1. Field of Invention
The present invention relates to a method and apparatus for writing a code on an optical element; and more particularly, for a method and apparatus for writing a 2-dimensional code on a very small optical element in the form of a microbead that may be 1-1000 microns or smaller.
2. Description of Related Art
Tiny microbeads that are individually identifiable have many applications in drug discovery, genomics, chemistry, and security. Microbeads are very small objects, typically 1-1000 microns (um) in feature size. They may be cylindrical, cubic, rectangular, or any other shape. Coded microbeads are individually identifiable. There are many methods available to encode microbeads. Known methods for encoding microbeads include fluorescence intensity and/or color, chemical techniques, spatial marks on the particles and radio-frequency encoding. However, the known ways involve writing a code that is linear which limits the amount of information that can be contained in such a code, which in turn limits the type of applications in which the coded optical elements may be used. In view of this, there is a need in the industry for a better way to encode microbeads to increase the amount of information each microbead contains.
In its broadest sense, the present invention provides a new and unique method and apparatus for writing a code on an optical element, such as a microbead, wherein the code is written on the optical element as a holographic image of an n-dimensional code, which may be generated by an interference pattern between a reference beam and a signal beam reflected off a spatial light modulation device having the n-dimensional code configured thereon. After the code is written, the optical element takes the form of a holographically encoded optical element. The n-dimensional code may include a 1-dimensional code, a 2-dimensional code, a 3-dimensional code, etc.
In one embodiment, the method includes the steps of generating the interference pattern between the reference beam and the signal beam reflected off the spatial light modulation device having a 2-dimensional code configured thereon; as well as writing the interference pattern on the optical element as a holographic image of a 2-dimensional code.
The spatial light modulation device may be a digital light processor (DLP) or other suitable digitally modulated device (DMD) having a 1 or 2-dimensional array of micromirrors. In effect, the spatial light modulation device is a digital mask with N×M attenuation elements that allows for multiple combinations/permutations of digital codes. The multiple combinations/permutations of digital codes include M sets of 2N codes, and the total number of unique 2D image codes is 2NM codes.
The holographically encoded optical element may take the form of a bead, a chip, a block, a platelet or other suitable geometry. The material may be any photosensitive material, including glass (e.g. silica based glass) and polymer materials having appropriate photosensitivity, that creates a refractive index variation in the substrate.
The holographic image is a hologram, which is a three-dimensional image reproduced from a pattern of interference produced by a split coherent beam of radiation (as a laser). The process for making and reading a hologram is known in the art. In the present invention, the reference beam and the signal beam may be produced by splitting such a coherent beam of radiation using such known optical techniques. By way of example, a reference laser beam would be split to form the signal beam.
The 1 or 2-dimensional code may include a reference marker, e.g. a corner code or the like.
The method may also include the step of providing the reference beam on the optical element in order to read the holographic image off the holographically encoded optical element.
The scope of the invention is intended to include the interference pattern being written in or on the holographically encoded optical element in the form of a Bragg grating or other suitable encoding technique now known or later developed in the future.
The apparatus for writing the code on or in the optical element includes, in combination, the spatial light modulation device having the 1 or 2-dimensional code configured thereon that responds to the signal beam, for providing the spatial light modulation signal containing the 1 or 2-dimensional code; as well as a light source for providing the reference beam. The spatial light modulator and the light source are arranged in relation to the optical element so that the interference pattern generated between the spatial light modulation signal and the reference beam is written on or in the optical element as the holographic image of the 1 or 2-dimensional code.
The present invention also includes the holographically encoded optical element having the n-dimensional code formed or produced by performing the steps set forth using method and apparatus described herein.
The drawing, not drawn to scale, includes the following Figures:
The Spatial Light Modulation Device 12
The spatial light modulation (SLM) device 12 is known in the art and may include a digital light processor (DLP) or other suitable digitally modulated device (DMD) having a 2-dimensional array of micromirrors. The DLP may be programmable for configuring the 2-dimensional code thereon. In effect, the spatial light modulation device 12 is a digital mask with N×M attenuation elements that allows for multiple combinations/permutations of digital codes. The scope of the invention is not intended to be limited to the type, kind, shape or size of the spatial light modulation device 12. The scope of the invention is intended to include spatial light modulation devices both now known and later developed in the future.
In operation, the 2-dimensional array of micromirrors generally indicated as 22 is digitally coded to turn on or turn off to produce the 2-dimensional code 14. For example, a portion of the signal beam may be reflected in the direction of the optical element 20 when a particular micromirror is turned on, while another portion of the signal beam may be reflected in a direction away from the optical element 20 when a particular micromirror is turned off, or vice versa. As shown, the binomial state of the 2-dimensional array of micromirrors 22 corresponds to the 2-dimensional binomial code 14 written on or in the holographically encoded optical element 20.
The spatial light modulator may be controlled by a SLM controller 15 for providing a signal to turn on or turn off the micromirrors 22 to produce the 2-dimensional code 14. As a person skilled in the art would appreciate, the SLM controller 15 may be implemented in hardware, software, firmware, or some combination thereof to perform the functionality of the present invention. By way of example, a software embodiment would typically be microprocessor based, and include the suitable cooperation of the microprocessor, Random Access Memory (RAM), Read Only Memory (ROM), input/output devices, and address, control and data buses for coupling these components together. A person skilled in the art would be able to implement such an SLM controller 15 consistent with that shown and described herein to turn on or turn off the micromirrors 22 to produce the 2-dimensional code 14 on the SLM device 12.
By way of example, the spatial light modulation device 12 may include a known Digital Micromirror Device™ (DMD™) manufactured by Texas Instruments and described in the white paper entitled “Digital Light Processing™ for High-Brightness, High-Resolution Applications”, white paper entitled “Lifetime Estimates and Unique Failure Mechanisms of the Digital Micromirror Device (DMD)”, and news release dated September 1994 entitled “Digital Micromirror Display Delivering On Promises of ‘Brighter’ Future for Imaging Applications”, which are incorporated herein by reference. The DMD device is monolithically fabricated by CMOS-like processes over a CMOS memory. Each micro-mirror typically includes, for example, an aluminum mirror, approximately 16 microns square, that can reflect light in one of two directions, depending on the state of the underlying memory cell. Rotation, flipping or tilting of the micromirror is accomplished through electrostatic attraction produced by voltage differences between the mirror and the underlying memory cell. With the memory cell in the “on” (1) state, the micromirror rotates or tilts approximately +10 degrees. With the memory cell in the “off” (0) state, the mirror tilts approximately −10 degrees.
Although the invention has been described as using an array of digital micromirrors to implement the spatial light modulator (SLM) device (or pixelating device) in the embodiments shown herein, it should be understood by those skilled in the art that any SLM that provides pixelated optical signal processing may be used, as described further below. Further, instead of using micromirrors with two reflective states or angles of reflection (e.g., ±10 degrees) as a pixel that reflects a portion of the light beam, the pixels may have one reflective state and the other state may be absorptive or transmissive. Alternatively, instead of the pixel having at least one state being reflective (which may provide other design advantages), the pixel may have one state being transmissive and the other state being absorptive. Alternatively, the pixel may have two transmissive or partially transmissive states that refract the incoming light out at two different angles. For each of various pixelating devices, the optics surrounding the pixelating device would be changed as needed to provide the same functions as that described for each of the embodiments herein for the different types of pixelated optical signal processing used.
Also, instead of the pixels having a square, diamond or rectangular shape, the pixels may have any other two or three-dimensional shapes, i.e., circle, oval, sphere, cube, triangle, parallelogram, rhombus, trapezoid.
The spatial light modulator is shown and described herein as a DLP device; however, the scope of the invention is intended to include other types of light modulator devices. For example, the spatial light modulator may also include a pixelating device, based on, for example, liquid crystal technology, such as a liquid crystal display (LCD). An LCD may provide a device having either one absorptive state and one reflective state, or one absorptive state and one transmissive state. The underlying principle of an LCD is the manipulation of polarized light (i.e., an optical channel). For example, the polarized light may be rotated by 90 degrees in one state of the liquid crystal and not rotated in another state. To provide an LCD having one absorptive state and one transmissive state, a polarizer is provided at each side of the liquid crystal, such that the polarization angles of the polarizers are offset by 90 degrees. A mirror can be added at one end to provide an LCD having one absorptive state and one reflective state.
One example of having a reflective state and a transmissive state is a variation on existing bubble jet technology currently produced by Agilent and Hewlett-Packard Co., and described in U.S. Pat. Nos. 6,160,928 and 5,699,462, respectively. In that case, when the bubble is in one state, it has total internal reflection; and when in the other state, it is totally transmissive. Also in that case, the pixels may not be square but circular or oval.
One example of having a transmissive state and an absorptive state is Heterojunction Acoustic Charge Transport (HACT) Spatial Light Modulator (SLM) technology, such as that described in U.S. Pat. No. 5,166,766, entitled “Thick Transparent Semiconductor Substrate, Heterojunction Acoustic Charge Transport Multiple Quantum Well Spatial Light Modulator”, Grudkowski et al. and U.S. Pat. No. 5,158,420, entitled “Dual Medium Heterojunction Acoustic Charge Transport Multiple Quantum Well Spatial Light Modulator” to Grudkowski et al., provided the material used for the HACT SLM will operate at the desired operational wavelength. In that case, the pixels may be controlled by charge packets that travel along a surface acoustic wave that propagates along the device, where the size of the charge controls the optical absorption.
See also the following for other examples of the use of spatial light modulators: U.S. patent application Ser. No. 10/115,647, entitled “Dynamic Optical Filter Having a Spatial Light Modulator”, filed Apr. 3, 2002, U.S. Patent Office Publication No. 2002-0176151 A1; U.S. patent application Ser. No. 10/159,370, entitled “Optical Channel Monitor” filed May 31, 2002, U.S. Patent Office Publication No. 2003-0007148 A1; U.S. Provisional Patent Application Ser. No. 60/332,318, entitled “Chromatic dispersion compensation device having an array of micromirrors”, filed Nov. 16, 2001; U.S. Provisional Patent Application Ser. No. 60/325,065, entitled “Reconfigurable Optical Add/Drop Multiplexer having an Array of micromirrors”, filed Sep. 25, 2001; U.S. Provisional Patent Application Ser. No. 60/325,068, entitled “Optical Cross-connect having an array of micromirrors”, filed Sep. 21, 2001; U.S. Provisional Patent Application Ser. No. 60/325,066, entitled “Optical Channel monitor having an array of Micromirrors”, filed Sep. 25, 2001; U.S. Provisional Patent Application Ser. No. 60/325,064, entitled “Optical Interleaver/deinterleaver device having an array of micromirrors”, filed Sep. 25, 2001; U.S. Provisional Patent Application Ser. No. 60/344,585, entitled “Optical blocking filter having an array of micromirrors”, filed Dec. 28, 2001; U.S. Provisional Patent Application Ser. No. 60/352,297, entitled “Multifunctional optical device having spatial light modulator”, filed Jan. 28, 2002; U.S. patent application Ser. No. 10/115,648, entitled “Variable Optical Source”, filed Apr. 3, 2002, U.S. Patent Office Publication No. 2002-0176149 A1; U.S. patent application Ser. No. 10/120,617, entitled “Adaptive filter/attenuator using pixelated reflector”, filed Apr. 11, 2002, which are all hereby incorporated by reference in their entirety.
See also, U.S. Pat. No. 5,208,880 (Riza et al.); U.S. Pat. No. 6,222,954 (Riza et al.); and U.S. Pat. No. 6,263,123 (Bishop et al.), also all hereby incorporated by reference in their entirety.
The multiple combinations/permutations of digital codes on the 2-dimensional array of micromirrors include M sets of 2N codes, and the total number of unique 2D image codes is 2NM codes. For N=M=10, the number of codes is greater than 1030.
The 2-dimensional code 14 may also include one or more reference markers, e.g. a corner code or the like.
The present invention also includes a method and apparatus for reading the 2-dimensional code 14 (
The Holographically Encoded Optical Element 20
The present invention also includes the holographically encoded optical element 20 formed by performing the steps set forth using the method and apparatus described herein. The holographically encoded optical element 20 may be a bead, a chip, a block, a platelet or other suitable geometry either now known or later developed in the future. The holographically encoded optical element 20 may be made from any photosensitive material either now known or later developed in the future, including glass and polymer materials having an appropriate photosensitivity, that creates a refractive index variation in its substrate.
The holographically encoded optical element 20 may be microscopic in size having a length in a range of 1-1,000 microns or smaller; or for larger applications may have a length of 1.0-1,000 millimeters or more. The outer diameter may be as small as less than 1,000 microns, as well as in a range of 1.0 to 1,000 millimeters for larger applications. Using manufacturing techniques developed in conjunction with the development of the present invention, one optical fiber or substrate can be drawn and processed to produce hundreds of thousands, as well as even a million or more of unique holographically encoded optical element (also known as microbeads). The holographically encoded optical element 20 may include an optical substrate having the refractive index of the core is less than or equal to the cladding, or vice versa. The scope of the invention is not intended to be limited to the type, kind, shape or size of the holographically encoded optical element 20. The scope of the invention is intended to include optical substrates both now known and later developed in the future.
Applications, uses, geometries and embodiments for the encoded element of the present invention may be the same as that described in the following cases which are all incorporated herein by reference in their entirety: U.S. patent application Ser. No. 10/661,234, filed Sep. 12, 2003, entitled “Diffraction Grating-Based Optical Identification Element”; U.S. patent application Ser. No. 10/661,031 filed Sep. 12, 2003, entitled “Diffraction Grating-Based Encoded Micro-particles for Multiplexed Experiments”; U.S. patent application Ser. No. 10/661,082, filed Sep. 12, 2003, entitled “Method and Apparatus for Labeling Using Diffraction Grating-Based Encoded Optical Identification Elements”; U.S. patent application Ser. No. 10/661,115, filed Sep. 12, 2003, entitled “Assay Stick”; U.S. patent application Ser. No. 10/661,836, filed Sep. 12, 2003, entitled “Method and Apparatus for Aligning Microbeads in order to Interrogate the Same”; U.S. patent application Ser. No. 10/661,254, filed Sep. 12, 2003, entitled “Chemical Synthesis Using Diffraction Grating-based Encoded Optical Elements”; U.S. patent application Ser. No. 10/661,116, filed Sep. 12, 2003, entitled “Method of Manufacturing of a Diffraction grating-based identification Element”; and U.S. patent application Ser. No. 10/763,995, filed Jan. 22, 2004, entitled, “Hybrid Random Bead/Chip Based Microarray”, U.S. Provisional Patent Applications Ser. Nos. 60/609,583, 60/610,059 and 60/609,712, all filed Sep. 13, 2004; U.S. Provisional Patent Applications Ser. Nos. 60/611,205, 60/610,910, 60/610,833, 60/610,829, 60/610,928, all filed Sep. 17, 2004 and U.S. Provisional Patent Application Ser. No. 60/611,676, filed Sep. 20, 2004; and U.S. patent applications Ser. No. 10/956,791, filed Oct. 1, 2004.
By way of example,
As shown, the source signal beam is reflected off the SLM 12, bounced off a mirror 70 back to the SLM 12, reflected off the SLM 12, passed through a lens 72 so as to form an interference pattern on the optical element 20 (shown as a chip “platelet”) in relation to the reference beam which passes through a lens 74, causing the hologram or holographic image to be formed therein.
As shown, the source signal beam is reflected off a first SLM112a, reflected off a second SLM212b, passed through a lens 80 so as to form an interference pattern on the optical element 20 (shown as a chip “platelet”) in relation to the reference beam which passes through a lens 82, causing the hologram to be formed therein.
The SLM can have multiple patterns or codes arranged in any orientation, as shown, including horizontal, vertical, diagonal, etc. In effect, instead of using the entire SLM, any portion(s) of the SLM may be used. Different patterns may be created by different portions of the SLM sequentially or simultaneously.
As shown, the source signal beam is reflected off the SLM 12 having one or more patterns, pattern 1, pattern 2, pattern 3 (up to pattern n) arranged thereon, passed through a lens 90 so as to form an interference pattern on the optical element 20 (shown as a chip “platelet”) in relation to the reference beam which passes through a lens 92, causing the hologram to be formed therein.
The reference beam may be pixelated using a second SLM2 or an unused portion of the first SLM1. In that case, when reading the code the same pixelated reference beam should be used. This can provide another level of encryption or encoding if desired or beam shaping. Also, in that case the source beam need not be pixelated if desired.
As shown, the source signal beam is reflected off a first SLM112a for providing a pixelated source beam, which is passed though a lens 100, the reference beam is reflected off a second SLM212b for providing a pixelated reference beam, which is passed though a lens 102, the pixelated source beam and the pixelated reference beam form an interference pattern on the optical element 20 (shown as a chip “platelet”) causing the hologram to be formed therein.
As a person skilled in the art would appreciate, the computer or readout device 114 may be implemented in hardware, software, firmware, or some combination thereof to perform the functionality of the present invention. By way of example, a software embodiment would typically be microprocessor based, and include the suitable cooperation of the microprocessor, Random Access Memory (RAM), Read Only Memory (ROM), input/output devices, and address, control and data buses for coupling these components together. A person skilled in the art would be able to implement such a computer or readout device consistent with that shown and described herein to determine or print out the holographic image having the n-dimensional code according to the invention.
As a person skilled in the art would appreciate, a reference beam and a signal beam would typically be produced by a split coherent beam of radiation, which is a very well known technique in the art. For example, the reference beam may be split using known optical techniques to form the signal beam to produce and maintain the coherency of the light. The signal and reference beam source or sources form part of well known devices in the art, and would typically include a laser or light source generator device 150 and associated optical arrangement that are known in the art, as shown by way of example in
Various aspects of the present invention may be conducted in an automated or semi-automated manner, generally with the assistance of well-known data processing methods. Computer programs and other data processing methods well known in the art may be used to store information including e.g. microbead identifiers, probe sequence information, sample information, and binding signal intensities. Data processing methods well known in the art may be used to read input data covering the desired characteristics.
The invention may be used in many areas such as drug discovery, functionalized substrates, biology, proteomics, combinatorial chemistry, DNA analysis/tracking/sorting/tagging, as well as tagging of molecules, biological particles, matrix support materials, immunoassays, receptor binding assays, scintillation proximity assays, radioactive or non-radioactive proximity assays, and other assays, (including fluorescent, mass spectroscopy), high throughput drug/genome screening, and/or massively parallel assay applications. The invention provides uniquely identifiable beads with reaction supports by active coatings for reaction tracking to perform multiplexed experiments.
The dimensions and/or geometries for any of the embodiments described herein are merely for illustrative purposes and, as such, any other dimensions and/or geometries may be used if desired, depending on the application, size, performance, manufacturing requirements, or other factors, in view of the teachings herein.
It should be understood that, unless stated otherwise herein, any of the features, characteristics, alternatives or modifications described regarding a particular embodiment herein may also be applied, used, or incorporated with any other embodiment described herein. Also, the drawings herein are not drawn to scale.
Although the invention has been described and illustrated with respect to exemplary embodiments thereof, the foregoing and various other additions and omissions may be made therein and thereto without departing from the spirit and scope of the present invention.
Moreover, the invention comprises the features of construction, combination of elements, and arrangement of parts which will be exemplified in the construction hereinafter set forth.
It will thus be seen that the objects set forth above, and those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawing shall be interpreted as illustrative and not in a limiting sense.
This application claims benefit to provisional patent application No. 60/628,827, filed Nov. 16, 2004, which is hereby incorporated by reference in their entirety. The following cases contain subject matter related to that disclosed herein and are incorporated herein by reference in their entirety: U.S. patent application Ser. No. 10/661,234, filed Sep. 12, 2003, entitled “Diffraction Grating-Based Optical Identification Element”; U.S. patent application Ser. No. 10/661,031 filed Sep. 12, 2003, entitled “Diffraction Grating-Based Encoded Micro-particles for Multiplexed Experiments”; U.S. patent application Ser. No. 10/661,082, filed Sep. 12, 2003, entitled “Method and Apparatus for Labeling Using Diffraction Grating-Based Encoded Optical Identification Elements”; U.S. patent application Ser. No. 10/661,115, filed Sep. 12, 2003, entitled “Assay Stick”; U.S. patent application Ser. No. 10/661,836, filed Sep. 12, 2003, entitled “Method and Apparatus for Aligning Microbeads in order to Interrogate the Same”; U.S. patent application Ser. No. 10/661,254, filed Sep. 12, 2003, entitled “Chemical Synthesis Using Diffraction Grating-based Encoded Optical Elements”; U.S. patent application Ser. No. 10/661,116, filed Sep. 12, 2003, entitled “Method of Manufacturing of a Diffraction grating-based identification Element”; and U.S. patent application Ser. No. 10/763,995, filed Jan. 22, 2004, entitled, “Hybrid Random Bead/Chip Based Microarray”, U.S. Provisional Patent Applications Ser. Nos. 60/609,583, 60/610,059 and 60/609,712, all filed Sep. 13, 2004; U.S. Provisional Patent Applications Ser. Nos. 60/611,205, 60/610,910, 60/610,833, 60/610,829, 60/610,928, all filed Sep. 17, 2004; U.S. Provisional Patent Application Ser. No. 60/611,676, filed Sep. 20, 2004; and U.S. patent applications Ser. No. 10/956,791, filed Oct. 1, 2004.
Number | Name | Date | Kind |
---|---|---|---|
3614193 | Beiser | Oct 1971 | A |
3858979 | Elbe | Jan 1975 | A |
3880497 | Bryngdahl | Apr 1975 | A |
3891302 | Dabby et al. | Jun 1975 | A |
3903415 | Holzapfel | Sep 1975 | A |
3916182 | Dabby et al | Oct 1975 | A |
3968476 | McMahon | Jul 1976 | A |
4011435 | Phelps et al. | Mar 1977 | A |
4023010 | Horst et al. | May 1977 | A |
4053228 | Schiller | Oct 1977 | A |
4053433 | Lee | Oct 1977 | A |
4131337 | Moraw et al. | Dec 1978 | A |
4168146 | Grubb et al. | Sep 1979 | A |
4301139 | Feingers et al. | Nov 1981 | A |
4386274 | Altshuler | May 1983 | A |
4400616 | Chevillat et al. | Aug 1983 | A |
4445229 | Tasto et al. | Apr 1984 | A |
4447546 | Hirschfeld | May 1984 | A |
4537504 | Baltes et al. | Aug 1985 | A |
4560881 | Briggs | Dec 1985 | A |
4562157 | Lowe et al. | Dec 1985 | A |
4647544 | Nicoli et al. | Mar 1987 | A |
4678752 | Thorne et al. | Jul 1987 | A |
4685480 | Eck | Aug 1987 | A |
4688240 | Hosemann | Aug 1987 | A |
4690907 | Hibino et al. | Sep 1987 | A |
4701754 | Provonchee | Oct 1987 | A |
4716121 | Block et al. | Dec 1987 | A |
4725110 | Glenn et al. | Feb 1988 | A |
4740468 | Weng et al. | Apr 1988 | A |
4740688 | Edwards | Apr 1988 | A |
4748110 | Paul | May 1988 | A |
4762420 | Bowley | Aug 1988 | A |
4767719 | Finlan | Aug 1988 | A |
4770295 | Carveth et al. | Sep 1988 | A |
4807950 | Glenn et al. | Feb 1989 | A |
4815027 | Tokumitsu | Mar 1989 | A |
4816659 | Bianco et al. | Mar 1989 | A |
4822746 | Walt | Apr 1989 | A |
4841140 | Sullivan et al. | Jun 1989 | A |
4877747 | Stewart | Oct 1989 | A |
4880752 | Keck et al. | Nov 1989 | A |
4882288 | North et al. | Nov 1989 | A |
4921805 | Gebeyehu et al. | May 1990 | A |
4931384 | Layton et al. | Jun 1990 | A |
4937048 | Sakai et al. | Jun 1990 | A |
4958376 | Leib | Sep 1990 | A |
4992385 | Godfrey | Feb 1991 | A |
5002867 | Macevicz | Mar 1991 | A |
5003600 | Deason et al. | Mar 1991 | A |
RE33581 | Nicoli et al. | Apr 1991 | E |
5028545 | Soini | Jul 1991 | A |
5030558 | Litman et al. | Jul 1991 | A |
5033826 | Kolner | Jul 1991 | A |
5065008 | Hakamata et al. | Nov 1991 | A |
5067155 | Bianco et al. | Nov 1991 | A |
5081012 | Flanagan et al. | Jan 1992 | A |
5089387 | Tsay et al. | Feb 1992 | A |
5090807 | Tai | Feb 1992 | A |
5091636 | Takada et al. | Feb 1992 | A |
5095194 | Barbanell | Mar 1992 | A |
5100238 | Nailor et al. | Mar 1992 | A |
5104209 | Hill et al. | Apr 1992 | A |
5105305 | Betzig et al. | Apr 1992 | A |
5114864 | Walt | May 1992 | A |
5115121 | Bianco et al. | May 1992 | A |
5118608 | Layton et al. | Jun 1992 | A |
5129974 | Aurenius | Jul 1992 | A |
5138468 | Barbanell | Aug 1992 | A |
5141848 | Donovan et al. | Aug 1992 | A |
5143853 | Walt | Sep 1992 | A |
5144461 | Horan | Sep 1992 | A |
5160701 | Brown, III et al. | Nov 1992 | A |
5166813 | Metz | Nov 1992 | A |
5192980 | Dixon et al. | Mar 1993 | A |
5196350 | Backman et al. | Mar 1993 | A |
5200794 | Nishiguma et al. | Apr 1993 | A |
5218594 | Tanno | Jun 1993 | A |
5239178 | Derndinger et al. | Aug 1993 | A |
5244636 | Walt et al. | Sep 1993 | A |
5283777 | Tanno et al. | Feb 1994 | A |
5291006 | Nishiguma et al. | Mar 1994 | A |
5291027 | Kita et al. | Mar 1994 | A |
5300764 | Hoshino et al. | Apr 1994 | A |
5307332 | Tinet | Apr 1994 | A |
5310686 | Sawyers et al. | May 1994 | A |
5329352 | Jacobsen | Jul 1994 | A |
5342790 | Levine et al. | Aug 1994 | A |
5349442 | Deason et al. | Sep 1994 | A |
5352582 | Lichtenwalter et al. | Oct 1994 | A |
5364797 | Olson et al. | Nov 1994 | A |
5367588 | Hill et al. | Nov 1994 | A |
5372783 | Lackie | Dec 1994 | A |
5374816 | Bianco | Dec 1994 | A |
5374818 | Bianco et al. | Dec 1994 | A |
5388173 | Glenn | Feb 1995 | A |
5394234 | Bianco et al. | Feb 1995 | A |
5395558 | Tsai | Mar 1995 | A |
5426297 | Dunphy et al. | Jun 1995 | A |
5432329 | O'Boyle et al. | Jul 1995 | A |
5442433 | Hoshino et al. | Aug 1995 | A |
5448659 | Tsutsui et al. | Sep 1995 | A |
5451528 | Raymoure et al. | Sep 1995 | A |
5455178 | Fattinger | Oct 1995 | A |
5461475 | Lerner et al. | Oct 1995 | A |
5465176 | Bianco et al. | Nov 1995 | A |
5468649 | Shah et al. | Nov 1995 | A |
5506674 | Inoue et al. | Apr 1996 | A |
5514785 | Van Ness et al. | May 1996 | A |
5528045 | Hoffman et al. | Jun 1996 | A |
5547849 | Baer et al. | Aug 1996 | A |
5559613 | Deveaud-Pledran et al. | Sep 1996 | A |
5585639 | Dorsel et al. | Dec 1996 | A |
5587832 | Krause | Dec 1996 | A |
5607188 | Bahns et al. | Mar 1997 | A |
5610287 | Nikiforov et al. | Mar 1997 | A |
5620853 | Smethers et al. | Apr 1997 | A |
5621515 | Hoshino | Apr 1997 | A |
5624850 | Kumar et al. | Apr 1997 | A |
5625472 | Mizrahi et al. | Apr 1997 | A |
5627040 | Bierre et al. | May 1997 | A |
5627663 | Horan et al. | May 1997 | A |
5633724 | King et al. | May 1997 | A |
5633790 | Gritter et al. | May 1997 | A |
5633975 | Gary et al. | May 1997 | A |
5667976 | Van Ness et al. | Sep 1997 | A |
5671308 | Inoue et al. | Sep 1997 | A |
5682244 | Barlow et al. | Oct 1997 | A |
5712912 | Tomko et al. | Jan 1998 | A |
5721435 | Troll | Feb 1998 | A |
5729365 | Sweatt | Mar 1998 | A |
5736330 | Fulton | Apr 1998 | A |
5742432 | Bianco | Apr 1998 | A |
5745615 | Atkins et al. | Apr 1998 | A |
5745617 | Starodubov et al. | Apr 1998 | A |
5759778 | Li et al. | Jun 1998 | A |
5760961 | Tompkin et al. | Jun 1998 | A |
5766956 | Groger et al. | Jun 1998 | A |
5771251 | Kringlebotn et al. | Jun 1998 | A |
5776694 | Sheiness et al. | Jul 1998 | A |
5793502 | Bianco et al. | Aug 1998 | A |
5798273 | Shuler et al. | Aug 1998 | A |
5799231 | Gates et al. | Aug 1998 | A |
5801857 | Heckenkamp et al. | Sep 1998 | A |
5804384 | Muller et al. | Sep 1998 | A |
5812272 | King et al. | Sep 1998 | A |
5824472 | Betlach et al. | Oct 1998 | A |
5824478 | Muller | Oct 1998 | A |
5824557 | Burke et al. | Oct 1998 | A |
5830622 | Canning et al. | Nov 1998 | A |
5831698 | Depp et al. | Nov 1998 | A |
5837475 | Dorsel et al. | Nov 1998 | A |
5837552 | Cotton et al. | Nov 1998 | A |
5841555 | Bianco et al. | Nov 1998 | A |
5846737 | Kang | Dec 1998 | A |
5874187 | Colvin et al. | Feb 1999 | A |
5881197 | Dong et al. | Mar 1999 | A |
5895750 | Mushahwar et al. | Apr 1999 | A |
5922550 | Everhart et al. | Jul 1999 | A |
5922617 | Wang et al. | Jul 1999 | A |
5925562 | Nova et al. | Jul 1999 | A |
5925878 | Challener | Jul 1999 | A |
5945679 | Dorsel et al. | Aug 1999 | A |
5972542 | Starodubov | Oct 1999 | A |
5976896 | Kumar et al. | Nov 1999 | A |
5981166 | Mandecki | Nov 1999 | A |
5986838 | Thomas, III | Nov 1999 | A |
5989923 | Lowe et al. | Nov 1999 | A |
5992742 | Sullivan | Nov 1999 | A |
5998796 | Liu et al. | Dec 1999 | A |
6001510 | Meng et al. | Dec 1999 | A |
6005691 | Grot et al. | Dec 1999 | A |
6017754 | Chesnut et al. | Jan 2000 | A |
6025129 | Nova et al. | Feb 2000 | A |
6025283 | Roberts | Feb 2000 | A |
6027694 | Boulton et al. | Feb 2000 | A |
6030581 | Virtanen | Feb 2000 | A |
6035082 | Murphy et al. | Mar 2000 | A |
6036807 | Brongers | Mar 2000 | A |
6043880 | Andrews et al. | Mar 2000 | A |
6046925 | Tsien et al. | Apr 2000 | A |
6049727 | Crothall | Apr 2000 | A |
6057107 | Fulton | May 2000 | A |
6060256 | Everhart et al. | May 2000 | A |
6067167 | Atkinson et al. | May 2000 | A |
6067392 | Wakami et al. | May 2000 | A |
6078048 | Stevens et al. | Jun 2000 | A |
6084995 | Clements et al. | Jul 2000 | A |
6087186 | Cargill et al. | Jul 2000 | A |
6096496 | Frankel | Aug 2000 | A |
6096596 | Gonzalez | Aug 2000 | A |
6097485 | Lievan | Aug 2000 | A |
6103535 | Pilevar et al. | Aug 2000 | A |
6118127 | Liu et al. | Sep 2000 | A |
6128077 | Jovin et al. | Oct 2000 | A |
6137931 | Ishikawa et al. | Oct 2000 | A |
6143247 | Sheppard, Jr. et al. | Nov 2000 | A |
6156501 | McGall et al. | Dec 2000 | A |
6159748 | Hechinger | Dec 2000 | A |
6160240 | Momma et al. | Dec 2000 | A |
6160656 | Mossberg et al. | Dec 2000 | A |
6164548 | Curiel | Dec 2000 | A |
6165592 | Berger et al. | Dec 2000 | A |
6165648 | Colvin et al. | Dec 2000 | A |
6174648 | Terao et al. | Jan 2001 | B1 |
6194563 | Cruickshank | Feb 2001 | B1 |
6204969 | Jang | Mar 2001 | B1 |
6214560 | Yguerabide et al. | Apr 2001 | B1 |
6218194 | Lyndin et al. | Apr 2001 | B1 |
6221579 | Everhart et al. | Apr 2001 | B1 |
6229635 | Wulf | May 2001 | B1 |
6229827 | Fernald et al. | May 2001 | B1 |
6229941 | Yoon et al. | May 2001 | B1 |
6242056 | Spencer et al. | Jun 2001 | B1 |
6259450 | Chiabrera et al. | Jul 2001 | B1 |
6268128 | Collins et al. | Jul 2001 | B1 |
6277628 | Johann et al. | Aug 2001 | B1 |
6284459 | Nova et al. | Sep 2001 | B1 |
6285806 | Kersey et al. | Sep 2001 | B1 |
6288220 | Kambara et al. | Sep 2001 | B1 |
6292282 | Mossberg et al. | Sep 2001 | B1 |
6292319 | Thomas, III | Sep 2001 | B1 |
6301047 | Hoshino et al. | Oct 2001 | B1 |
6304263 | Chiabrera et al. | Oct 2001 | B1 |
6306587 | Royer et al. | Oct 2001 | B1 |
6309601 | Juncosa et al. | Oct 2001 | B1 |
6312961 | Voirin et al. | Nov 2001 | B1 |
6313771 | Munroe et al. | Nov 2001 | B1 |
6314220 | Mossberg et al. | Nov 2001 | B1 |
6319668 | Nova et al. | Nov 2001 | B1 |
6321007 | Sanders | Nov 2001 | B1 |
6322932 | Colvin et al. | Nov 2001 | B1 |
RE37473 | Challener | Dec 2001 | E |
6329963 | Chiabrera et al. | Dec 2001 | B1 |
6331273 | Nova et al. | Dec 2001 | B1 |
6340588 | Nova et al. | Jan 2002 | B1 |
6352854 | Nova et al. | Mar 2002 | B1 |
6355198 | Kim et al. | Mar 2002 | B1 |
6355432 | Fodor et al. | Mar 2002 | B1 |
6356681 | Chen et al. | Mar 2002 | B1 |
6359734 | Staub et al. | Mar 2002 | B1 |
6361958 | Shieh et al. | Mar 2002 | B1 |
6363097 | Linke et al. | Mar 2002 | B1 |
6371370 | Sadler et al. | Apr 2002 | B2 |
6372428 | Nova et al. | Apr 2002 | B1 |
6383754 | Kaufman et al. | May 2002 | B1 |
6391562 | Kambara et al. | May 2002 | B2 |
6395558 | Duveneck et al. | May 2002 | B1 |
6399295 | Kaylor et al. | Jun 2002 | B1 |
6399935 | Jovin et al. | Jun 2002 | B1 |
6403320 | Read et al. | Jun 2002 | B1 |
6406841 | Lee et al. | Jun 2002 | B1 |
6406848 | Bridgham et al. | Jun 2002 | B1 |
6416714 | Nova et al. | Jul 2002 | B1 |
6416952 | Pirrung et al. | Jul 2002 | B1 |
6417010 | Cargill et al. | Jul 2002 | B1 |
6424056 | Irvin | Jul 2002 | B1 |
6428707 | Berg et al. | Aug 2002 | B1 |
6428957 | Delenstarr | Aug 2002 | B1 |
6429022 | Kunz et al. | Aug 2002 | B1 |
6433849 | Lowe | Aug 2002 | B1 |
6436651 | Everhart et al. | Aug 2002 | B1 |
6440667 | Fodor et al. | Aug 2002 | B1 |
6456762 | Nishiki et al. | Sep 2002 | B1 |
RE37891 | Collins et al. | Oct 2002 | E |
6462770 | Cline et al. | Oct 2002 | B1 |
6489606 | Kersey et al. | Dec 2002 | B1 |
6496287 | Seiberle et al. | Dec 2002 | B1 |
6506342 | Frankel | Jan 2003 | B1 |
6514767 | Natan | Feb 2003 | B1 |
6515753 | Maher et al. | Feb 2003 | B2 |
6522406 | Rovira et al. | Feb 2003 | B1 |
6524793 | Chandler et al. | Feb 2003 | B1 |
6533183 | Aasmul et al. | Mar 2003 | B2 |
6542673 | Holter et al. | Apr 2003 | B1 |
6544739 | Fodor et al. | Apr 2003 | B1 |
6545758 | Sandstrom | Apr 2003 | B1 |
6560017 | Bianco | May 2003 | B1 |
6565770 | Mayer et al. | May 2003 | B1 |
6576424 | Fodor et al. | Jun 2003 | B2 |
6578712 | Lawandy | Jun 2003 | B2 |
6592036 | Sadler et al. | Jul 2003 | B2 |
6594421 | Johnson et al. | Jul 2003 | B1 |
6609728 | Voerman et al. | Aug 2003 | B1 |
6613581 | Wada et al. | Sep 2003 | B1 |
6618342 | Johnson et al. | Sep 2003 | B1 |
6622916 | Bianco | Sep 2003 | B1 |
6628439 | Shiozawa et al. | Sep 2003 | B2 |
6632655 | Mehta et al. | Oct 2003 | B1 |
6635470 | Vann | Oct 2003 | B1 |
6635863 | Nihommori et al. | Oct 2003 | B1 |
6646243 | Pirrung et al. | Nov 2003 | B2 |
6657758 | Garner | Dec 2003 | B1 |
6660147 | Woudenberg et al. | Dec 2003 | B1 |
6678429 | Mossberg et al. | Jan 2004 | B2 |
RE38430 | Rosenstein | Feb 2004 | E |
6689316 | Blyth et al. | Feb 2004 | B1 |
6692031 | McGrew | Feb 2004 | B2 |
6692912 | Boles et al. | Feb 2004 | B1 |
6794658 | MacAulay | Sep 2004 | B2 |
6806954 | Sandstrom | Oct 2004 | B2 |
6858184 | Pelrine | Feb 2005 | B2 |
6874639 | Lawandy | Apr 2005 | B2 |
6881789 | Bossé | Apr 2005 | B2 |
6892001 | Ohta et al. | May 2005 | B2 |
6905885 | Colston et al. | Jun 2005 | B2 |
6908737 | Ravkin et al. | Jun 2005 | B2 |
6919009 | Stonas | Jul 2005 | B2 |
6982996 | Putnam et al. | Jan 2006 | B1 |
7045049 | Natan | May 2006 | B1 |
7065032 | Horimai | Jun 2006 | B2 |
7092160 | Putnam et al. | Aug 2006 | B2 |
7106513 | Moon et al. | Sep 2006 | B2 |
7126755 | Moon et al. | Oct 2006 | B2 |
7215628 | Horimai | May 2007 | B2 |
7225082 | Natan | May 2007 | B1 |
7321541 | Horimai | Jan 2008 | B2 |
7339148 | Kawano | Mar 2008 | B2 |
7349158 | Moon | Mar 2008 | B2 |
20010007775 | Seul et al. | Jul 2001 | A1 |
20020000471 | Aasmul et al. | Jan 2002 | A1 |
20020006664 | Sabatini | Jan 2002 | A1 |
20020018430 | Heckenkamp et al. | Feb 2002 | A1 |
20020022273 | Empedocles et al. | Feb 2002 | A1 |
20020025534 | Goh et al. | Feb 2002 | A1 |
20020031783 | Empedocles | Mar 2002 | A1 |
20020034747 | Bruchez et al. | Mar 2002 | A1 |
20020039732 | Bruchez et al. | Apr 2002 | A1 |
20020074513 | Abel et al. | Jun 2002 | A1 |
20020084329 | Kaye et al. | Jul 2002 | A1 |
20020090650 | Empedocles et al. | Jul 2002 | A1 |
20020094528 | Salafsky | Jul 2002 | A1 |
20020097658 | Worthington et al. | Jul 2002 | A1 |
20020155490 | Skinner et al. | Oct 2002 | A1 |
20020174918 | Fujimura et al. | Nov 2002 | A1 |
20020197456 | Pope | Dec 2002 | A1 |
20030008323 | Ravkin et al. | Jan 2003 | A1 |
20030021003 | Ono et al. | Jan 2003 | A1 |
20030032203 | Sabatini et al. | Feb 2003 | A1 |
20030077038 | Murashima et al. | Apr 2003 | A1 |
20030082568 | Phan | May 2003 | A1 |
20030082587 | Seul et al. | May 2003 | A1 |
20030129654 | Ravkin et al. | Jul 2003 | A1 |
20030138208 | Pawlak et al. | Jul 2003 | A1 |
20030142704 | Lawandy | Jul 2003 | A1 |
20030142713 | Lawandy | Jul 2003 | A1 |
20030153006 | Washizu et al. | Aug 2003 | A1 |
20030162296 | Lawandy | Aug 2003 | A1 |
20030184730 | Price | Oct 2003 | A1 |
20030203390 | Kaye et al. | Oct 2003 | A1 |
20030228610 | Seul | Dec 2003 | A1 |
20040027968 | Horimai | Feb 2004 | A1 |
20040047030 | MacAuley | Mar 2004 | A1 |
20040062178 | Horimai | Apr 2004 | A1 |
20040075907 | Moon et al. | Apr 2004 | A1 |
20040100636 | Somekh et al. | May 2004 | A1 |
20040100892 | Horimai | May 2004 | A1 |
20040125370 | Montagu | Jul 2004 | A1 |
20040125424 | Moon et al. | Jul 2004 | A1 |
20040126875 | Putnam et al. | Jul 2004 | A1 |
20040132205 | Moon et al. | Jul 2004 | A1 |
20040156471 | Sakata | Aug 2004 | A1 |
20040170356 | Iazikov et al. | Sep 2004 | A1 |
20040175842 | Roitman et al. | Sep 2004 | A1 |
20040209376 | Natan et al. | Oct 2004 | A1 |
20040233485 | Moon et al. | Nov 2004 | A1 |
20040263923 | Moon et al. | Dec 2004 | A1 |
20050042764 | Sailor et al. | Feb 2005 | A1 |
20050220408 | Putnam | Oct 2005 | A1 |
20050227252 | Moon et al. | Oct 2005 | A1 |
20050270603 | Putnam et al. | Dec 2005 | A1 |
20060023310 | Putnam et al. | Feb 2006 | A1 |
20060028727 | Moon et al. | Feb 2006 | A1 |
20060050544 | Horimai | Mar 2006 | A1 |
20060057729 | Moon et al. | Mar 2006 | A1 |
20060063271 | Putnam et al. | Mar 2006 | A1 |
20060067179 | Matsumoto et al. | Mar 2006 | A1 |
20060071075 | Moon et al. | Apr 2006 | A1 |
20060072177 | Putnam et al. | Apr 2006 | A1 |
20060118630 | Kersey et al. | Jun 2006 | A1 |
20060119913 | Moon | Jun 2006 | A1 |
20060132877 | Kersey | Jun 2006 | A1 |
20060134324 | Putnam et al. | Jun 2006 | A1 |
20060139635 | Kersey et al. | Jun 2006 | A1 |
20060140074 | Horimai | Jun 2006 | A1 |
20060160208 | Putnam et al. | Jul 2006 | A1 |
20070121181 | Moon et al. | May 2007 | A1 |
20080170664 | Kalman | Jul 2008 | A1 |
20080192311 | Horimai | Aug 2008 | A1 |
20090040885 | Horimai | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
598661 | May 1978 | CH |
2416652 | Oct 1975 | DE |
0 395 300 | Oct 1990 | EP |
0 485 803 | May 1992 | EP |
0 508 257 | Oct 1992 | EP |
0 723 149 | Jul 1996 | EP |
0 798 573 | Oct 1997 | EP |
0 911 667 | Apr 1999 | EP |
0 916 981 | May 1999 | EP |
0 972 817 | Jan 2000 | EP |
1 182 054 | Feb 2002 | EP |
1 219 979 | Jul 2002 | EP |
2 118 189 | Oct 1983 | GB |
2 129 551 | May 1984 | GB |
2 138 821 | Oct 1984 | GB |
2 299 235 | Sep 1996 | GB |
2 306 484 | May 1997 | GB |
2306484 | May 1997 | GB |
2 319 838 | Jun 1998 | GB |
2 372 100 | Aug 2002 | GB |
58143254 | Aug 1983 | JP |
08102544 | Apr 1986 | JP |
01047950 | Feb 1989 | JP |
101660705 | Jun 1998 | JP |
11-119029 | Apr 1999 | JP |
2000-035521 | Feb 2000 | JP |
00249706 | Sep 2000 | JP |
200300467 | Jan 2003 | JP |
WO 9106496 | May 1991 | WO |
WO 9309668 | May 1993 | WO |
WO 9428119 | Dec 1994 | WO |
WO 9624061 | Aug 1996 | WO |
WO 9636436 | Nov 1996 | WO |
WO 9712680 | Apr 1997 | WO |
WO 9715690 | May 1997 | WO |
WO 9717258 | May 1997 | WO |
WO 9731282 | Aug 1997 | WO |
WO 9734171 | Sep 1997 | WO |
WO 9804740 | Feb 1998 | WO |
WO 9824549 | Jun 1998 | WO |
WO 9902266 | Jan 1999 | WO |
WO 9909042 | Feb 1999 | WO |
WO 9932654 | Jul 1999 | WO |
WO 9942209 | Aug 1999 | WO |
WO 0008443 | Feb 2000 | WO |
WO 0016893 | Mar 2000 | WO |
WO 0037914 | Jun 2000 | WO |
WO-0037914 | Jun 2000 | WO |
WO 0037969 | Jun 2000 | WO |
WO-0037969 | Jun 2000 | WO |
WO 0039617 | Jul 2000 | WO |
WO 0061198 | Oct 2000 | WO |
WO 0158583 | Aug 2001 | WO |
WO 0171322 | Sep 2001 | WO |
WO-0178889 | Oct 2001 | WO |
WO 0178889 | Oct 2001 | WO |
WO 0190225 | Nov 2001 | WO |
WO 02059306 | Aug 2002 | WO |
WO-0259306 | Aug 2002 | WO |
WO 02059603 | Aug 2002 | WO |
WO02064829 | Aug 2002 | WO |
WO 03061983 | Jul 2003 | WO |
WO03091731 | Nov 2003 | WO |
WO2004011940 | Feb 2004 | WO |
WO2004015418 | Feb 2004 | WO |
WO 2004019276 | Mar 2004 | WO |
WO 2004024328 | Mar 2004 | WO |
WO 2004025561 | Mar 2004 | WO |
WO 2004025562 | Mar 2004 | WO |
WO 2004025563 | Mar 2004 | WO |
WO2004046697 | Jun 2004 | WO |
WO 2004066210 | Aug 2004 | WO |
WO 2005026729 | Mar 2005 | WO |
WO 2005027031 | Mar 2005 | WO |
WO 2005029047 | Mar 2005 | WO |
WO 2005033681 | Apr 2005 | WO |
WO 2005050207 | Jun 2005 | WO |
WO 2005079544 | Sep 2005 | WO |
WO 2006020363 | Feb 2006 | WO |
WO 2006055735 | May 2006 | WO |
WO 2006055736 | May 2006 | WO |
WO 2006076053 | Jul 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060118630 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
60628827 | Nov 2004 | US |