B2
7230770 Kreitzer et al. Jun 2007 B2
7242527 Spitzer et al. Jul 2007 B2
7248128 Mattila et al. Jul 2007 B2
7256915 Sutherland et al. Aug 2007 B2
7259906 Islam Aug 2007 B1
7265882 Sutherland et al. Sep 2007 B2
7265903 Sutherland et al. Sep 2007 B2
7268946 Wang Sep 2007 B2
7285903 Cull et al. Oct 2007 B2
7286272 Mukawa Oct 2007 B2
7289069 Ranta Oct 2007 B2
RE39911 Moskovich Nov 2007 E
7299983 Piikivi Nov 2007 B2
7301601 Lin et al. Nov 2007 B2
7312906 Sutherland et al. Dec 2007 B2
7313291 Okhotnikov et al. Dec 2007 B2
7319573 Nishiyama Jan 2008 B2
7320534 Sugikawa et al. Jan 2008 B2
7323275 Otaki et al. Jan 2008 B2
7333685 Stone et al. Feb 2008 B2
7336271 Ozeki et al. Feb 2008 B2
7339737 Urey et al. Mar 2008 B2
7339742 Amitai et al. Mar 2008 B2
7375870 Schorpp May 2008 B2
7375886 Lipton et al. May 2008 B2
7376307 Singh et al. May 2008 B2
7391573 Amitai Jun 2008 B2
7394865 Borran et al. Jul 2008 B2
7395181 Foxlin Jul 2008 B2
7397606 Peng et al. Jul 2008 B1
7401920 Kranz et al. Jul 2008 B1
7404644 Evans et al. Jul 2008 B2
7410286 Travis Aug 2008 B2
7411637 Weiss Aug 2008 B2
7413678 Natarajan et al. Aug 2008 B1
7413679 Sutherland et al. Aug 2008 B1
7415173 Kassamakov et al. Aug 2008 B2
7416818 Sutherland et al. Aug 2008 B2
7418170 Mukawa et al. Aug 2008 B2
7420733 Natarajan et al. Sep 2008 B1
7433116 Islam Oct 2008 B1
7436568 Kuykendall, Jr. Oct 2008 B1
7453612 Mukawa Nov 2008 B2
7454103 Parriaux Nov 2008 B2
7457040 Amitai Nov 2008 B2
7466994 Pihlaja et al. Dec 2008 B2
7477206 Cowan et al. Jan 2009 B2
7479354 Ueda et al. Jan 2009 B2
7480215 Makela et al. Jan 2009 B2
7482996 Larson et al. Jan 2009 B2
7483604 Levola Jan 2009 B2
7492512 Niv et al. Feb 2009 B2
7496293 Shamir et al. Feb 2009 B2
7499217 Cakmakci et al. Mar 2009 B2
7500104 Goland Mar 2009 B2
7511891 Messerschmidt et al. Mar 2009 B2
7522344 Curatu et al. Apr 2009 B1
7528385 Volodin et al. May 2009 B2
7545429 Travis Jun 2009 B2
7550234 Otaki et al. Jun 2009 B2
7567372 Schorpp Jul 2009 B2
7570322 Sutherland et al. Aug 2009 B1
7570405 Sutherland et al. Aug 2009 B1
7570429 Maliah et al. Aug 2009 B2
7572555 Takizawa et al. Aug 2009 B2
7573640 Nivon et al. Aug 2009 B2
7576916 Amitai Aug 2009 B2
7577326 Amitai Aug 2009 B2
7579119 Ueda et al. Aug 2009 B2
7583423 Sutherland et al. Sep 2009 B2
7587110 Singh et al. Sep 2009 B2
7588863 Takizawa et al. Sep 2009 B2
7589900 Powell Sep 2009 B1
7589901 Dejong et al. Sep 2009 B2
7592988 Katase Sep 2009 B2
7593575 Houle et al. Sep 2009 B2
7597447 Larson et al. Oct 2009 B2
7599012 Nakamura et al. Oct 2009 B2
7600893 Laino et al. Oct 2009 B2
7602552 Blumenfeld Oct 2009 B1
7605882 Sutherland et al. Oct 2009 B1
7616270 Hirabayashi et al. Nov 2009 B2
7618750 Ueda et al. Nov 2009 B2
7619739 Sutherland et al. Nov 2009 B1
7629086 Otaki et al. Dec 2009 B2
7639208 Ha et al. Dec 2009 B1
7639911 Lee et al. Dec 2009 B2
7643214 Amitai Jan 2010 B2
7656585 Powell et al. Feb 2010 B1
7660047 Travis et al. Feb 2010 B1
7672055 Amitai Mar 2010 B2
7672549 Schultz et al. Mar 2010 B2
7675684 Weissman et al. Mar 2010 B1
7710622 Takabayashi et al. May 2010 B2
7710654 Ashkenazi et al. May 2010 B2
7724441 Amitai May 2010 B2
7724442 Amitai May 2010 B2
7724443 Amitai May 2010 B2
7733572 Brown et al. Jun 2010 B1
7740387 Schultz et al. Jun 2010 B2
7747113 Mukawa et al. Jun 2010 B2
7751122 Amitai Jul 2010 B2
7751662 Kleemann et al. Jul 2010 B2
7764413 Levola Jul 2010 B2
7777819 Simmonds Aug 2010 B2
7778305 Parriaux et al. Aug 2010 B2
7778508 Hirayama Aug 2010 B2
7843642 Shaoulov et al. Nov 2010 B2
7847235 Krupkin et al. Dec 2010 B2
7864427 Korenaga et al. Jan 2011 B2
7865080 Hecker et al. Jan 2011 B2
7866869 Karakawa Jan 2011 B2
7872707 Sutherland et al. Jan 2011 B1
7872804 Moon et al. Jan 2011 B2
7884593 Simmonds et al. Feb 2011 B2
7884985 Amitai et al. Feb 2011 B2
7887186 Watanabe Feb 2011 B2
7903921 Ostergard Mar 2011 B2
7907342 Simmonds et al. Mar 2011 B2
7920787 Gentner et al. Apr 2011 B2
7936519 Mukawa et al. May 2011 B2
7944428 Travis May 2011 B2
7944616 Mukawa May 2011 B2
7949214 DeJong et al. May 2011 B2
7969644 Tilleman et al. Jun 2011 B2
7969657 Cakmakci et al. Jun 2011 B2
7970246 Travis et al. Jun 2011 B2
7976208 Travis Jul 2011 B2
7999982 Endo et al. Aug 2011 B2
8000020 Amitai et al. Aug 2011 B2
8000491 Brodkin et al. Aug 2011 B2
8004765 Amitai Aug 2011 B2
8014050 McGrew Sep 2011 B2
8016475 Travis Sep 2011 B2
8018579 Krah Sep 2011 B1
8022942 Bathiche et al. Sep 2011 B2
8023783 Mukawa et al. Sep 2011 B2
RE42992 David Dec 2011 E
8073296 Mukawa et al. Dec 2011 B2
8077274 Sutherland et al. Dec 2011 B2
8079713 Ashkenazi Dec 2011 B2
8082222 Rangarajan et al. Dec 2011 B2
8086030 Gordon et al. Dec 2011 B2
8089568 Brown et al. Jan 2012 B1
8093451 Simmonds et al. Jan 2012 B2
8098439 Amitai et al. Jan 2012 B2
8107023 Simmonds et al. Jan 2012 B2
8107780 Simmonds Jan 2012 B2
8132948 Owen et al. Mar 2012 B2
8132976 Odell et al. Mar 2012 B2
8134434 Diederichs et al. Mar 2012 B2
8136690 Fang et al. Mar 2012 B2
8137981 Andrew et al. Mar 2012 B2
8142016 Legerton et al. Mar 2012 B2
8149086 Klein et al. Apr 2012 B2
8152315 Travis et al. Apr 2012 B2
8155489 Saarikko et al. Apr 2012 B2
8160409 Large Apr 2012 B2
8160411 Levola et al. Apr 2012 B2
8167173 Simmonds et al. May 2012 B1
8186874 Sinbar et al. May 2012 B2
8188925 Dejean May 2012 B2
8189263 Wang et al. May 2012 B1
8189973 Travis et al. May 2012 B2
8194325 Saarikko et al. Jun 2012 B2
8199803 Hauske et al. Jun 2012 B2
8213065 Mukawa Jul 2012 B2
8213755 Mukawa et al. Jul 2012 B2
8220966 Mukawa Jul 2012 B2
8224133 Popovich et al. Jul 2012 B2
8233204 Robbins et al. Jul 2012 B1
8253914 Kajiya et al. Aug 2012 B2
8254031 Levola Aug 2012 B2
8294749 Cable Oct 2012 B2
8295710 Marcus Oct 2012 B2
8301031 Gentner et al. Oct 2012 B2
8305577 Kivioja et al. Nov 2012 B2
8306423 Gottwald et al. Nov 2012 B2
8310327 Willers et al. Nov 2012 B2
8314819 Kimmel et al. Nov 2012 B2
8314993 Levola et al. Nov 2012 B2
8320032 Levola Nov 2012 B2
8321810 Heintze Nov 2012 B2
8325166 Akutsu et al. Dec 2012 B2
8329773 Fäcke et al. Dec 2012 B2
8335040 Mukawa et al. Dec 2012 B2
8351744 Travis et al. Jan 2013 B2
8354640 Hamre et al. Jan 2013 B2
8354806 Travis et al. Jan 2013 B2
8355610 Simmonds Jan 2013 B2
8369019 Baker et al. Feb 2013 B2
8376548 Schultz Feb 2013 B2
8382293 Phillips, III et al. Feb 2013 B2
8384504 Diederichs et al. Feb 2013 B2
8384694 Powell et al. Feb 2013 B2
8396339 Mukawa et al. Mar 2013 B2
8398242 Yamamoto et al. Mar 2013 B2
8403490 Sugiyama et al. Mar 2013 B2
8422840 Large Apr 2013 B2
8427439 Larsen et al. Apr 2013 B2
8432363 Saarikko et al. Apr 2013 B2
8432372 Butler et al. Apr 2013 B2
8432614 Amitai Apr 2013 B2
8441731 Sprague May 2013 B2
8466953 Levola et al. Jun 2013 B2
8472119 Kelly Jun 2013 B1
8472120 Border et al. Jun 2013 B2
8477261 Travis et al. Jul 2013 B2
8481130 Doornkamp et al. Jul 2013 B2
8482858 Sprague Jul 2013 B2
8488246 Border et al. Jul 2013 B2
8491121 Tilleman et al. Jul 2013 B2
8491136 Travis et al. Jul 2013 B2
8493366 Bathiche et al. Jul 2013 B2
8493662 Noui Jul 2013 B2
8494229 Järvenpää et al. Jul 2013 B2
8508848 Saarikko Aug 2013 B2
8520309 Sprague Aug 2013 B2
8547638 Levola Oct 2013 B2
8548290 Travers et al. Oct 2013 B2
8565560 Popovich et al. Oct 2013 B2
8578038 Kaikuranta et al. Nov 2013 B2
8581831 Travis Nov 2013 B2
8582206 Travis Nov 2013 B2
8593734 Laakkonen Nov 2013 B2
8611014 Valera et al. Dec 2013 B2
8619062 Powell et al. Dec 2013 B2
8633786 Ermolov et al. Jan 2014 B2
8634120 Popovich et al. Jan 2014 B2
8639072 Popovich et al. Jan 2014 B2
8643691 Rosenfeld et al. Feb 2014 B2
8643948 Amitai et al. Feb 2014 B2
8649099 Schultz et al. Feb 2014 B2
8654420 Simmonds Feb 2014 B2
8659826 Brown et al. Feb 2014 B1
D701206 Luckey et al. Mar 2014 S
8670029 McEldowney Mar 2014 B2
8693087 Nowatzyk et al. Apr 2014 B2
8698705 Burke et al. Apr 2014 B2
8731350 Jacobs et al. May 2014 B1
8736802 Kajiya et al. May 2014 B2
8736963 Robbins et al. May 2014 B2
8746008 Simmonds et al. Jun 2014 B1
8749886 Gupta Jun 2014 B2
8767294 Chen et al. Jul 2014 B2
8786923 Chuang et al. Jul 2014 B2
8810600 Bohn et al. Aug 2014 B2
8810913 Simmonds et al. Aug 2014 B2
8810914 Amitai Aug 2014 B2
8814691 Haddick et al. Aug 2014 B2
8817350 Robbins et al. Aug 2014 B1
8824836 Sugiyama et al. Sep 2014 B2
8830584 Saarikko et al. Sep 2014 B2
8842368 Simmonds et al. Sep 2014 B2
8859412 Jain Oct 2014 B2
8872435 Montgomery et al. Oct 2014 B2
8873149 Bohn et al. Oct 2014 B2
8873150 Amitai Oct 2014 B2
8885997 Bohn et al. Nov 2014 B2
8903207 Brown et al. Dec 2014 B1
8906088 Flitsch et al. Dec 2014 B2
8913865 Bennett Dec 2014 B1
8917453 Bohn et al. Dec 2014 B2
8937771 Robbins et al. Jan 2015 B2
8938141 Magnusson Jan 2015 B2
8950867 Macnamara Feb 2015 B2
8964298 Haddick et al. Feb 2015 B2
8965152 Simmonds Feb 2015 B2
8985803 Bohn et al. Mar 2015 B2
8989535 Robbins Mar 2015 B2
9019595 Jain Apr 2015 B2
9025253 Hadad et al. May 2015 B2
9035344 Jain May 2015 B2
9075184 Popovich et al. Jul 2015 B2
9081178 Simmonds et al. Jul 2015 B2
9128226 Fattal et al. Sep 2015 B2
9129295 Border et al. Sep 2015 B2
9164290 Robbins et al. Oct 2015 B2
9201270 Fattal et al. Dec 2015 B2
9215293 Miller Dec 2015 B2
9244280 Tiana et al. Jan 2016 B1
9269854 Jain Feb 2016 B2
9274338 Bohn et al. Mar 2016 B2
9310566 Valera et al. Apr 2016 B2
9329325 Simmonds et al. May 2016 B2
9341846 Popovich et al. May 2016 B2
9354366 Jain May 2016 B2
9366862 Osterhout et al. Jun 2016 B2
9366864 Brown et al. Jun 2016 B1
9372347 Saarikko et al. Jun 2016 B1
9377623 Robbins et al. Jun 2016 B2
9389415 Fattal et al. Jul 2016 B2
9400395 Travers et al. Jul 2016 B2
9423360 Tervonen et al. Aug 2016 B1
9429692 Saarikko et al. Aug 2016 B1
9431794 Jain Aug 2016 B2
9456744 Popovich et al. Oct 2016 B2
9459451 Saarikko et al. Oct 2016 B2
9465213 Simmonds Oct 2016 B2
9494799 Robbins et al. Nov 2016 B2
9513480 Saarikko et al. Dec 2016 B2
9523852 Brown et al. Dec 2016 B1
9535253 Levola et al. Jan 2017 B2
9541383 Watson et al. Jan 2017 B2
9547174 Gao et al. Jan 2017 B2
9551874 Amitai et al. Jan 2017 B2
9551880 Amitai et al. Jan 2017 B2
9612403 Watson et al. Apr 2017 B2
9632226 Waldern et al. Apr 2017 B2
9651368 Watson et al. May 2017 B2
9664824 Simmonds et al. May 2017 B2
9664910 Mansharof et al. May 2017 B2
9727772 Popovich et al. Aug 2017 B2
9746688 Popovich et al. Aug 2017 B2
9933684 Brown et al. Apr 2018 B2
20010036012 Nakai et al. Nov 2001 A1
20010043163 Waldern et al. Nov 2001 A1
20010050756 Lipton et al. Dec 2001 A1
20020003509 Lipton et al. Jan 2002 A1
20020009299 Lipton Jan 2002 A1
20020011969 Lipton et al. Jan 2002 A1
20020021461 Ono et al. Feb 2002 A1
20020036825 Lipton et al. Mar 2002 A1
20020047837 Suyama et al. Apr 2002 A1
20020071472 Dickson Jun 2002 A1
20020110077 Drobot et al. Aug 2002 A1
20020126332 Popovich Sep 2002 A1
20020127497 Drown et al. Sep 2002 A1
20020131175 Yagi et al. Sep 2002 A1
20020196332 Lipton et al. Dec 2002 A1
20030007070 Lipton et al. Jan 2003 A1
20030030912 Gleckman et al. Feb 2003 A1
20030038912 Broer et al. Feb 2003 A1
20030039442 Bond et al. Feb 2003 A1
20030063042 Friesem et al. Apr 2003 A1
20030067685 Niv Apr 2003 A1
20030086670 Moridaira et al. May 2003 A1
20030107809 Chen et al. Jun 2003 A1
20030149346 Arnone et al. Aug 2003 A1
20030197157 Sutherland et al. Oct 2003 A1
20030202247 Niv et al. Oct 2003 A1
20030228019 Eichler et al. Dec 2003 A1
20040004767 Song Jan 2004 A1
20040047938 Kosuga et al. Mar 2004 A1
20040075830 Miyake et al. Apr 2004 A1
20040089842 Sutherland et al. May 2004 A1
20040109234 Levola Jun 2004 A1
20040112862 Willson et al. Jun 2004 A1
20040130797 Leigh Travis Jul 2004 A1
20040141217 Endo et al. Jul 2004 A1
20040175627 Sutherland et al. Sep 2004 A1
20040188617 Devitt et al. Sep 2004 A1
20040208446 Bond et al. Oct 2004 A1
20040208466 Mossberg et al. Oct 2004 A1
20040263969 Lipton et al. Dec 2004 A1
20040263971 Lipton et al. Dec 2004 A1
20050018304 Lipton et al. Jan 2005 A1
20050079663 Masutani et al. Apr 2005 A1
20050105909 Stone May 2005 A1
20050122395 Lipton et al. Jun 2005 A1
20050134404 Kajiya et al. Jun 2005 A1
20050135747 Greiner et al. Jun 2005 A1
20050136260 Garcia Jun 2005 A1
20050141066 Ouchi Jun 2005 A1
20050180687 Amitai Aug 2005 A1
20050195276 Lipton et al. Sep 2005 A1
20050232530 Kekas et al. Oct 2005 A1
20050259302 Metz et al. Nov 2005 A9
20050265585 Rowe Dec 2005 A1
20050269481 David et al. Dec 2005 A1
20050271258 Rowe Dec 2005 A1
20050286133 Lipton Dec 2005 A1
20060012878 Lipton et al. Jan 2006 A1
20060043938 O'Gorman et al. Mar 2006 A1
20060093012 Singh et al. May 2006 A1
20060093793 Miyakawa et al. May 2006 A1
20060114564 Sutherland et al. Jun 2006 A1
20060119837 Raguin et al. Jun 2006 A1
20060119916 Sutherland et al. Jun 2006 A1
20060132914 Weiss et al. Jun 2006 A1
20060146422 Koike Jul 2006 A1
20060191293 Kuczma Aug 2006 A1
20060215244 Yosha et al. Sep 2006 A1
20060215976 Singh et al. Sep 2006 A1
20060221448 Nivon et al. Oct 2006 A1
20060228073 Mukawa et al. Oct 2006 A1
20060268104 Cowan et al. Nov 2006 A1
20060268412 Downing et al. Nov 2006 A1
20060279662 Kapellner et al. Dec 2006 A1
20060284974 Lipton et al. Dec 2006 A1
20060285205 Lipton et al. Dec 2006 A1
20060291021 Mukawa Dec 2006 A1
20060291052 Lipton et al. Dec 2006 A1
20070012777 Tsikos et al. Jan 2007 A1
20070019152 Caputo et al. Jan 2007 A1
20070019297 Stewart et al. Jan 2007 A1
20070041684 Popovich et al. Feb 2007 A1
20070045596 King et al. Mar 2007 A1
20070052929 Allman et al. Mar 2007 A1
20070070476 Yamada et al. Mar 2007 A1
20070089625 Grinberg et al. Apr 2007 A1
20070097502 Lipton et al. May 2007 A1
20070109401 Lipton et al. May 2007 A1
20070133089 Lipton et al. Jun 2007 A1
20070133920 Lee et al. Jun 2007 A1
20070133983 Traff Jun 2007 A1
20070160325 Son et al. Jul 2007 A1
20070177007 Lipton et al. Aug 2007 A1
20070183650 Lipton et al. Aug 2007 A1
20070188602 Cowan et al. Aug 2007 A1
20070188837 Shimizu et al. Aug 2007 A1
20070206155 Lipton Sep 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20070236560 Lipton et al. Oct 2007 A1
20070237456 Blauvelt et al. Oct 2007 A1
20070247687 Handschy et al. Oct 2007 A1
20070258138 Cowan et al. Nov 2007 A1
20070263169 Lipton Nov 2007 A1
20080018851 Lipton et al. Jan 2008 A1
20080024598 Perlin et al. Jan 2008 A1
20080043334 Itzkovitch et al. Feb 2008 A1
20080049100 Lipton et al. Feb 2008 A1
20080062259 Lipton et al. Mar 2008 A1
20080106775 Amitai et al. May 2008 A1
20080106779 Peterson et al. May 2008 A1
20080117289 Schowengerdt et al. May 2008 A1
20080136923 Inbar et al. Jun 2008 A1
20080138013 Parriaux Jun 2008 A1
20080143964 Cowan et al. Jun 2008 A1
20080143965 Cowan et al. Jun 2008 A1
20080149517 Lipton et al. Jun 2008 A1
20080151370 Cook et al. Jun 2008 A1
20080151379 Amitai Jun 2008 A1
20080186573 Lipton Aug 2008 A1
20080186574 Robinson et al. Aug 2008 A1
20080186604 Amitai Aug 2008 A1
20080193085 Singh et al. Aug 2008 A1
20080198471 Amitai Aug 2008 A1
20080226281 Lipton Sep 2008 A1
20080239067 Lipton Oct 2008 A1
20080239068 Lipton Oct 2008 A1
20080273081 Lipton Nov 2008 A1
20080278812 Amitai Nov 2008 A1
20080285137 Simmonds Nov 2008 A1
20080285140 Amitai Nov 2008 A1
20080297731 Powell et al. Dec 2008 A1
20080298649 Ennis et al. Dec 2008 A1
20080303895 Akka et al. Dec 2008 A1
20080303896 Lipton et al. Dec 2008 A1
20080304111 Queenan et al. Dec 2008 A1
20080309586 Vitale Dec 2008 A1
20080316303 Chiu et al. Dec 2008 A1
20080316375 Lipton et al. Dec 2008 A1
20090010135 Ushiro et al. Jan 2009 A1
20090017424 Yoeli et al. Jan 2009 A1
20090019222 Verma et al. Jan 2009 A1
20090052046 Amitai Feb 2009 A1
20090052047 Amitai Feb 2009 A1
20090067774 Magnusson Mar 2009 A1
20090074356 Sanchez et al. Mar 2009 A1
20090097122 Niv Apr 2009 A1
20090097127 Amitai Apr 2009 A1
20090121301 Chang May 2009 A1
20090122413 Hoffman et al. May 2009 A1
20090122414 Amitai May 2009 A1
20090128495 Kong et al. May 2009 A1
20090128902 Niv et al. May 2009 A1
20090128911 Itzkovitch et al. May 2009 A1
20090141324 Mukawa Jun 2009 A1
20090153437 Aharoni Jun 2009 A1
20090190222 Simmonds et al. Jul 2009 A1
20090213208 Glatt Aug 2009 A1
20090237804 Amitai et al. Sep 2009 A1
20090242021 Petkie et al. Oct 2009 A1
20090296218 Ryytty Dec 2009 A1
20090303599 Levola Dec 2009 A1
20090316246 Asai et al. Dec 2009 A1
20100014312 Travis et al. Jan 2010 A1
20100039796 Mukawa Feb 2010 A1
20100053565 Mizushima et al. Mar 2010 A1
20100060551 Sugiyama et al. Mar 2010 A1
20100060990 Wertheim et al. Mar 2010 A1
20100079865 Saarikko et al. Apr 2010 A1
20100086256 Ben Bakir et al. Apr 2010 A1
20100092124 Magnusson et al. Apr 2010 A1
20100096562 Klunder et al. Apr 2010 A1
20100097674 Kasazumi et al. Apr 2010 A1
20100097820 Owen et al. Apr 2010 A1
20100103078 Mukawa et al. Apr 2010 A1
20100134534 Seesselberg et al. Jun 2010 A1
20100136319 Imai et al. Jun 2010 A1
20100141555 Rorberg et al. Jun 2010 A1
20100149073 Chaum et al. Jun 2010 A1
20100165465 Levola Jul 2010 A1
20100171680 Lapidot et al. Jul 2010 A1
20100177388 Cohen et al. Jul 2010 A1
20100214659 Levola Aug 2010 A1
20100231532 Nho et al. Sep 2010 A1
20100231693 Levola Sep 2010 A1
20100231705 Yahav et al. Sep 2010 A1
20100232003 Baldy et al. Sep 2010 A1
20100246003 Simmonds et al. Sep 2010 A1
20100246004 Simmonds Sep 2010 A1
20100246993 Rieger et al. Sep 2010 A1
20100265117 Weiss Oct 2010 A1
20100277803 Pockett et al. Nov 2010 A1
20100284085 Laakkonen Nov 2010 A1
20100284090 Simmonds et al. Nov 2010 A1
20100284180 Popovich et al. Nov 2010 A1
20100296163 Saarikko Nov 2010 A1
20100315719 Saarikko et al. Dec 2010 A1
20100321781 Levola et al. Dec 2010 A1
20110002143 Saarikko et al. Jan 2011 A1
20110013423 Selbrede et al. Jan 2011 A1
20110019250 Aiki et al. Jan 2011 A1
20110019874 Jarvenpaa et al. Jan 2011 A1
20110026128 Baker et al. Feb 2011 A1
20110026774 Flohr et al. Feb 2011 A1
20110032618 Handerek et al. Feb 2011 A1
20110032706 Mukawa Feb 2011 A1
20110038024 Wang et al. Feb 2011 A1
20110050548 Blumenfeld et al. Mar 2011 A1
20110063604 Hamre et al. Mar 2011 A1
20110096401 Levola Apr 2011 A1
20110102711 Sutherland et al. May 2011 A1
20110109880 Nummela May 2011 A1
20110157707 Tilleman et al. Jun 2011 A1
20110164221 Tilleman et al. Jul 2011 A1
20110187293 Travis et al. Aug 2011 A1
20110211239 Mukawa et al. Sep 2011 A1
20110232211 Farahi Sep 2011 A1
20110235179 Simmonds Sep 2011 A1
20110235365 McCollum et al. Sep 2011 A1
20110236803 Weiser et al. Sep 2011 A1
20110238399 Ophir et al. Sep 2011 A1
20110242349 Izuha et al. Oct 2011 A1
20110242661 Simmonds Oct 2011 A1
20110242670 Simmonds Oct 2011 A1
20110249309 McPheters et al. Oct 2011 A1
20110299075 Meade et al. Dec 2011 A1
20110310356 Vallius Dec 2011 A1
20120007979 Schneider et al. Jan 2012 A1
20120027347 Mathal et al. Feb 2012 A1
20120033306 Valera et al. Feb 2012 A1
20120044572 Simmonds et al. Feb 2012 A1
20120044573 Simmonds et al. Feb 2012 A1
20120062850 Travis Mar 2012 A1
20120062998 Schultz et al. Mar 2012 A1
20120075168 Osterhout et al. Mar 2012 A1
20120081789 Mukawa et al. Apr 2012 A1
20120092632 McLeod et al. Apr 2012 A1
20120099203 Boubis et al. Apr 2012 A1
20120105634 Meidan et al. May 2012 A1
20120120493 Simmonds et al. May 2012 A1
20120127577 Desserouer May 2012 A1
20120162549 Gao et al. Jun 2012 A1
20120183888 Oliveira et al. Jul 2012 A1
20120194420 Osterhout et al. Aug 2012 A1
20120200532 Powell et al. Aug 2012 A1
20120206811 Mukawa et al. Aug 2012 A1
20120206937 Travis et al. Aug 2012 A1
20120207432 Travis et al. Aug 2012 A1
20120207434 Large et al. Aug 2012 A1
20120214089 Hönel et al. Aug 2012 A1
20120214090 Weiser et al. Aug 2012 A1
20120224062 Lacoste et al. Sep 2012 A1
20120235884 Miller et al. Sep 2012 A1
20120235886 Border et al. Sep 2012 A1
20120235900 Border et al. Sep 2012 A1
20120242661 Takagi et al. Sep 2012 A1
20120280956 Yamamoto et al. Nov 2012 A1
20120290973 Robertson et al. Nov 2012 A1
20120294037 Holman et al. Nov 2012 A1
20120300311 Simmonds et al. Nov 2012 A1
20120320460 Levola Dec 2012 A1
20130016324 Travis Jan 2013 A1
20130021392 Travis Jan 2013 A1
20130021586 Lippey Jan 2013 A1
20130033485 Kollin et al. Feb 2013 A1
20130039619 Laughlin et al. Feb 2013 A1
20130044376 Valera et al. Feb 2013 A1
20130059233 Askham Mar 2013 A1
20130069850 Mukawa et al. Mar 2013 A1
20130077049 Bohn Mar 2013 A1
20130101253 Popovich et al. Apr 2013 A1
20130117377 Miller May 2013 A1
20130125027 Abovitz et al. May 2013 A1
20130128230 Macnamara May 2013 A1
20130138275 Nauman et al. May 2013 A1
20130141937 Katsuta et al. Jun 2013 A1
20130143336 Jain Jun 2013 A1
20130163089 Bohn et al. Jun 2013 A1
20130170031 Bohn et al. Jul 2013 A1
20130176704 Lanman et al. Jul 2013 A1
20130200710 Robbins Aug 2013 A1
20130207887 Raffle et al. Aug 2013 A1
20130224634 Berneth et al. Aug 2013 A1
20130229717 Amitai Sep 2013 A1
20130249895 Westerinen et al. Sep 2013 A1
20130250207 Bohn Sep 2013 A1
20130250430 Robbins et al. Sep 2013 A1
20130250431 Robbins et al. Sep 2013 A1
20130257848 Westerinen et al. Oct 2013 A1
20130258701 Westerinen et al. Oct 2013 A1
20130267309 Robbins et al. Oct 2013 A1
20130271731 Popovich et al. Oct 2013 A1
20130277890 Bowman et al. Oct 2013 A1
20130312811 Aspnes et al. Nov 2013 A1
20130314793 Robbins et al. Nov 2013 A1
20130322810 Robbins Dec 2013 A1
20130328948 Kunkel et al. Dec 2013 A1
20130342525 Benko et al. Dec 2013 A1
20140003762 Macnamara Jan 2014 A1
20140024159 Jain Jan 2014 A1
20140055845 Jain Feb 2014 A1
20140063055 Osterhout et al. Mar 2014 A1
20140064655 Bohn et al. Mar 2014 A1
20140071538 Muller Mar 2014 A1
20140098010 Travis Apr 2014 A1
20140104665 Popovich et al. Apr 2014 A1
20140104685 Bohn et al. Apr 2014 A1
20140118647 Momonoi et al. May 2014 A1
20140130132 Cahill et al. May 2014 A1
20140140653 Brown et al. May 2014 A1
20140140654 Brown et al. May 2014 A1
20140146394 Tout et al. May 2014 A1
20140152778 Ihlenburg et al. Jun 2014 A1
20140160576 Robbins et al. Jun 2014 A1
20140168055 Smith Jun 2014 A1
20140168260 O'Brien et al. Jun 2014 A1
20140168735 Yuan et al. Jun 2014 A1
20140168783 Luebke et al. Jun 2014 A1
20140172296 Shtukater Jun 2014 A1
20140176528 Robbins Jun 2014 A1
20140177023 Gao et al. Jun 2014 A1
20140185286 Popovich et al. Jul 2014 A1
20140198128 Hong et al. Jul 2014 A1
20140204455 Popovich et al. Jul 2014 A1
20140211322 Bohn et al. Jul 2014 A1
20140218468 Gao et al. Aug 2014 A1
20140218801 Simmonds et al. Aug 2014 A1
20140232759 Simmonds et al. Aug 2014 A1
20140240834 Mason et al. Aug 2014 A1
20140240842 Nguyen et al. Aug 2014 A1
20140267420 Schowengerdt et al. Sep 2014 A1
20140300947 Fattal et al. Oct 2014 A1
20140300960 Santori et al. Oct 2014 A1
20140300966 Travers et al. Oct 2014 A1
20140327970 Bohn et al. Nov 2014 A1
20140330159 Costa et al. Nov 2014 A1
20140367719 Jain Dec 2014 A1
20140375542 Robbins et al. Dec 2014 A1
20140375789 Lou et al. Dec 2014 A1
20140375790 Robbins et al. Dec 2014 A1
20150001677 Venturato et al. Jan 2015 A1
20150003796 Bennett Jan 2015 A1
20150010265 Popovich et al. Jan 2015 A1
20150015946 Muller Jan 2015 A1
20150016777 Abovitz et al. Jan 2015 A1
20150035744 Robbins et al. Feb 2015 A1
20150036068 Fattal et al. Feb 2015 A1
20150058791 Robertson et al. Feb 2015 A1
20150062675 Ayres et al. Mar 2015 A1
20150062707 Simmonds et al. Mar 2015 A1
20150086163 Valera et al. Mar 2015 A1
20150125109 Robbins et al. May 2015 A1
20150148728 Sallum et al. May 2015 A1
20150167868 Boncha Jun 2015 A1
20150177688 Popovich et al. Jun 2015 A1
20150185475 Saarikko et al. Jul 2015 A1
20150235447 Abovitz et al. Aug 2015 A1
20150235448 Schowengerdt et al. Aug 2015 A1
20150260994 Akutsu et al. Sep 2015 A1
20150268415 Schowengerdt et al. Sep 2015 A1
20150277375 Large et al. Oct 2015 A1
20150288129 Jain Oct 2015 A1
20150289762 Popovich et al. Oct 2015 A1
20150316768 Simmonds Nov 2015 A1
20150346490 Klug et al. Dec 2015 A1
20150346495 Cheng et al. Dec 2015 A1
20150355394 Leighton et al. Dec 2015 A1
20160003847 Ryan et al. Jan 2016 A1
20160004090 Waldern et al. Jan 2016 A1
20160026253 Bradski et al. Jan 2016 A1
20160033705 Fattal Feb 2016 A1
20160033706 Fattal et al. Feb 2016 A1
20160038992 Arthur et al. Feb 2016 A1
20160041387 Valera et al. Feb 2016 A1
20160077338 Nguyen et al. Mar 2016 A1
20160085300 Robbins et al. Mar 2016 A1
20160116739 Schowengerdt et al. Apr 2016 A1
20160124223 Shinbo et al. May 2016 A1
20160132025 Taff et al. May 2016 A1
20160178901 Ishikawa Jun 2016 A1
20160195664 Fattal et al. Jul 2016 A1
20160209648 Haddick et al. Jul 2016 A1
20160209657 Popovich et al. Jul 2016 A1
20160231568 Saarikko et al. Aug 2016 A1
20160238772 Waldern et al. Aug 2016 A1
20160266398 Poon et al. Sep 2016 A1
20160274356 Mason Sep 2016 A1
20160274362 Tinch et al. Sep 2016 A1
20160291328 Popovich et al. Oct 2016 A1
20160299344 Dobschal et al. Oct 2016 A1
20160320536 Ferns et al. Nov 2016 A1
20160327705 Ferns et al. Nov 2016 A1
20160341964 Amitai et al. Nov 2016 A1
20170003505 Vallius et al. Jan 2017 A1
20170010488 Schowengerdt et al. Jan 2017 A1
20170030550 Popovich et al. Feb 2017 A1
20170031160 Popovich et al. Feb 2017 A1
20170031171 Vallius et al. Feb 2017 A1
20170034435 Vallius et al. Feb 2017 A1
20170038579 Schuelke et al. Feb 2017 A1
20170052376 Amitai et al. Feb 2017 A1
20170059759 Ayres et al. Mar 2017 A1
20170102543 Vallius et al. Apr 2017 A1
20170115487 Travis et al. Apr 2017 A1
20170123208 Vallius et al. May 2017 A1
20170131460 Lin et al. May 2017 A1
20170131546 Woltman et al. May 2017 A1
20170131551 Woltman et al. May 2017 A1
20170180404 Bersch et al. Jun 2017 A1
20170180408 Yu et al. Jun 2017 A1
20170219841 Popovich et al. Aug 2017 A1
20170299860 Juhola et al. Oct 2017 A1
20180052277 Magic Feb 2018 A1
20180113303 Popovich et al. Apr 2018 A1
20180373115 Brown et al. Dec 2018 A1
20190319426 Lu et al. Oct 2019 A1
Foreign Referenced Citations (210)
Number Date Country
PI0720469 Jan 2014 BR
2889727 Jun 2014 CA
200944140 Sep 2007 CN
101103297 Jan 2008 CN
101151562 Mar 2008 CN
101263412 Sep 2008 CN
100492099 May 2009 CN
101589326 Nov 2009 CN
101688977 Mar 2010 CN
101726857 Jun 2010 CN
101881936 Nov 2010 CN
101910900 Dec 2010 CN
102608762 Jul 2012 CN
104520751 Apr 2015 CN
104956252 Sep 2015 CN
105074539 Nov 2015 CN
105190407 Dec 2015 CN
105229514 Jan 2016 CN
105393159 Mar 2016 CN
105408801 Mar 2016 CN
105408802 Mar 2016 CN
105408803 Mar 2016 CN
105705981 Jun 2016 CN
104204901 Jul 2017 CN
105074537 Oct 2018 CN
105531716 Jan 2020 CN
19751190 May 1999 DE
10 2006 003 785 Jul 2007 DE
102012108424 Mar 2014 DE
0795775 Dec 1997 EP
0 822 441 Feb 1998 EP
1526709 Apr 2005 EP
1573369 Sep 2005 EP
1748305 Jan 2007 EP
1413972 Oct 2008 EP
2 110 701 Oct 2009 EP
2110701 Oct 2009 EP
2 196 729 Jun 2010 EP
2 225 592 Sep 2010 EP
2244114 Oct 2010 EP
2326983 Jun 2011 EP
2 381 290 Oct 2011 EP
1828832 May 2013 EP
2 733 517 May 2014 EP
2733517 May 2014 EP
2748670 Jul 2014 EP
2929378 Oct 2015 EP
2995986 Apr 2017 EP
2677463 Dec 1992 FR
2 115 178 Sep 1983 GB
2140935 Jul 1985 GB
2508661 Jun 2014 GB
2509536 Jul 2014 GB
2512077 Sep 2014 GB
2514658 Dec 2014 GB
1204684 Nov 2015 HK
1205563 Dec 2015 HK
1205793 Dec 2015 HK
1206101 Dec 2015 HK
02186319 Jul 1990 JP
H03239384 Oct 1991 JP
H06294952 Oct 1994 JP
H0798439 Apr 1995 JP
H0990312 Apr 1997 JP
H11109320 Apr 1999 JP
H11142806 May 1999 JP
2953444 Sep 1999 JP
2000056259 Feb 2000 JP
2000267042 Sep 2000 JP
2001027739 Jan 2001 JP
2001296503 Oct 2001 JP
2002090858 Mar 2002 JP
2002122906 Apr 2002 JP
2002162598 Jun 2002 JP
2002523802 Jul 2002 JP
2002-529790 Sep 2002 JP
2002-311379 Oct 2002 JP
2003066428 Mar 2003 JP
2003270419 Sep 2003 JP
2004-157245 Jun 2004 JP
2006-350129 Dec 2006 JP
2007-011057 Jan 2007 JP
2007-094175 Apr 2007 JP
2007-219106 Aug 2007 JP
2008112187 May 2008 JP
2009036955 Feb 2009 JP
2009-133999 Jun 2009 JP
2009211091 Sep 2009 JP
4367775 Nov 2009 JP
2010-256631 Nov 2010 JP
2012137616 Jul 2012 JP
5303928 Oct 2013 JP
2016-030503 Mar 2016 JP
20100092059 Aug 2010 KR
20140140063 Dec 2014 KR
20140142337 Dec 2014 KR
200535633 Nov 2005 TW
200801583 Jan 2008 TW
201314263 Apr 2013 TW
201600943 Jan 2016 TW
201604601 Feb 2016 TW
1997001133 Jan 1997 WO
1997027519 Nov 1997 WO
1998004650 Feb 1998 WO
1999009440 Feb 1999 WO
WO-9952002 Oct 1999 WO
2000016136 Mar 2000 WO
2000023830 Apr 2000 WO
2000023847 Apr 2000 WO
WO-0028369 May 2000 WO
2001050200 Jul 2001 WO
2001090822 Nov 2001 WO
2002082168 Oct 2002 WO
WO-03081320 Oct 2003 WO
2005001753 Jan 2005 WO
2005006065 Jan 2005 WO
2005006065 Feb 2005 WO
2005073798 Aug 2005 WO
WO-2006002870 Jan 2006 WO
2006064301 Jun 2006 WO
2006064325 Jun 2006 WO
2006064334 Jun 2006 WO
2006102073 Sep 2006 WO
2006102073 Jan 2007 WO
2007029032 Mar 2007 WO
2007015141 Apr 2007 WO
2007085682 Aug 2007 WO
2007130130 Nov 2007 WO
WO-2007130130 Nov 2007 WO
WO-2007130130 Nov 2007 WO
2007141587 Dec 2007 WO
2007141589 Dec 2007 WO
WO-2009013597 Jan 2009 WO
2009077803 Jun 2009 WO
WO-2009077802 Jun 2009 WO
2009101238 Aug 2009 WO
2009155437 Dec 2009 WO
2010023444 Mar 2010 WO
2010057219 May 2010 WO
WO-2010067114 Jun 2010 WO
WO-2010067117 Jun 2010 WO
2010104692 Sep 2010 WO
2010122330 Oct 2010 WO
WO-2010125337 Nov 2010 WO
WO-2010125337 Nov 2010 WO
WO-2011012825 Feb 2011 WO
2011042711 Apr 2011 WO
WO-2011051660 May 2011 WO
WO-2011055109 May 2011 WO
2011073673 Jun 2011 WO
2011110821 Sep 2011 WO
WO-2011107831 Sep 2011 WO
2011131978 Oct 2011 WO
2012052352 Apr 2012 WO
2012062658 May 2012 WO
2012158950 Nov 2012 WO
2012172295 Dec 2012 WO
2013027004 Feb 2013 WO
2013027006 Feb 2013 WO
WO-2013027006 Feb 2013 WO
2013034879 Mar 2013 WO
WO-2013033274 Mar 2013 WO
2013049012 Apr 2013 WO
2013102759 Jul 2013 WO
WO-2013163347 Oct 2013 WO
2013167864 Nov 2013 WO
2011032005 Mar 2014 WO
2014064427 May 2014 WO
2014080155 May 2014 WO
2014085734 Jun 2014 WO
2014090379 Jun 2014 WO
2014093601 Jun 2014 WO
2014100182 Jun 2014 WO
WO-2014091200 Jun 2014 WO
2014113506 Jul 2014 WO
2014116615 Jul 2014 WO
2014130383 Aug 2014 WO
2014144526 Sep 2014 WO
2014159621 Oct 2014 WO
2014164901 Oct 2014 WO
2014176695 Nov 2014 WO
2014179632 Nov 2014 WO
2014188149 Nov 2014 WO
2014209733 Dec 2014 WO
2014209819 Dec 2014 WO
2014209820 Dec 2014 WO
2014209821 Dec 2014 WO
2014210349 Dec 2014 WO
2015006784 Jan 2015 WO
2015017291 Feb 2015 WO
2015069553 May 2015 WO
2015081313 Jun 2015 WO
2015117039 Aug 2015 WO
2015145119 Oct 2015 WO
2016010289 Jan 2016 WO
2016020643 Feb 2016 WO
2016025350 Feb 2016 WO
2016046514 Mar 2016 WO
WO-2016044193 Mar 2016 WO
2016103263 Jun 2016 WO
2016111706 Jul 2016 WO
2016111707 Jul 2016 WO
2016111708 Jul 2016 WO
2016111709 Jul 2016 WO
2016113534 Jul 2016 WO
2016118107 Jul 2016 WO
2016122679 Aug 2016 WO
2017060665 Apr 2017 WO
2017162999 Sep 2017 WO
2017180403 Oct 2017 WO
Non-Patent Literature Citations (505)
Entry
US 9,488,474 B2, 11/2016, Abovitz et al. (withdrawn)
U.S. Appl. No. 10/555,661, filed Nov. 4, 2005, Popovich et al.
U.S. Appl. No. 13/844,456, filed Mar. 15, 2013, Brown et al.
U.S. Appl. No. 61/344,748, filed Sep. 28, 2010, Unknown.
U.S. Appl. No. 61/457,835, filed Jun. 16, 2011, Unknown.
U.S. Appl. No. 61/573,066, filed Aug. 24, 2012, Unknown.
U.S. Appl. No. 61/573,082, filed Aug. 29, 2011, Unknown.
U.S. Appl. No. 61/573,121, filed Sep. 7, 2011, Unknown.
U.S. Appl. No. 61/573,156, filed Sep. 16, 2011, Unknown.
U.S. Appl. No. 61/573,175, filed Sep. 19, 2011, Unknown.
U.S. Appl. No. 61/573,176, filed Sep. 19, 2011, Unknown.
U.S. Appl. No. 61/573,196, filed Sep. 25, 2011, Unknown.
U.S. Appl. No. 61/627,202, filed Oct. 7, 2011, Unknown.
U.S. Appl. No. 61/687,436, filed Apr. 25, 2012, Waldern et al.
U.S. Appl. No. 61/689,907, filed Apr. 25, 2012, Waldern et al.
U.S. Appl. No. 61/796,795, filed Nov. 20, 2012, Unknown.
U.S. Appl. No. 61/850,856, filed Feb. 25, 2013, Unknown.
Amendment and Reply for U.S. Appl. No. 12/571,262, dated Dec. 16, 2011, 7 pages.
Amitai, Y., et al. “Visor-display design based on planar holographic optics,” Applied Optics, vol. 34, No. 8, Mar. 10, 1995, pp. 1352-1356.
Ayras et al., “Exit Pupil Expander with a Large Field of View Based on Diffractive Optics”, Journal of the SID, 2009 (6 pages).
Cameron, A., The Application of Holograhpic Optical Waveguide Technology to Q-Sight Family of Helmet Mounted Displays, Proc. of SPIE, vol. 7326, 7326OH-1, 2009, 11 pages.
Caputo, R. et al., “POLICRYPS Switchable Holographic Grating: A Promising Grating Electro-Optical Pixel for High Resolution Display Application”; Journal of Display Technology, vol. 2, No. 1, Mar. 2006, pp. 38-51 (14 pages).
Chinese First Office Action for Chinese Patent Appln. No. 201610512319.1 dated Aug. 11, 2017 (16 pages).
Chinese Office Action on Appln. No. 201310557623 dated Jan. 17, 2017 (13 pages).
Corrected Notice of Allowance for U.S. Appl. No. 14/044,676 dated Feb. 1, 2018 (2 pages).
Corrected Notice of Allowance for U.S. Appl. No. 14/044,676 dated Jan. 3, 2018 (2 pages).
Corrected Notice of Allowance for U.S. Appl. No. 14/715,332 dated Jul. 25, 2018 (2 pages).
Corrected Notice of Allowance for U.S. Appl. No. 15/439,597 dated Oct. 19, 2018 (2 pages).
Corrected Notice of Allowance for U.S. Appl. No. 14/497,280 dated Aug. 7, 2019 (2 pages).
Corrected Notice of Allowance for U.S. Appl. No. 15/136,841 dated Feb. 1, 2019 (2 pages).
Crawford et al., “Switchable Bragg Gratings”, Optics & Photonics News, Apr. 2003, pp. 54-59 (6 pages).
Decision of Rejection for Japanese Patent Appln. No. 2013-231450 dated May 8, 2018 (4 pages).
European Office Action for European Patent Appln. No. 13192383.1 dated Oct. 16, 2017 (5 pages).
Extended European Search Report for EP Application No. 13192383 dated Apr. 2, 2014 (7 pages).
Extended European Search Report for European Application No. 13765610.4 dated Feb. 16, 2016 (6 pages).
Final Notice of Reasons for Rejection on Japanese Appln. No. JP2015-509120 with English Translation dated Mar. 7, 2017 (2 pages).
Final Office Action for U.S. Appl. No. 13/844,456 dated Jul. 10, 2017 (20 pages).
Final Office Action for U.S. Appl. No. 13/844,456 dated Apr. 19, 2018 (24 pages).
Final Office Action for U.S. Appl. No. 13/844,456 dated Dec. 17, 2018 (20 pages).
Final Office Action for U.S. Appl. No. 14/044,676 dated Jul. 13, 2017 (31 pages).
Final Office Action for U.S. Appl. No. 14/152,756 dated Aug. 30, 2018 (17 pages).
Final Office Action for U.S. Appl. No. 14/152,756 dated Jun. 10, 2019 (18 pages).
Final Office Action for U.S. Appl. No. 14/465,763 dated Jun. 28, 2018 (4 pages).
Final Office Action for U.S. Appl. No. 14/465,763 dated Nov. 16, 2018 (6 pages).
Final Office Action for U.S. Appl. No. 14/497,280 dated Oct. 18, 2018 (20 pages).
Final Office Action for U.S. Appl. No. 15/136,841 dated Aug. 31, 2018 (7 pages).
Final Office Action for U.S. Appl. No. 15/460,076 dated Dec. 3, 2018 (13 pages).
Final Office Action for U.S. Appl. No. 15/136,841 dated Oct. 27, 2017 (13 pages).
Final Office Action for U.S. Appl. No. 13/844,456 dated Aug. 16, 2019 (28 pages).
Final Office Action for U.S. Appl. No. 15/048,954 dated Jan. 2, 2019 (26 pages).
Final Office Action in U.S. Appl. No. 13/864,991, dated Apr. 2, 2015 (16 pages).
Final Office Action on JP 2018-164677 dated May 19, 2020 (5 pages).
Final Office Action on U.S. Appl. No. 13/869,866 dated Oct. 3, 2014 (17 pages).
Final Office Action on U.S. Appl. No. 13/250,858 dated Jul. 11, 2016 (21 pages).
Final Office Action on U.S. Appl. No. 13/250,858 dated Feb. 4, 2015 (18 pages).
Final Office Action on U.S. Appl. No. 13/250,940 dated Oct. 17, 2014 (15 pages).
Final Office Action on U.S. Appl. No. 13/844,456 dated Jun. 5, 2020 (23 pages).
Final Office Action on U.S. Appl. No. 13/892,026 dated Apr. 3, 2015 (17 pages).
Final Office Action on U.S. Appl. No. 13/892,057 dated Mar. 5, 2015 (21 pages).
Final Office Action on U.S. Appl. No. 14/038,400 dated Aug. 10, 2015 (32 pages).
Final Office Action on U.S. Appl. No. 14/044,676 dated Aug. 12, 2016 (23 pages).
Final Office Action on U.S. Appl. No. 14/152,756, dated Jun. 7, 2017 (16 pages).
Final Office Action on U.S. Appl. No. 14/152,756, dated Oct. 12, 2016 (18 pages).
Final Office Action on U.S. Appl. No. 14/497,280 dated Mar. 10, 2017 (17 pages).
Final Office Action on U.S. Appl. No. 14/715,332 dated Aug. 11, 2017 (14 pages).
First Office Action on Chinese patent Appln. No. 201380001530.1 with English translation, dated Jun. 30, 2015 (9 pages).
First Office Action on EPO Appln. No. 13765610.4 dated Apr. 18, 2017 (4 pages).
First Office Action on Japanese Appln. No. 2013-231450 dated Aug. 8, 2017 (5 pages).
Fourth Office Action for Chinese Patent Application No. 2016105123191 dated Apr. 25, 2019 (5 pages).
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/038070 dated Oct. 28, 2014 (6 pages).
International Search Report and Written Opinion of the International Searching Authority for PCT/US18/12227 dated Mar. 14, 2018 (9 pages).
International Search Report and Written Opinion of the International Searching Authority on PCT/US2013/038070, dated Aug. 14, 2013 (14 pages).
Irie, Masahiro, “Photochromic diarylethenes for photonic devices”, Pure and Applied Chemistry, 1996, pp. 1367-1371, vol. 68, No. 7, IUPAC (5 pages).
Japanese Office Action for JP Patent Application No. 2018-164677 dated Sep. 17, 2019 (4 pages).
Levola, et al., “Replicated slanted gratings with a high refractive index material for in and outcoupling of light” Optics Express, vol. 15, Issue 5, (2007), pp. 2067-2074 (8 pages).
Moffitt, “Head-Mounted Display Image Configurations”, retrieved from the internet at http://www.kirkmoffitt.com/hmd_image_configurations.pdf on Dec. 19, 2014, dated May 2008 (25 pages).
Non-Final Office Action for U.S. Appl. No. 13/844,456 dated Feb. 20, 2020 (21 pages).
Non-Final Office Action for U.S. Appl. No. 13/250,970 dated Jul. 30, 2013 (4 pages).
Non-Final Office Action for U.S. Appl. No. 13/844,456 dated Aug. 30, 2018 (17 pages).
Non-Final Office Action for U.S. Appl. No. 13/844,456 dated Oct. 6, 2017 (19 pages).
Non-Final Office Action for U.S. Appl. No. 14/152,756 dated Feb. 13, 2018 (17 pages).
Non-Final Office Action for U.S. Appl. No. 14/152,756 dated Feb. 27, 2019 (17 pages).
Non-Final Office Action for U.S. Appl. No. 14/497,280 dated Mar. 19, 2018 (19 pages).
Non-Final Office Action for U.S. Appl. No. 14/715,332 dated Dec. 26, 2017 (8 pages).
Non-Final Office Action for U.S. Appl. No. 15/048,954 dated Jul. 26, 2018 (24 pages).
Non-Final Office Action for U.S. Appl. No. 15/136,841 dated Jul. 13, 2017 (36 pages).
Non-Final Office Action for U.S. Appl. No. 15/136,841 dated Mar. 12, 2018 (12 pages).
Non-Final Office Action for U.S. Appl. No. 15/429,569 dated Sep. 17, 2018 (9 pages).
Non-Final Office Action for U.S. Appl. No. 15/460,076 dated Jul. 10, 2018 (15 pages).
Non-Final Office Action for U.S. Appl. No. 16/384,435 dated Aug. 7, 2019 (8 pages).
Non-Final Office Action for U.S. Appl. No. 13/844,456 dated Apr. 1, 2019 (21 pages).
Non-Final Office Action for U.S. Appl. No. 15/048,954 dated Jul. 9, 2019 (22 pages).
Non-Final Office Action for U.S. Appl. No. 16/126,618 dated Dec. 19, 2019 (9 pages).
Non-Final Office Action on U.S. Appl. No. 13/250,858 dated Jun. 12, 2015 (20 pages).
Non-Final Office Action on U.S. Appl. No. 13/250,858 dated Mar. 18, 2016 (20 pages).
Non-final Office Action on U.S. Appl. No. 13/250,858 dated Nov. 14, 2016 (18 pages).
Non-Final Office Action on U.S. Appl. No. 13/250,858 dated Sep. 15, 2014 (16 pages).
Non-Final Office Action on U.S. Appl. No. 13/250,940 dated Mar. 18, 2015 (17 pages).
Non-Final Office Action on U.S. Appl. No. 13/432,662 dated May 27, 2015 (15 pages).
Non-Final Office Action on U.S. Appl. No. 13/844,456 Apr. 1, 2015 (16 Pages).
Non-Final Office Action on U.S. Appl. No. 13/844,456 dated Apr. 1, 2015 (16 pages).
Non-Final Office Action on U.S. Appl. No. 13/844,456 dated Aug. 16, 2016 (18 pages).
Non-Final Office Action on U.S. Appl. No. 13/844,456 dated Dec. 29, 2016 (24 pages).
Non-Final Office Action on U.S. Appl. No. 13/844,456 dated Jan. 15, 2016 (16 pages).
Non-Final Office Action on U.S. Appl. No. 13/844,456, with English translation, dated Dec. 29, 2016 (24 pages).
Non-Final Office Action on U.S. Appl. No. 13/864,991 dated Nov. 30, 2015 (18 pages).
Non-Final Office Action on U.S. Appl. No. 13/864,991 dated Oct. 22, 2014 (16 pages).
Non-Final Office Action on U.S. Appl. No. 13/869,866 dated May 28, 2014 (16 pages).
Non-Final Office Action on U.S. Appl. No. 13/869,866 dated Jul. 22, 2015 (28 pages).
Non-Final Office Action on U.S. Appl. No. 13/892,026 dated Aug. 6, 2015 (22 pages).
Non-Final Office Action on U.S. Appl. No. 13/892,026 dated Mar. 22, 2016 (16 pages).
Non-Final Office Action on U.S. Appl. No. 13/892,057 dated Jul. 30, 2015 (29 pages).
Non-Final Office Action on U.S. Appl. No. 14/038,400 dated Feb. 5, 2015 (18 pages).
Non-Final Office Action on U.S. Appl. No. 14/044,676 dated Apr. 9, 2015 (13 pages).
Non-Final Office Action on U.S. Appl. No. 14/044,676 dated Dec. 29, 2016 (26 pages).
Non-Final Office Action on U.S. Appl. No. 14/044,676 dated Jan. 20, 2016 (21 pages).
Non-Final Office Action on U.S. Appl. No. 14/109,551 dated Jul. 14, 2015 (32 pages).
Non-Final Office Action on U.S. Appl. No. 14/152,756, dated Apr. 26, 2016 (17 pages).
Non-Final Office Action on U.S. Appl. No. 14/152,756, dated Feb. 21, 2017 (18 pages).
Non-Final Office Action on U.S. Appl. No. 14/168,173 dated Jun. 22, 2015 (14 pages).
Non-Final Office Action on U.S. Appl. No. 14/168,173 dated Mar. 10, 2016 (9 pages).
Non-Final Office Action on U.S. Appl. No. 14/225,062 dated May 21, 2015 (11 pages).
Non-Final Office Action on U.S. Appl. No. 14/260,943 dated Feb. 3, 2016 (19 pages).
Non-Final Office Action on U.S. Appl. No. 14/465,763 dated Sep. 29, 2016 (4 pages).
Non-Final Office Action on U.S. Appl. No. 14/497,280 dated Sep. 22, 2016 (15 pages).
Non-Final Office Action on U.S. Appl. No. 14/715,332 dated Mar. 9, 2017 (14 pages).
Non-Final Office Action on U.S. Appl. No. 14/754,368, dated May 8, 2017 (12 pages).
Non-Final Office Action on U.S. Appl. No. 15/005,507, dated Nov. 22, 2016 (7 pages).
Non-Final Office Action on U.S. Appl. No. 15/178,521, dated Aug. 24, 2017 (34 pages).
Nordin, G., et al., “Diffraction properties of stratified volume holographic optical elements,” Journal of the Optical Society of America A., vol. 9, No. 12, Dec. 1992, pp. 2206-2217 (12 pages).
Notice of Allowance for U.S. Appl. No. 16/020,125 dated Feb. 25, 2020 (10 pages).
Notice of Allowance for U.S. Appl. No. 12/700,557 dated Oct. 22, 2013 (9 pages).
Notice of Allowance for U.S. Appl. No. 15/048,954 dated Apr. 3, 2020 (2 pages).
Notice of Allowance for U.S. Appl. No. 14/044,676 dated Nov. 24, 2017 (18 pages).
Notice of Allowance for U.S. Appl. No. 14/109,551, dated Nov. 20, 2015 (8 pages).
Notice of Allowance for U.S. Appl. No. 14/715,332 dated May 14, 2018 (9 pages).
Notice of Allowance for U.S. Appl. No. 15/005,507 dated May 23, 2017 (8 pages).
Notice of Allowance for U.S. Appl. No. 15/048,954 dated Jan. 6, 2020 (10 pages).
Notice of Allowance for U.S. Appl. No. 15/136,841 dated Nov. 9, 2018 (9 pages).
Notice of Allowance for U.S. Appl. No. 15/178,521 dated Jan. 31, 2018 (9 pages).
Notice of Allowance for U.S. Appl. No. 15/429,569 dated Jan. 22, 2019 (7 pages).
Notice of Allowance for U.S. Appl. No. 15/439,597 dated Jun. 15, 2018 (11 pages).
Notice of Allowance for U.S. Appl. No. 15/460,076 dated May 8, 2019 (10 pages).
Notice of Allowance for U.S. Appl. No. 16/384,435 dated Feb. 26, 2020 (7 pages).
Notice of Allowance for U.S. Appl. No. 14/465,763 dated Jun. 4, 2019 (8 pages).
Notice of Allowance for U.S. Appl. No. 14/465,763 dated Nov. 15, 2019 (4 pages).
Notice of Allowance for U.S. Appl. No. 14/497,280 dated May 22, 2019 (14 pages).
Notice of Allowance on U.S. Appl. No. 14/814,020, dated Aug. 12, 2016, 15 pages.
Notice of Allowance on U.S. Appl. No. 16/126,618 dated Apr. 7, 2020 (7 pages).
Notice of Allowance on U.S. Appl. No. 13/250,858 dated Mar. 20, 2017 (8 pages).
Notice of Allowance on U.S. Appl. No. 13/250,970 dated Sep. 16, 2014 (7 pages).
Notice of Allowance on U.S. Appl. No. 13/251,087 dated Jul. 17, 2014 (8 pages).
Notice of Allowance on U.S. Appl. No. 13/355,360 dated Apr. 10, 2014 (7 pages).
Notice of Allowance on U.S. Appl. No. 13/432,662, dated Feb. 18, 2016 (10 pages).
Notice of Allowance on U.S. Appl. No. 13/864,991, dated Feb. 2, 2017 (10 pages).
Notice of Allowance on U.S. Appl. No. 13/892,057, dated Nov. 8, 2016 (10 pages).
Notice of Allowance on U.S. Appl. No. 14/168,173 dated Aug. 8, 2016 (8 pages).
Notice of Allowance on U.S. Appl. No. 14/497,280 dated Jun. 12, 2020 (7 pages).
Notice of Allowance on U.S. Appl. No. 14/820,237, dated Jan. 23, 2017 (10 pages).
Notice of Allowance on U.S. Appl. No. 15/048,954 dated Apr. 29, 2020 (7 pages).
Notice of Allowance on U.S. Appl. No. 16/126,618 dated Jul. 24, 2020 (2 pages).
Notice of Reasons for Rejection for Japanese Application No. 2015-509120 dated Nov. 1, 2016 (4 pages).
Notice of Reasons for Rejection for Japanese Appln. No. 2015-509120, with English translation, dated Nov. 1, 2016 (4 pages).
Office Action for U.S. Appl. No. 12/571,262 dated Sep. 28, 2011 (5 pages).
Office Action for U.S. Appl. No. 12/700,557 dated Aug. 9, 2013 (12 pages).
Office Action for U.S. Appl. No. 12/700,557 dated Feb. 4, 2013 (11 pages).
Office Action for U.S. Appl. No. 13/250,621 dated May 21, 2013 (10 pages).
Office Action for U.S. Appl. No. 13/250,858 dated Oct. 28, 2013 (9 pages).
Office Action for U.S. Appl. No. 13/250,940 dated Aug. 28, 2013 (15 pages).
Office Action for U.S. Appl. No. 13/250,940 dated Mar. 12, 2013 (11 pages).
Office Action for U.S. Appl. No. 13/250,970 dated Jul. 30, 2013 (4 pages).
Office Action for U.S. Appl. No. 13/250,994 dated Sep. 16, 2013 (11 pages).
Office Action for U.S. Appl. No. 13/355,360 dated Sep. 12, 2013 (7 pages).
Office Action on U.S. Appl. No. 13/250,940 dated Mar. 25, 2014, 12 pages.
Office Action on U.S. Appl. No. 13/251,087 dated Mar. 28, 2014, 12 pages.
Office Action on U.S. Appl. No. 13/892,026 dated Dec. 8, 2014 (19 pages).
Office Action on U.S. Appl. No. 13/892,057 dated Nov. 28, 2014 (17 pages).
Plastic has replaced glass in photochromic lens, www.plastemart.com, 2003 (1 page).
Preliminary Report on Patentability for PCT Application No. PCT/US2018/012227 dated Aug. 8, 2019 (7 pages).
Press Release, “USAF Awards SBG Labs an SBIR Contract for Wide Field of View HUD”, SBG Labs—DigiLens, Apr. 2013, 1 page.
Press Release: “Navy awards SGB Labs a contract for HMDs for simulation and training”, Press releases, DigiLens, Oct. 2012, pp. 1-2, retrieved from the internat at http://www.digilens.com/pr10-2012.2.php. (2 pages).
Requirement for Restriction/Election on U.S. Appl. No. 13/844,456 dated Sep. 12, 2014 (23 pages).
Restriction Requirement for U.S. Appl. No. 12/700,557 dated Oct. 17, 2012 (5 pages).
Schechter, et al., “Compact beam expander with linear gratings”, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, pp. 1236-1240.
Second Office Action for Chinese Patent Appln. No. 201310557623.4 dated Dec. 1, 2017 (21 pages).
Second Office Action for Chinese Patent Appln. No. 201610512319.1 dated May 2, 2018 (9 pages).
Supplemental Notice of Allowability on U.S. Appl. No. 13/892,026 dated Nov. 1, 2016 (2 pages).
Third Office Action for Chinese Application No. 2016105123191 dated Jan. 16, 2019 (16 pages).
Third Office Action for Chinese Appln. No. 2016105123191 [With English translation] dated Nov. 1, 2018 (16 pages).
Third Office Action for Chinese Patent Appln. No. 20130557623.4 dated May 22, 2018 (16 pages).
Urey, “Diffractive exit pupil expander for display applications” Applied Optics, vol. 40, Issue 32, (2001), pp. 5840-5851 (12 pages).
U.S. Notice of Allowance on U.S. Appl. No. 14/820,237 dated Jan. 23, 2017 (9 pages).
Webster's Third New International Dictionary 433 (1986), (3 pages).
Wisely, P.L., Head up and head mounted display performance improvements through advanced techniques in the manipulation of light, Proc. of SPIE vol. 7327, 732706-1, 2009, 10 pages.
Beckel et al., “Electro-optic properties of thiol-ene polymer stabilized ferroelectric liquid crystals”, Liquid Crystals, vol. 30, No. 11, Nov. 2003, pp. 1343-1350.
Bergkvist, “Biospeckle-based Study of the Line Profile of Light Scattered in Strawberries”, Master Thesis, Lund Reports on Atomic Physics, LRAP-220, Lund 1997, pp. 1-62.
Bernards et al., “Nanoscale porosity in polymer films: fabrication and therapeutic applications”, Soft Matter, Jan. 1, 2010, vol. 6, No. 8, pp. 1621-1631.
Bleha et al., “Binocular Holographic Waveguide Visor Display”, SID Symposium Digest of Technical Papers, Holoeye Systems Inc., Jun. 2014, San Diego, CA, 4 pgs.
Bleha et al., W P., “D-ILA Technology For High Resolution Projection Displays”, Sep. 10, 2003, Proceedings, vol. 5080, doi: 10.1117/12.497532, 11 pgs.
Bone, “Design Obstacles for LCOS Displays in Projection Applications ”Optics architectures for LCOS are still evolving, Aurora Systems Inc., Bay Area SID Seminar, Mar. 27, 2001, 22 pgs.
Born et al., “Optics of Crystals”, Principles of Optics 5th Edition 1975, pp. 705-707.
Bourzac, “Magic Leap Needs to Engineer a Miracle”, Intelligent Machines, Jun. 11, 2015, 7 pgs.
Bowen et al., “Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites”, J Electroceram, Jul. 2006, vol. 16, pp. 263-269, DOI 10.1007/s10832-006-9862-8.
Bowley et al., “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals”, Applied Physics Letters, Jul. 2, 2001, vol. 79, No. 1, pp. 9-11.
Bronnikov et al., “Polymer-Dispersed Liquid Crystals: Progress in Preparation, Investigation and Application”, Journal of Macromolecular Science Part B, published online Sep. 30, 2013, vol. 52, pp. 1718-1738.
Brown, “Waveguide Displays”, Rockwell Collins, 2015, 11 pgs.
Bruzzone et al., “Compact, high-brightness LED illumination for projection systems”, Journal of the SID 17/12, Dec. 2009, pp. 1043-1049.
Buckley et al., “Full colour holographic laser projector HUD”, Light Blue Optics Ltd., Aug. 10, 2015, 5 pgs.
Buckley et al., “Rear-view virtual image displays”, in Proc. SID Conference 16th Annual Symposium on Vehicle Displays, Jan. 2009, 5 pgs.
Buckley, “Colour holographic laser projection technology for heads-up and instrument cluster displays”, Conference: Proc. SID Conference 14th Annual Symposium on Vehicle Displays, Jan. 2007, 5 pgs.
Buckley, “Pixtronix DMS technology for head-up displays”, Pixtronix, Inc., Jan. 2011, 4 pgs.
Bunning et al., “Effect of gel-point versus conversion on the real-time dynamics of holographic polymer-dispersed iquid crystal (HPDLC) formation”, Proceedings of SPIE—vol. 5213, Liquid Crystals VII, Iam-Choon Khoo, Editor, Dec. 2003, pp. 123-129.
Bunning et al., “Electro-optical photonic crystals formed in H-PDLCs by thiol-ene photopolymerization”, American Physical Society, Annual APS, Mar. 3-7, 2003, abstract #R1.135.
Bunning et al., “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs)1”, Annu. Rev. Mater. Sci., 2000, vol. 30, pp. 83-115.
Bunning et al., “Morphology of Anisotropic Polymer Dispersed Liquid Crystals and the Effect of Monomer Functionality”, Polymer Science: Part B: Polymer Physics, Jul. 30, 1997, vol. 35, pp. 2825-2833.
Busbee et al., “SiO2 Nanoparticle Sequestration via Reactive Functionalization in Holographic Polymer-Dispersed Liquid Crystals”, Advanced Materials, Sep. 2009, vol. 21, pp. 3659-3662.
Butler et al., “Diffractive Properties of Highly Birefringent Volume Gratings: Investigation”, Journal of Optical Society of America, Feb. 2002, vol. 19, No. 2, pp. 183-189.
Cai et al., “Recent advances in antireflective surfaces based on nanostructure arrays”, Mater. Horiz., 2015, vol. 2, pp. 37-53.
Cameron, “Optical Waveguide Technology & Its Application In Head Mounted Displays”, Proc. of SPIE, May 22, 2012, vol. 8383, pp. 83830E-1-83830E-11.
Caputo et al., “Policryps Composite Materials: Features and Applications”, Advances in Composite Materials—Analysis of Natural and Man-Made Materials, www.intechopen.com, Sep. 2011, pp. 93-118.
Carclo Optics, “Guide to choosing secondary optics”, Carclo Optics, Dec. 15, 2014, www.carclo-optics.com, 48 pgs.
Chen et al, “Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly(N-vinyl carbazole) films”, Optics Express, Apr. 11, 2011, vol. 19, No. 8, pp. 7553-7558.
Cheng et al., “Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics”, Optics Express, Aug. 2014, 16 pgs.
Chi et al., “Ultralow-refractive-index optical thin films through nanoscale etching of ordered mesoporous silica films”, Optic Letters, May 1, 2012, vol. 37, No. 9, pp. 1406-1408.
Chigrinov et al., “Photo-aligning by azo-dyes: Physics and applications”, Liquid Crystals Today, Sep. 6, 2006, http://www.tandfonline.com/action/journalInformation?joumalCode=tlcy20, 15 pgs.
Cho et al., “Electro-optic Properties of CO2 Fixed Polymer/Nematic LC Composite Films”, Journal of Applied Polymer Science, Nov. 5, 2000, vol. 81, Issue 11, pp. 2744-2753.
Cho et al., “Fabrication of Reflective Holographic PDLC for Blue”, Molecular Crystals and Liquid Crystals Science, 2001, vol. 368, pp. 3845-3853.
Cho et al., “Optimization of Holographic Polymer Dispersed Liquid Crystals for Ternary Monomers”, Polymer International, Nov. 1999, vol. 48, pp. 1085-1090.
Colegrove et al., “P-59: Technology of Stacking HPDLC for Higher Reflectance”, SID 00 DIGEST, May 2000, pp. 770-773.
Cruz-Arreola et al., “Diffraction of beams by infinite or finite amplitude-phase gratings”, Investigacio' N Revista Mexicana De Fi'Sica, Feb. 2011, vol. 57, No. 1, pp. 6-16.
Dainty, “Some statistical properties of random speckle patterns in coherent and partially coherent illumination”, Optica Acta, Mar. 12, 1970, vol. 17, No. 10, pp. 761-772.
Date et al., “52.3: Direct-viewing Display Using Alignment-controlled PDLC and Holographic PDLC”, Society for Information Display Digest, May 2000, pp. 1184-1187, DOI: 10.1889/1.1832877.
Date et al., “Full-color reflective display device using holographically fabricated polymer-dispersed liquid crystal (HPDLC)”, Journal of the SID, 1999, vol. 7, No. 1, pp. 17-22.
Date, “Alignment Control in Holographic Polymer Dispersed Liquid Crystal”, Journal of Photopolymer Science and Technology, Nov. 2, 2000, vol. 13, pp. 289-284.
De Bitetto, “White light viewing of surface holograms by simple dispersion compensation”, Applied Physics Letters, Dec. 15, 1966, vol. 9, No. 12, pp. 417-418.
Developer World, “Create customized augmented reality solutions”, printed Oct. 19, 2017, LMX-001 holographic waveguide display, Sony Developer World, 3 pgs.
Dhar et al., “Recording media that exhibit high dynamic range for digital holographic data storage”, Optics Letters, Apr. 1, 1999, vol. 24, No. 7, pp. 487-489.
Domash et al., “Applications of switchable Polaroid holograms”, SPIE Proceedings, vol. 2152, Diffractive and Holographic Optics Technology, Jan. 23-29, 1994, Los Angeles, CA, pp. 127-138, ISBN: 0-8194-1447-6.
Drake et al., “Waveguide Hologram Fingerprint Entry Device”, Optical Engineering, Sep. 1996, vol. 35, No. 9, p. 2499-2505.
Drevensek-Olenik et al., “In-Plane Switching of Holographic Polymer-Dispersed Liquid Crystal Transmission Gratings”, Mol. Cryst. Liq. Cryst., 2008, vol. 495, p. 177/[529]—185/[537].
Drevensek-Olenik et al., “Optical diffraction gratings from polymer-dispersed liquid crystals switched by interdigitated electrodes”, Journal of Applied Physics, Dec. 1, 2004, vol. 96, No. 11, pp. 6207-6212.
Ducharme, “Microlens diffusers for efficient laser speckle generation”, Optics Express, Oct. 29, 2007, vol. 15, No. 22, pp. 14573-14579.
Duong et al., “Centrifugal Deposition of Iron Oxide Magnetic Nanorods for Hyperthermia Application”, Journal of Thermal Engineering, Yildiz Technical University Press, Istanbul, Turkey, Apr. 2015, vol. 1, No. 2, pp. 99-103.
Fattal et al., “A multi directional backlight for a wide-angle glasses-free three-dimensional display”, Nature, Mar. 21, 2012, vol. 495, 348-351.
Written Opinion for International Application No. PCT/GB2012/000331, completed Aug. 29, 2012, dated Sep. 6, 2012, 7 pgs.
“Agilent ADNS-2051 Optical Mouse Sensor: Data Sheet”, Agilent Technologies, Jan. 9, 2002, 40 pgs.
“Application Note—MOXTEK ProFlux Polarizer use with LCOS displays”, CRL Opto Limited, http://www.crlopto.com, 2003, 6 pgs.
“Application Note AN16: Optical Considerations for Bridgelux LED Arrays”, BridgeLux, Jul. 31, 2010, 23 pgs.
“Application Note: Variable Attenuator for Lasers”, Technology and Applications Center, Newport Corporation, www.newport.com, 2006, DS-08067, 6 pgs.
“Bae Systems to Unveil Q-Sight Family of Helmet-Mounted Display at AUSA Symposium”, Released on Tuesday, Oct. 9, 2007, 1 pg.
“Beam Steering Using Liquid Crystals”, Boulder Nonlinear Systems, Inc., info@bnonlinear.com, May 8, 2001, 4 pgs.
“BragGrate—Deflector: Transmitting Volume Bragg Grating for angular selection and magnification”, 2015, www.OptiGrate.com.
“Cree XLamp XP-E LEDs”, Cree, Inc., Retrieved from www.cree.com/Xlamp, CLD-DS18 Rev 17, 2013, 17 pgs.
“Desmodur N 3900”, Bayer Materialscience AG, Mar. 18, 2013, www.bayercoatings.com, 4 pgs.
“Digilens—Innovative Augmented Reality Display and Sensor Solutions for OEMs”, Jun. 6, 2017, 31 pgs.
“Exotic Optical Components”, Building Electro-Optical Systems, Making It All Work, Chapter 7, John Wiley & Sons, Inc., pp. 233-261.
“FHS Lenses Series”, Fraen Corporation, www.fraen.com, Jun. 16, 2003, 10 pgs.
“FLP Lens Series for LUXEONTM Rebel and Rebel ES LEDs”, Fraen Corporation, www.fraensrl.com, Aug. 7, 2015, 8 pgs.
“Head-up Displays, See-through display for military aviation”, BAE Systems, 2016, 3 pgs.
“Holder for LUXEON Rebel—Part No. 180”, Polymer Optics Ltd., 2008, 12 pgs.
“LED 7-Segment Displays”, Lumex, uk.digikey.com, 2003, UK031, 36 pgs.
“LED325W UVTop UV Led with Window”, Thorlabs, Specifications and Documentation, 21978-S01 Rev. A, Apr. 8, 2011, 5 pgs.
“Liquid Crystal Phases”, Phases of Liquid Crystals, http://plc.cwru.edu/tutorial/enhanced/files/lc/phase, Retrieved on Sep. 21, 2004, 6 pgs.
“LiteHUD Head-up display infographic”, BAE Systems, 2017, 2 pgs.
“LiteHUD Head-up display”, BAE Systems, 2016, 2 pgs.
“Luxeon C: Power Light Source”, Philips Lumileds, www.philipslumileds.com, 2012, 18 pgs.
“Luxeon Rebel ES: Leading efficacy and light output, maximum design flexibility”, Luxeon Rebel ES Datasheet DS6120130221, www.philipslumileds.com, 2013, 33 pgs.
“Mobile Display Report”, Insight Media, LLC, Apr. 2012, vol. 7, No. 4, 72 pgs.
“Molecular Imprints Imprio 55”, Engineering at Illinois, Micro + Nanotechnology Lab, Retrieved from https://mntl.illinois.edu/facilities/cleanrooms/equipment/Nano-lmprint.asp, Dec. 28, 2015, 2 pgs.
“Optical measurements of retinal flow”, Industrial Research Limited, Feb. 2012, 18 pgs.
“Osterhout Design Group Develops Next-Generation, Fully-integrated Smart Glasses Using Qualcomm Technologies”, ODG, www.osterhoutgroup.com, Sep. 18, 2014, 2 pgs.
“Range Finding Using Pulse Lasers”, OSRAM, Opto Semiconductors, Sep. 10, 2004, 7 pgs.
“Response time in Liquid-Crystal Variable Retarders”, Meadowlark Optics, Inc., 2005, 4 pgs.
“Secondary Optics Design Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-5, Sep. 2002, 23 pgs.
“Solid-State Optical Mouse Sensor with Quadrature Outputs”, IC Datasheet, UniquelCs, Jul. 15, 2004, 11 pgs.
“SVGA TransparentVLSITM Microdisplay Evaluation Kit”, Radiant Images, Inc., Product Data Sheet, 2003, 3 pgs.
“Technical Data Sheet LPR1”, Luminus Devices, Inc., Luminus Projection Chipset, Release 1, Preliminary, Revision B, Sep. 21, 2004, 9 pgs.
“The Next Generation of TV”, SID Information Display, Nov./Dec. 2014, vol. 30, No. 6, 56 pgs.
“Thermal Management Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-4, Sep. 2002, 14 pgs.
“UVTOP240”, Roithner LaserTechnik GmbH, v 2.0, Jun. 24, 2013, 6 pgs.
“Velodyne's HDL-64E: A High Definition Lidar Sensor for 3-D Applications”, High Definition Lidar, white paper, Oct. 2007, 7 pgs.
“VerLASE Gets Patent for Breakthrough Color Conversion Technology That Enables Full Color MicroLED Arrays for Near Eye Displays”, Cision PRweb, Apr. 28, 2015, Retrieved from the Internet http://www.prweb.com/releases/2015/04/prweb12681038.htm, 3 pgs.
“X-Cubes—Revisited for LCOS”, BASID, RAF Electronics Corp. Rawson Optics, Inc., Oct. 24, 2002, 16 pgs.
Aachen, “Design of plastic optics for LED applications”, Optics Colloquium 2009, Mar. 19, 2009, 30 pgs.
Abbate et al., “Characterization of LC-polymer composites for opto-electronic application”, Proceedings of OPTOEL'03, Leganes-Madrid, Spain, Jul. 14-16, 2003, 4 pgs.
Al-Kalbani et al., “Ocular Microtremor laser speckle metrology”, Proc, of SPIE, 2009, vol. 7176 717606-1, 12 pgs.
Almanza-Workman et al., “Planarization coating for polyimide substrates used in roll-to-roll fabrication of active matrix backplanes for flexible displays”, HP Laboratories, HPL-2012-23, Feb. 6, 2012, 12 pgs.
Amundson et al., “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films”, Physical Review E, Feb. 1997, vol. 55. No 2, pp. 1646-1654.
An et al., “Speckle suppression in laser display using several partially coherent beams”, Optics Express, Jan. 5, 2009, vol. 17, No. 1, pp. 92-103.
Apter et al., “Electrooptical Wide-Angle Beam Deflector Based on Fringing-Field-lnduced Refractive Inhomogeneity in a Liquid Crystal Layer”, 23rd IEEE Convention of Elecliical and Electronics Engineers in Israel, Sep. 6-7, 2004, pp. 240-243.
Arnold et al., “52.3: An Improved Polarizing Beamsplitter LCOS Projection Display Based on Wire-Grid Polarizers”, Society for Information Display, Jun. 2001, pp. 1282-1285.
Ayras et al., “Exit pupil expander with a large field of view based on diffractive optics”, Journal of the SID, May 18, 2009, 17/8, pp. 659-664.
Baets et al., “Resonant-Cavity Light-Emitting Diodes: a review”, Proceedings of SPIE, 2003, vol. 4996, pp. 74-86.
Bayer et al., “Introduction to Helmet-Mounted Displays”, 2016, pp. 47-108.
Yaroshchuk et al., “Stabilization of liquid crystal photoaligning layers by reactive mesogens”, Applied Physics Letters, Jul. 14, 2009, vol. 95, pp. 021902-1-021902-3.
Ye, “Three-dimensional Gradient Index Optics Fabricated in Diffusive Photopolymers”, Thesis, Department of Electrical, Computer and Energy Engineering, University of Colorado, 2012, 224 pgs.
Yemtsova et al., “Determination of liquid crystal orientation in holographic polymer dispersed liquid crystals by linear and nonlinear optics”, Journal of Applied Physics, Oct. 13, 2008, vol. 104, pp. 073115-1-073115-4.
Yeralan et al., “Switchable Bragg grating devices for telecommunications applications”, Opt. Eng., Aug. 2012, vol. 41, No. 8, pp. 1774-1779.
Yoshida et al., “Nanoparticle-Dispersed Liquid Crystals Fabricated by Sputter Doping”, Adv. Mater. 2010, vol. 22, pp. 622-626.
Zhang et al., “Dynamic Holographic Gratings Recorded by Photopolymerization of Liquid Crystalline Monomers”, J. Am. Chem. Soc., 1994, vol. 116, pp. 7055-7063.
Zhang et al., “Switchable Liquid Crystalline Photopolymer Media for Holography”, J. Am. Chem. Soc., 1992, vol. 114, pp. 1506-1507.
Zhao et al., “Designing Nanostructures by Glancing Angle Deposition”, Proc. of SPIE, Oct. 27, 2003, vol. 5219, pp. 59-73.
Zlȩbacz, “Dynamics of nano and micro objects in complex liquids”, Ph D. dissertation, Institute of Physical Chemistry of the Polish Academy of Sciences, Warsaw 2011, 133 pgs.
Zou et al., “Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement”, Sensors and Actuators A, Jan. 16, 2007, vol. 136, pp. 518-526.
Zyga, “Liquid crystals controlled by magnetic fields may lead to new optical applications”, Nanotechnology, Nanophysics, Retrieved from http://phys.org/news/2014-07-liquid-crystals-magnetic-fields-optical.html, Jul. 9, 2014, 3 pgs.
Fontecchio et al., “Spatially Pixelated Reflective Arrays from Holographic Polymer Dispersed Liquid Crystals”, SID 00 Digest, May 2000, pp. 774-776.
Forman et al., “Materials development for PhotoINhibited SuperResolution (PINSR) lithography”, Proc of SPIE, 2012, vol. 8249, 824904, doi: 10.1117/12.908512, pp. 824904-1-824904-9.
Forman et al., “Radical diffusion limits to photoinhibited superresolution lithography”, Phys.Chem. Chem. Phys., May 31, 2013, vol. 15, pp. 14862-14867.
Friedrich-Schiller, “Spatial Noise and Speckle”, Version 1.12 2011, Dec. 2011, Abbe School of Photonics, Jena, Germany, 27 pgs.
Fujii et al., “Nanoparticle-polymer-composite volume gratings incorporating chain-transfer agents for holography and slow-neutron optics”, Optics Letters, Apr. 25, 2014, vol. 39, Issue 12, 5 pgs.
Funayama et al., “Proposal of a new type thin film light-waveguide display device using”. The International Conference on Electrical Engineering, 2008, No. P-044, 5 pgs.
Gabor, “Laser Speckle and its Elimination”, Eliminating Speckle Noise, Sep. 1970, pp. 509-514.
Gardiner et al., “Bistable liquid-crystals reduce power consumption for high-efficiency smart glazing”, SPIE, 2009, 10.1117/2.1200904.1596, 2 pgs.
Giancola, “Holographic Diffuser, Makes Light Work of Screen Tests”, Photonics Spectra, 1996, vol. 30, No. 8, p. 121.
Goodman et al., “Speckle Reduction by a Moving Diffuser in Laser Projection Displays”, The Optical Society of America, 2000, 15 pgs.
Goodman, “Some fundamental properties of speckle”, J. Opt. Soc. Am., Nov. 1976, vol. 66, No. 11, pp. 1145-1150.
Goodman, “Statistical Properties of Laser Speckle Patterns”, Applied Physics, 1975, vol. 9, Chapter 2, Laser Speckle and Related Phenomena, pp. 9-75.
Guldin et al., “Self-Cleaning Antireflective Optical Coatings”, Nano Letters, Oct. 14, 2013, vol. 13, pp. 5329-5335.
Guo et al., “Review Article: A Review of the Optimisation of Photopolymer Materials for Holographic Data Storage”, Physics Research International, vol. 2012 (2012), Article ID 803439, Academic Editor: Sergi Gallego, 16 pages, http://dx.doi.org/10.1155/2012/803439, May 4, 2012.
Ha et al., “Optical Security Film Based on Photo-alignment Technology”, Department of Electronic & Computer Engineering, May 9, 2016, 1 pg.
Han et al., “Study of Holographic Waveguide Display System”, Advanced Photonics for Communications, 2014, 4 pgs.
Harbers et al., “I-15.3: LED Backlighting for LCD-HDTV”, Journal of the Society for Information Display, 2002, vol. 10, No. 4, pp. 347-350.
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds Lighting, 2007, 4 pgs.
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds, Aug. 7, 2001, 11 pgs.
Harbers et al., “Performance of High-Power LED illuminators in Projection Displays”, Proc. Int. Disp. Workshops, Japan. vol. 10, pp. 1585-1588, 2003.
Harding et al., “Reactive Liquid Crystal Materials for Optically Anisotropic Patterned Retarders”, Merck, licrivue, 2008, ME-GR-RH-08-010, 20 pgs.
Harding et al., “Reactive Liquid Crystal Materials for Optically Anisotropic Patterned Retarders”, SPIE Lithography Asia—Taiwan, 2008, Proceedings vol. 7140, Lithography Asia 2008; 71402J, doi: 10.1117/12.805378.
Hariharan, “Optical Holography: Principles, techniques and applications”, Cambridge University Press, 1996, pp. 231, 233.
Harris, “Photonic Devices”, EE 216 Principals and Models of Semiconductor Devices, Autumn 2002, 20 pgs.
Harrold et al., “3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update”, Sharp Laboratories of Europe, Ltd., received May 21, 1999, 7 pgs.
Harthong et al., “Speckle phase averaging in high-resolution color holography”, J. Opt. Soc. Am. A, Feb. 1997, vol. 14, No. 2, pp. 405-409.
Hasan et al., “Tunable-focus lens for adaptive eyeglasses”, Optics Express, Jan. 23, 2017, vol. 25, No. 2, 1221, 13 pgs.
Hasman et al., “Diffractive Optics: Design, Realization, and Applications”, Fiber and Integrated Optics, 16:1-25, 1997.
Hata et al., “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization”, Optical Materials Express, Jun. 1, 2011, vol. 1, No. 2, pp. 207-222.
He et al., “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal”, Liquid Crystals, Mar. 26, 2014, vol. 41, No. 5, pp. 673-684.
He et al., “Holographic 3D display based on polymer-dispersed liquid-crystal thin films”, Proceedings of China Display/Asia Display 2011, pp. 158-160.
He et al., “Properties of Volume Holograms Recording in Photopolymer Films with Various Pulse Exposures Repetition Frequencies”, Proceedings of SPIE vol. 5636, Bellingham, WA, 2005, doi: 10.1117/12.580978, pp. 842-848.
Herman et al., “Production and Uses of Diffractionless Beams”, J. Opt. Soc. Am. A., Jun. 1991, vol. 8, No. 6, pp. 932-942.
Hisano, “Alignment layer-free molecular ordering induced by masked photopolymerization with nonpolarized light”, Appl. Phys Express 9, Jun. 6, 2016, pp. 072601-1-072601-4.
Hoepfner et al., “LED Front Projection Goes Mainstream”, Luminus Devices, Inc., Projection Summit, 2008, 18 pgs.
Holmes et al., “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings”, Physical Review E, Jun. 11, 2002, vol. 65, 066603-1-066603-4.
Hoyle et al., “Advances in the Polymerization of Thiol-Ene Formulations”, Heraeus Noblelight Fusion UV Inc, 2003 Conference, 6 pgs.
Hua, “Sunglass-like displays become a reality with free-form optical technology”, Illumination & Displays 3D Visualization and Imaging Systems Laboratory (3DVIS) College of Optical Sciences University of Arizona Tucson, AZ. 2014, 3 pgs.
Huang et al., “Diffraction properties of substrate guided-wave holograms”, Optical Engineering, Oct. 1995, vol. 34, No. 10, pp. 2891-2899.
Huang et al., “Theory and characteristics of holographic polymer dispersed liquid crystal transmission grating with scaffolding morphology”, Applied Optics, Jun. 20, 2012, vol. 51, No. 18, pp. 4013-4020.
Iannacchione et al., “Deuterium NMR and morphology study of copolymer-dispersed liquid-crystal Bragg gratings”, Europhysics Letters, 1996, vol. 36, No. 6, pp. 425-430.
International Preliminary Report on Patentability for International Application PCT/GB2009/051676, dated Jun. 14, 2011, dated Jun. 23, 2011, 6 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2011/000349, dated Sep. 18, 2012, dated Sep. 27, 2012, 10 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2012/000331, dated Oct. 8, 2013, dated Oct. 17, 2013, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2012/000677, dated Feb. 25, 2014, dated Mar. 6, 2014, 5 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2013/000005, dated Jul. 8, 2014, dated Jul. 17, 2014, 12 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2014/000295, dated Feb. 2, 2016, dated Feb. 11, 2016, 4 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2015/000225, dated Feb. 14, 2017, dated Feb. 23, 2017, 8 pgs.
International Preliminary Report on Patentability for International application PCT/GB2015/000274, dated Mar. 28, 2017, dated Apr. 6, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2016/000014, dated Jul. 25, 2017, dated Aug. 3, 2017, 7 pgs.
Ma et al., “Holographic Reversed-Mode Polymer-Stabilized Liquid Crystal Grating”, Chinese Phys. Lett., 2005, vol. 22, No. 1, pp. 103-106.
Mach et al., “Switchable Bragg diffraction from liquid crystal in colloid-templated structures”, Europhysics Letters, Jun. 1, 2002, vol. 58, No. 5, pp. 679-685.
Magarinos et al., “Wide Angle Color Holographic infinity optics display”, Air Force Systems Command, Brooks Air Force Base, Texas, AFHRL-TR-80-53, Mar. 1981, 100 pgs.
Marino et al., “Dynamical Behaviour of Policryps Gratings”, Electronic-Liquid Crystal Communications, Feb. 5, 2004, 10 pgs.
Massenot et al., “Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies”, Applied Optics, 2005, vol. 44, Issue 25, pp. 5273-5280.
Matay et al., “Planarization of Microelectronic Structures by Using Polyimides”, Journal of Electrical Engineering, 2002,vol. 53, No. 3-4, pp. 86-90.
Mathews, “The LED FAQ Pages”, Jan. 31, 2002, 23 pgs.
Matic, “Blazed phase liquid crystal beam steering”, Proc, of the SPIE, 1994, vol. 2120, pp. 194-205.
McLeod, “Axicons and Their Uses”, Journal of the Optical Society of America, Feb. 1960, vol. 50, No. 2, pp. 166-169.
McManamon et al., “A Review of Phased Array Steering for Narrow-Band Electrooptical Systems”, Proceedings of the IEEE, Jun. 2009, vol. 97, No. 6, pp. 1078-1096.
McManamon et al., “Optical Phased Array Technology”, Proceedings of the IEEE, Feb. 1996, vol. 84, Issue 2, pp. 268-298.
Miller, “Coupled Wave Theory and Waveguide Applications”, The Bell System Technical Journal, Short Hills, NJ, Feb. 2, 1954, 166 pgs.
Nair et al., “Enhanced Two-Stage Reactive Polymer Network Forming Systems”, Polymer (Guildf). May 25, 2012, vol. 53, No. 12, pp. 2429-2434, doi:10.1016/j polymer.2012.04.007.
Nair et al., “Two-Stage Reactive Polymer Network Forming Systems”, Advanced Functional Materials, 2012, pp. 1-9, DOI: 10.1002/adfm.201102742.
Naqvi et al., “Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress”, International Journal of Nanomedicine, Dovepress, Nov. 13, 2010, vol. 5, pp. 983-989.
Natarajan et al., “Electro Optical Switching Characteristics of Volume Holograms in Polymer Dispersed Liquid Crystals”, Journal of Nonlinear Optical Physics and Materials, 1997, vol. 5, No. 1, pp. 666-668.
Natarajan et al., “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization”, Polymer, vol. 47, May 8, 2006, pp. 4411-4420.
Naydenova et al., “Low-scattering vol. Holographic Material”, DIT PhD Project, http://www.dit.ie/ieo/, Oct. 2017, 2 pgs.
Neipp et al., “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity”, Optics Express, Aug. 11, 2003, vol. 11, No. 16, pp. 1876-1886.
Nishikawa et al., “Mechanism of Unidirectional Liquid-Crystal Alignment on Polyimides with Linearly Polarized Ultraviolet Light Exposure”, Applied Physics Letters, May 11, 1998, vol. 72, No. 19, 4 pgs.
Nishikawa et al., “Mechanically and Light Induced Anchoring of Liquid Crystal on Polyimide Film”, Mol. Cryst. Liq. Cryst., Aug. 1999, vol. 329, 8 pgs.
Oh et al., “Achromatic diffraction from polarization gratings with high efficiency”, Optic Letters, Oct. 15, 2008, vol. 33, No. 20, pp. 2287-2289.
Olson et al., “Templating Nanoporous Polymers with Ordered Block Copolymers”, Chemistry of Materials, Web publication Nov. 27, 2007, vol. 20, pp. 869-890.
Ondax, Inc., “Volume Holographic Gratings (VHG)”, 2005, 7 pgs.
Orcutt, “Coming Soon: Smart Glasses That Look Like Regular Spectacles”, Intelligent Machines, Jan. 9, 2014, 4 pgs.
Osredkar et al., “Planarization methods in IC fabrication technologies”, Informacije MIDEM, 2002, vol. 32, 3, ISSN0352-9045, 5 pgs.
Osredkar, “A study of the limits of spin-on-glass planarization process”, Informacije MIDEM, 2001, vol. 31, 2, ISSN0352-9045, pp. 102-105.
Ou et al., “A Simple LCOS Optical System (Late News)”, Industrial Technology Research Institute/OES Lab. Q100/Q200, SID 2002, Boston, USA, 2 pgs.
Paolini et al., “High-Power LED Illuminators in Projection Displays”, Lumileds, Aug. 7, 2001, 19 pgs.
Park et al., “Aligned Single-Wall Carbon Nanotube Polymer Composites Using an Electric Field”, Journal of Polymer Science: Part B: Polymer Physics, Mar. 24, 2006, DOI 10.1002/polb.20823, pp. 1751-1762.
Park et al., “Fabrication of Reflective Holographic Gratings with Polyurethane Acrylates (PUA)”, Current Applied Physics, Jun. 2002, vol. 2, pp. 249-252.
Plawsky et al., “Engineered nanoporous and nanostructured films”, MaterialsToday, Jun. 2009, vol. 12, No. 6, pp. 36-45.
Potenza, “These smart glasses automatically focus on what you're looking at”, The Verge, Voc Media, Inc., Jan. 29, 2017, https://www.theverge.com/2017/1/29/14403924/smart-glasses-automatic-focus-presbyopia-ces-2017, 6 pgs.
Presnyakov et al., “Electrically tunable polymer stabilized liquid-crystal lens”, Journal of Applied Physics, Apr. 29, 2005, vol. 97, pp. 103101-1-103101-6.
Qi et al., “P-111: Reflective Display Based on Total Internal Reflection and Grating-Grating Coupling”, Society for Information Display Digest, May 2003, pp. 648-651, DOI: 10.1889/1.1832359.
Ramón, “Formation of 3D micro-and nanostructures using liquid crystals as a template”, Technische Universiteit Eindhoven, Apr. 17, 2008, Thesis, DOI:http://dx.doi.org/10.6100/IR634422, 117 pgs.
Ramsey et al., “Holographically recorded reverse-mode transmission gratings in polymer-dispersed liquid crystal cells”, Applied Physics B: Laser and Optics, Sep. 10, 2008, vol. 93, Nos. 2-3, pp. 481-489.
Ramsey, “Holographic Patterning of Polymer Dispersed Liquid Crystal Materials for Diffractive Optical Elements”, Thesis, The University of Texas at Arlington, Dec. 2006, 166 pgs.
Reid, “Thin film silica nanocomposites for anti-reflection coatings”, Oxford Advance Surfaces, www.oxfordsurfaces.com, Oct. 18, 2012, 23 pgs.
Riechert, “Speckle Reduction in Projection Systems”, Dissertation, University Karlsruhe, 2009, 178 pgs.
Rossi et al., “Diffractive Optical Elements for Passive Infrared Detectors”, Submitted to OSA Topical Meeting “Diffractive Optics and Micro-Optics”, Quebec, Jun. 18-22, 2000, 3 pgs.
Saleh et al., “Fourier Optics : 4.1 Propagation of light in free space, 4.2 Optical Fourier Transform, 4.3 Diffraction of Light, 4.4 Image Formation, 4.5 Holography”, Fundamentals of Photonics 1991, Chapter 4, pp. 108-143.
Saraswat, “Deposition & Planarization”, EE 311 Notes, Aug. 29, 2017, 28 pgs.
Schreiber et al., et al., “Laser display with single-mirror MEMS scanner”, Journal of the SID 17/7, 2009, pp. 591-595.
Seiberle et al., “Photo-aligned anisotropic optical thin films”, Journal of the SID 12/1, 2004, 6 pgs.
Serebriakov et al., “Correction of the phase retardation caused by intrinsic birefringence in deep UV lithography”, Proc of SPIE, May 21, 2010, vol. 5754, pp. 1780-1791.
Shi et al., “Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light”, Applied Optics, vol. 49, No. 3, Jan. 20, 2010, pp. 409-421.
Shriyan et al., “Analysis of effects of oxidized multiwalled carbon nanotubes on electro-optic polymer/liquid crystal thin film gratings”. Optics Express, Nov. 12, 2010, vol. 18, No. 24, pp. 24842-24852.
Simonite, “How Magic Leap's Augmented Reality Works”, Intelligent Machines, Oct. 23, 2014, 7 pgs.
Smith et al., “RM-PLUS—Overview”, Licrivue, Nov. 5, 2013, 16 pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/011736, dated Jul. 21, 2015, dated Jul. 30, 2015, 9 pgs.
International Preliminary Report on Patentability for International Application PCT/US2016/017091, dated Aug. 15, 2017, dated Aug. 24, 2017, 5 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/011736, completed Apr. 18, 2014, dated May 8, 2014, 10 pgs.
International Search Report and Written Opinion for International Application PCT/GB2009/051676, completed May 10, 2010, dated May 18, 2010, 7 pgs.
International Search Report and Written Opinion for International Application PCT/US2016/017091, completed by the European Patent Office on Apr. 20, 2016, 7 pgs.
International Search Report for International Application No. PCT/GB2014/000295, completed Nov. 18, 2014, dated Jan. 5, 2015, 4 pgs.
International Search Report for International Application PCT/GB2017/000040, dated Jul. 18, 2017, completed Jul. 10, 2017, 3 pgs.
International Search Report for PCT/GB2011/000349, completed by the European Patent Office dated Aug. 17, 2011,4 pgs.
International Search Report for PCT/GB2012/000331, completed by the European Patent Office dated Aug. 29, 2012, 4 pgs.
International Search Report for PCT/GB2012/000677, completed by the European Patent Office dated Dec. 10, 2012, 4 pgs.
International Search Report for PCT/GB2013/000005, completed by the European Patent Office on Jul. 16, 2013, 3 pgs.
International Search Report for PCT/GB2015/000203, completed by the European Patent Office on Oct. 9, 2015, 4 pgs.
International Search Report for PCT/GB2015/000225, completed by the European Patent Office on Nov. 10, 2015, dated Dec. 2, 2016, 5 pgs.
International Search Report for PCT/GB2015/000274, completed by the European Patent Office on Jan. 7, 2016, 4 pgs.
International Search Report for PCT/GB2016/000014, completed by the European Patent Office on Jun. 27, 2016, 4 pgs.
Jeng et al., “Aligning liquid crystal molecules”, SPIE, 2012, 10.1117/2.1201203.004148, 2 pgs.
Jo et al., “Control of Liquid Crystal Pretilt Angle using Polymerization of Reactive Mesogen”, IMID 2009 Digest, P1-25, 2009, pp. 604-606.
Juhl et al., “Holographically Directed Assembly of Polymer Nanocomposites”, ACS Nano, Oct. 7, 2010, vol. 4, No. 10, pp. 5953-5961.
Juhl, “Interference Lithography for Optical Devices and Coatings”, Dissertation, University of Illinois at Urbana-Champaign, 2010.
Jurbergs et al., “New recording materials for the holographic industry”, Proc, of SPIE, 2009 vol. 7233, pp. 72330K-1-72330L-10, doi: 10.1117/12.809579, 10 pgs.
Kahn et al., “Private Line Report on Large Area Display”, Kahn International, Jan. 7, 2003, vol. 8, No. 10, 9 pgs.
Karasawa et al., “Effects of Material Systems on the Polarization Behavior of Holographic Polymer Dispersed Liquid Crystal Gratings”, Japanese Journal of Applied Physics, vol. 36, pp. 6388-6392, 1997.
Karp et al., “Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide”, Proc of SPIE vol. 7407,2009 SPIE, CCC code: 0277-786X/09, doi: 10.1117/12.826531, pp. 74070D-1-74070D-11.
Karp et al., “Planar micro-optic solar concentrator”, Optics Express, Jan. 18, 2010, vol. 18, No. 2, pp. 1122-1133.
Kato et al., “Alignment-Controlled Holographic Polymer Dispersed Liquid Crystal (HPDLC) for Reflective Display Devices”, SPIE, 1998, vol. 3297, pp. 52-57.
Kessler, “Optics of Near to Eye Displays (NEDs)”, Oasis 2013, Tel Aviv, Feb. 19, 2013, 37 pgs.
Keuper et al., “26.1: RGB LEF Illuminator for Pocket-Sized Projectors”, SID 04 DIGEST, 2004, ISSN/0004-0966X/04/3502, pp. 943-945.
Keuper et al., “P-126: Ultra-Compact LED based Image Projector for Portable Applications”, SID 03 Digest, 2003, ISSN/0003-0966X/03/3401-0713, pp. 713-715.
Kim et al., “Effect of Polymer Structure on the Morphology and Electro optic Properties of UV Curable PNLCs”, Polymer, Feb. 2000, vol. 41, pp. 1325-1335.
Kim et al., “Enhancement of electro-optical properties in holographic polymer-dispersed liquid crystal films by incorporation of multiwalled carbon nanotubes into a polyurethane acrylate matrix”, Polym. Int., Jun. 16, 2010, vol. 59, pp. 1289-1295.
Kim et al., “Optimization of Holographic PDLC for Green”, Mol. Cryst. Liq. Cryst., vol. 368, pp. 3855-3864, 2001.
Klein, “Optical Efficiency for Different Liquid Crystal Colour Displays”, Digital Media Department, HPL-2000-83, Jun. 29, 2000, 18 pgs.
Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings”, The Bell System Technical Journal, vol. 48, No. 9, pp. 2909-2945, Nov. 1969.
Kotakonda et al., “Electro-optical Switching of the Holographic Polymer-dispersed Liquid Crystal Diffraction Gratings”, Journal of Optics A: Pure and Applied Optics, Jan. 1, 2009, vol. 11, No. 2, 11 pgs.
Kress et al., “Diffractive and Holographic Optics as Optical Combiners in Head Mounted Displays”, UbiComp '13, Sep. 9-12, 2013, Session: Wearable Systems for Industrial Augmented Reality Applications, pp. 1479-1482.
Lauret et al., “Solving the Optics Equation for Effective LED Applications”, Gaggione North America, LLFY System Design Workshop 2010, Oct. 28, 2010, 26 pgs.
Lee, “Patents Shows Widespread Augmented Reality Innovation”, PatentVue, May 26, 2015, 5 pgs.
Levola et al., “Near-to-eye display with diffractive exit pupil expander having chevron design”, Journal of the SID, 2008, 16/8, pp. 857-862.
Levola, “Diffractive optics for virtual reality displays”, Journal of the SID, 2006, 14/5, pp. 467-475.
Li et al., “Design and Optimization of Tapered Light Pipes”, Proceedings vol. 5529, Nonimaging Optics and Efficient Illumination Systems, Sep. 29, 2004, doi: 10.1117/12.559844, 10 pgs.
Li et al., “Dual Paraboloid Reflector and Polarization Recycling Systems for Projection Display”, Proceedings vol. 5002, Projection Displays IX, Mar. 28, 2003, doi: 10.1117/12.479585, 12 pgs.
Li et al., “Light Pipe Based Optical Train and its Applications”, Proceedings vol. 5524, Novel Optical Systems Design and Optimization VII, Oct. 24, 2004, doi: 10.1117/12.559833, 10 pgs.
Li et al., “Novel Projection Engine with Dual Paraboloid Reflector and Polarization Recovery Systems”, Wavien Inc., SPIE EI 5289-38, Jan. 21, 2004, 49 pgs.
Li et al., “Polymer crystallization/melting induced thermal switching in a series of holographically patterned Bragg reflectors”, Soft Matter, Jul. 11, 2005, 1, 238-242.
Lin et al., “Ionic Liquids in Photopolymerizable Holographic Materials”, in book: Holograms—Recording Materials and Applications, Nov. 9, 2011, 21 pgs.
Liu et al., “Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications”, Advances in OptoElectronics, Nov. 30, 2008, vol. 2008, Article ID 684349, 52 pgs.
Lorek, “Experts Say Mass Adoption of augmented and Virtual Reality is Many Years Away”, Siliconhills, Sep. 9, 2017, 4 pgs.
Lowenthal et al., “Speckle Removal by a Slowly Moving Diffuser Associated with a Motionless Diffuser”, Journal of the Optical Society of America, Jul. 1971, vol. 61, No. 7, pp. 847-851.
Lu et al., “Polarization switch using thick holographic polymer-dispersed liquid crystal grating”, Journal of Applied Physics, Feb. 1, 2004, vol. 95, No. 3, pp. 810-815.
Lu et al., “The Mechanism of electric-field-induced segregation of additives in a liquid-crystal host”, Phys Rev E Stat Nonlin Soft Matter Phys., Nov. 27, 2012, 14 pgs.
Sony Global, “Sony Releases the Transparent Lens Eyewear ‘SmartEyeglass Developer Edition’”, printed Oct. 19, 2017, Sony Global—News Releases, 5 pgs.
Steranka et al., “High-Power LEDs—Technology Status and Market Applications”, Lumileds, Jul. 2002, 23 pgs.
Stumpe et al., “Active and Passive LC Based Polarization Elements”, Mol. Cryst. Liq. Cryst., 2014, vol. 594: pp. 140-149.
Stumpe et al., “New type of polymer-LC electrically switchable diffractive devices—POLIPHEM”, May 19, 2015, p. 97.
Subbarayappa et al., “Bistable Nematic Liquid Crystal Device”, Jul. 30, 2009, 14 pgs.
Sun et al., “Effects of multiwalled carbon nanotube on holographic polymer dispersed liquid crystal”, Polymers Advanced Technologies, Feb. 19, 2010, DOI: 10.1002/pat.1708, 8 pgs.
Sun et al., “Low-birefringence lens design for polarization sensitive optical systems”, Proceedings of SPIE, 2006, vol. 6289, doi: 10.1117/12.679416, pp. 6289DH-1-6289DH-10.
Sun et al., “Transflective multiplexing of holographic polymer dispersed liquid crystal using Si additives”, eXPRESS Polymer Letters, 2011, vol. 5, No. 1, pp. 73-81.
Sutherland et al., “Bragg Gratings in an Acrylate Polymer Consisting of Periodic Polymer—Dispersed Liquid-Crystal Planes”, Chem. Mater., 1993, vol. 5, pp. 1533-1538.
Sutherland et al., “Electrically switchable volume gratings in polymer-dispersed liquid crystals”, Applied Physics Letters, Feb. 28, 1994, vol. 64, No. 9, pp. 1071-1076.
Sutherland et al., “Enhancing the electro-optical properties of liquid crystal nanodroplets for switchable Bragg gratings”, Proc. of SPIE, 2008, vol. 7050, pp. 705003-1-705003-9, doi: 10.1117/12.792629.
Sutherland et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Hardened Materials Branch, AFRL-ML-WP-TP-2007-514, Jan. 2007, Wright-Patterson Air Force Base, OH, 18 pgs.
Sutherland et al., “The physics of photopolymer liquid crystal composite holographic gratings”, presented at SPIE: Diffractive and Holographic Optics Technology San Jose, CA,1996, Spie, vol. 2689, pp. 158-169.
Sweatt, “Achromatic triplet using holographic optical elements”, Applied Optics, May 1977, vol. 16, No. 5, pp. 1390-1391.
Talukdar, “Technology Forecast: Augmented reality”, Changing the economics of Smartglasses, Issue 2, 2016, 5 pgs.
Tao et al., “TiO2 nanocomposites with high refractive index and transparency”, J. Mater. Chem., Oct. 4, 2011, vol. 21, pp. 18623-18629.
Titus et al., “Efficient, Accurate Liquid Crystal Digital Light Deflector”, Proc. SPIE 3633, Diffractive and Holographic Technologies, Systems, and Spatial Light Modulators VI, 1 Jun. 1, 1999, doi: 10.1117/12.349334, 10 pgs.
Tiziani, “Physical Properties of Speckles”, Speckle Metrology, Chapter 2, Academic Press, Inc., 1978, pp. 5-9.
Tominaga et al., “Fabrication of holographic polymer dispersed liquid crystals doped with gold nanoparticles”, 2010 Japanese Liquid Crystal Society Annual Meeting, 2 pgs.
Tomita, “Holographic assembly of nanoparticles in photopolymers for photonic applications”, The International Society for Optical Engineering, SPIE Newsroom, 2006, 10.1117/2.1200612.0475, 3 pgs.
Trisnadi, “Hadamard Speckle Contrast Reduction”, Optics Letters, Jan. 1, 2004, vol. 29, No. 1, pp. 11-13.
Trisnadi, “Speckle contrast reduction in laser projection displays”, Proc. SPIE 4657, 2002, 7 pgs.
Tzeng et al., “Axially symmetric polarization converters based on photo-aligned liquid crystal films”, Optics Express, Mar. 17, 2008, vol. 16, No. 6, pp. 3768-3775.
Upatnieks et al., “Color Holograms for white light reconstruction”, Applied Physics Letters, Jun. 1, 1996, vol. 8, No. 11, pp. 286-287.
Ushenko, “The Vector Structure of Laser Biospeckle Fields and Polarization Diagnostics of Collagen Skin Structures”, Laser Physics, 2000, vol. 10, No. 5, pp. 1143-1149.
Valoriani, “Mixed Reality: Dalle demo a un prodotto”, Disruptive Technologies Conference, Sep. 23, 2016, 67 pgs.
Van Gerwen et al., “Nanoscaled interdigitated electrode arrays for biochemical sensors”, Sensors and Actuators, Mar. 3, 1998, vol. B 49, pp. 73-80.
Vecchi, “Studi ESR DI Sistemi Complessi Basati Su Cristalli Liquidi”, Thesis, University of Bologna, Department of Physical and Inorganic Chemistry, 2004-2006, 110 pgs.
Veltri et al., “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials”, Applied Physics Letters, May 3, 2004, vol. 84, No. 18, pp. 3492-3494.
Vita, “Switchable Bragg Gratings”, Thesis, Universita degli Studi di Napoli Federico II, Nov. 2005, 103 pgs.
Vuzix, “M3000 Smart Glasses, Advanced Waveguide Optics”, brochure, Jan. 1, 2017, 2 pgs.
Wang et al., “Liquid-crystal blazed-grating beam deflector”, Applied Optics, Dec. 10, 2000, vol. 39, No. 35, pp. 6545-6555.
Wang et al., “Optical Design of Waveguide Holographic Binocular Display for Machine Vision”, Applied Mechanics and Materials, Sep. 27, 2013, vols. 427-429, pp. 763-769.
Wang et al., “Speckle reduction in laser projection systems by diffractive optical elements”, Applied Optics, Apr. 1, 1998, vol. 37, No. 10, pp. 1770-1775.
Weber et al., “Giant Birefringent Optics in Multilayer Polymer Mirrors”, Science, Mar. 31, 2000, vol. 287, pp. 2451-2456.
Wei, “Industrial Applications of Speckle Techniques”, Doctoral Thesis, Royal Institute of Technology, Department of Production Engineering, Chair of Industrial Metrology & Optics, Stockholm, Sweden 2002, 76 pgs.
Welde et al., “Investigation of methods for speckle contrast reduction”, Master of Science in Electronics, Jul. 2010, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 127 pgs.
White, “Influence of thiol-ene polymer evolution on the formation and performance of holographic polymer dispersed liquid crystals”, The 232nd ACS National Meeting, San Francisco, CA, Sep. 10-14, 2006, 1 pg.
Wicht et al., “Nanoporous Films with Low Refractive Index for Large-Surface Broad-Band Anti-Reflection Coatings” Macromol. Mater. Eng., 2010, 295, DOI: 10.1002/mame.201000045, 9 pgs.
Wilderbeek et al., “Photoinitiated Bulk Polymerization of Liquid Crystalline Thiolene Monomers”, Macromolecules, 2002, vol. 35, pp. 8962-8969.
Wilderbeek et al., “Photo-Initiated Polymerization of Liquid Crystalline Thiol-Ene Monomers in Isotropic and Anisotropic Solvents”, J. Phys. Chem. B, 2002, vol. 106, No. 50, pp. 12874-12883.
Wofford et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Survivability and Sensor Materials Division, AFRL-ML-WP-TP-2007-551, Air Force Research Laboratory, Jan. 2007, Wright-Patterson Air Force Base, OH, 17 pgs.
Written Opinion for International Application No. PCT/GB2011/000349, completed Aug. 17, 2011, dated Aug. 25, 2011, 9 pgs.
Written Opinion for International Application No. PCT/GB2012/000677, completed Dec. 10, 2012, dated Dec. 17, 2012, 4 pgs.
Written Opinion for International Application No. PCT/GB2014/000295, Search completed Nov. 18, 2014, dated Jan. 5, 2015, 3 Pgs.
Written Opinion for International Application No. PCT/GB2015/000225, Search Completed Nov. 10, 2015, dated Feb. 4, 2016, 7 Pgs.
Written Opinion for International Application No. PCT/GB2015/000274, Search completed Jan. 7, 2016, dated Jan. 19, 2016, 7 Pgs.
Written Opinion for International Application No. PCT/GB2016/000014, Search completed Jun. 27, 2016, dated Jul. 7, 2016, 6 Pgs.
Written Opinion for International Application No. PCT/GB2017/000040, Search completed Jul. 10, 2017, dated Jul. 18, 2017, 6 Pgs.
Yaqoob et al., “High-speed two-dimensional laser scanner based on Bragg grating stored in photothermorefractive glass”, Applied Optics, Sep. 10, 2003, vol. 42, No. 26, pp. 5251-5262.
Related Publications (1)
Number Date Country
20200241304 A1 Jul 2020 US
Provisional Applications (2)
Number Date Country
61689907 Jun 2012 US
61687436 Apr 2012 US
Continuations (2)
Number Date Country
Parent 15048954 Feb 2016 US
Child 16849043 US
Parent 13869866 Apr 2013 US
Child 15048954 US