This application claims priority to Korean Patent application no. 10-2012-0072381 filed Jul. 3, 2012, which is hereby incorporated by reference.
1. Field
The present disclosure relates to a home appliance for outputting diagnosis data as a signal sound and a method of outputting such a signal sound.
2. Description of the Related Art
Typically, a user contacts a service center when a home appliance breaks down and a technician personally visits the user for repair. However, such a personal visit by a technician causes excessive costs and also, without prior information on the home appliance, it is difficult to repair the home appliance effectively. Later, with the development of technology, a telephone network is used to remotely diagnose failure information.
Moreover, European patent application no. EP0510519 discloses a technique that sending failure information on a home appliance to a service center via a telephone network with a modem connected to the home appliance. However, in this case, there is a problem that the modem needs to be always connected the home appliance. Especially, since a home appliance such as a laundry washing machine is generally installed outdoors, there is difficulty connecting the laundry washing machine to a telephone network.
U.S. Pat. No. 5,987,105 discloses a method of controlling a home appliance that converts information on the operation of a home appliance into a sound signal and outputs it through a telephone network. Such a control method sends a sound signal outputted from a home appliance to a service center through a user's phone. In terms of the structure of the data packets constituting the sound signal, the information to be transmitted into a plurality of packets for output. One packet is configured with a 2.97 sec duration, and when one packet is outputted, the next packet is outputted 730 ms later. Accordingly, outputting all the information to be transmitted takes more than 3 sec.
A portable terminal such as a mobile phone or smart phone provides a noise canceling function. When a signal having a predetermined frequency is continuously detected for a predetermined time (about 3 sec), such a noise canceling function recognizes the signal as noise. Furthermore, the signal sound intensity is drastically reduced or distorted by a communication environment when the signal sound is inputted to a portable terminal, as disclosed in U.S. Pat. No. 5,987,105. Even when an idle period (for example, 730 ms) is set between packets (each length configured with less than 3 sec), the signal may still be recognized as noise. For reference, U.S. Pat. No. 5,987,105 provides no suggestion or recognition of the noise canceling function of a portable terminal, let alone a method of evading the above issue.
Aspects of an invention are defined in the appended independent claims.
The foregoing and other objects, features, aspects and advantages of a device and method in accordance with the present disclosure will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The accompanying drawings, which are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and together with the description serve to explain the principles of the disclosure.
In the drawings:
While specific terms are used, they are not used to limit the meaning or the scope of the present disclosure described in Claims, but merely used to explain the present disclosure. Accordingly, a person having ordinary skill in the art will understand from the above that various modifications and other equivalent embodiments are also possible. The invention is not restricted to the described embodiments but extends to the full scope of the accompanying Claims. Like reference numerals refer to like elements throughout.
Referring to
Moreover, a user, who recognizes an abnormality of a home appliance through an alarm sound outputted from the sound output unit 181, may call a service center to describe an abnormal symptom of the home appliance and may inquire about a corresponding solution or request a repair. Of course, regardless of an output of the sound output unit 181, a user may directly recognize an abnormal operation of the home appliance 100, and may contact a service center in some cases in operation S12.
While a call is connected to a service center, a service center agent may file the complaint of the user, and may attempt to give a corresponding solution. In some cases, specific information on a symptom of a home appliance is required.
The agent explains to a user a method of outputting diagnosis data as sound in operation S13. According to the explanation, a user may put the communication terminal 230 close to the sound output unit 181, and then, may manipulates a user input means, equipped in a control panel of the home appliance 100, in order to output a predetermined sound including the diagnosis data through the sound output unit 181. Herein, the diagnosis data may include identification information for identifying the type of the home appliance 100, information on a current driving state or recent driving state of the home appliance 100 (hereinafter, referred to as driving information), setting values set according to a user's manipulation or a running pre-stored algorithm (hereinafter, referred to as setting information), and information stored when a failure or abnormal operation of the home appliance 100 is detected according to a self-diagnosis algorithm (hereinafter, referred to as failure information).
The sound signal including the diagnosis data outputted through the sound output unit 181 may be transmitted to a service center via a communication network in operation S14. The service center may include a management device 290 for receiving the signal sound transmitted via the communication network. The management device 290 may reversely extract the diagnosis data from the signal sound transmitted via the communication network, and may diagnose the home appliance 100 on the basis of the extracted information.
Using the 3G and 4G communication methods, the inventors have found that when the diagnosis data is modulated and transmitted using a carrier frequency in a such a frequency band, due to signal attenuation or distortion occurring during the transmission via the communication network, a reception side that receives the diagnosis data may not accurately extract the diagnosis data. The present disclosure provides a more accurate method of transmitting diagnosis data under 3G and 4G environments, and this will be described in more detail later. In a further advantageous embodiment, the inventors have found that owing to 3G and 4G generation mobile telecommunications suitable for the use of smartphones, the carrier frequencies used for transmitting signals in accordance with the present disclosure are advantageously less than 2 kHz.
Moreover, as is well known, the 3G mobile communication refers to the standard of a mobile phone and a mobile communication, which satisfies the requirements from International Mobile Telecommunications-2000 (IMT-2000) of International Telecommunication Union. The 4G mobile communication succeeds the 3G mobile communication and provides more improved mobile communication environment.
The management device 290, which receives a sound signal including the diagnosis data via a communication network, may again extract the diagnosis data from the signal sound through a reverse conversion process on the signal, and based on this, may diagnose the home appliance 100 through a predetermined diagnosis algorithm.
However, according to an embodiment, the home appliance 100 may run a self-diagnosis algorithm in order to perform a diagnosis, and then, may output its result in the signal sound. In this case, the diagnosis data may include a result generated through a diagnosis algorithm, that is, a diagnosis result.
In either case, the side including the management device 290, for example, the service center, may provide appropriate service to a user on the basis of the diagnosis result, and may dispatch a service man 93 to the home, if necessary in operation S16. Referring to
The home appliance 100 may include a manipulation unit 150 for receiving from a user a control command various kinds of information for operation of the home appliance 100, and a diagnosis selection unit 160 for selecting a diagnosis run command. The manipulation unit 150 and the diagnosis selection unit 160 may be separately provided, but according to an embodiment, if an input method of a specific key among manipulation keys such as buttons and dials constituting the manipulation unit 150 is used (for example, when the input length of the power button is more than a predetermined time), the power button may serve as the diagnosis selection unit 160 (as opposed to turning on/off the home appliance 100). Therefore, providing the relatively less used diagnosis selection 160. As another example, when a predetermined pattern is inputted according to the input order of specific keys, this may serve as the diagnosis selection unit 160, which is not the basic function of each key. That is, various embodiments may be possible.
Once a diagnosis command is inputted through the diagnosis selection unit 160, the controller 170 may run the diagnosis algorithm stored in the storage unit 140, on the basis of the diagnosis data stored in the memory 141 or the data called from the memory 141 in order to constitute a packet of an application layer through a predetermined data processing process by using the diagnosis data generated from the diagnosis algorithm, and then, may perform a modulation process through a control of the conversion unit 180 in order to constitute a frame of a physical layer including a combination of symbols corresponding to a carrier frequency. A progressing state of such a process may be displayed through the display unit 118, and the display unit 118 may be implemented with a visual display means such as an LCD and LED, which is typically provided to the control panel in order to display an operational state of the home appliance 100.
Here, the memory 141 may be a recording medium for temporarily storing diagnosis data, and may include RAM, FLASH MEMORY, EDORAM, magnetic recording medium, and recording/deleting possible optical recording medium, regardless of volatile or nonvolatile properties. The storage unit 140 may be a recording medium for storing a diagnosis algorithm, and may be nonvolatile recording medium for retaining recorded data, regardless of power supply of the home appliance 100.
The conversion unit 180 may configure a frame corresponding to the packet generated by the controller 170, and the frame may include symbols corresponding to carrier frequencies constituting the signal sound outputted from the sound output unit 181. According to this embodiment, a frequency signal may be generated from diagnosis data through a quadrature frequency shift Keying QFSK, method. Accordingly, a frequency signal generated by the conversion unit 180 includes a combination of four different carrier frequencies.
The sound output unit 181 may output a signal sound according to the frequency signal, and may be implemented with a buzzer or a speaker. The sound output unit 181 may be a buzzer for outputting four carrier frequencies which are separately distinguished, advantageously, in a frequency band of less than 2 kHz.
Referring to
In the QFSK method, 2 bit data may correspond to one carrier frequency. Hereinafter, the case of modulating data using for different carrier frequencies of f11, f12, f13, and f14 will be described as one example. At this point, a carrier frequency corresponding to data ‘00’ is referred to as f11201, a carrier frequency corresponding to data ‘01’ is referred to as f12202, a carrier frequency corresponding to data ‘10’ is referred to as f13203, and a carrier frequency corresponding to data ‘11’ is referred to as f14204.
Here, f11, f12, f13 and f14 may be frequency signals having different values and may have values of less than 2 kHz. Each frequency value may have one of frequency values constituting a scale.
Frequency values constituting a scale are widely known. For example, f11, f12, f13 and f14 may be 1396 hz, 1567 hz, 1760 hz, and 1975 hz, respectively. Such values may have F, G, A, B of six octaves based on 12 scales, but are not limited thereto. Here, carrier frequencies are taken not to be adjacent scales, and this is for providing a difference in frequency values in order to clearly distinguish each carrier frequency.
Since carrier frequencies have values constituting a scale, a signal sound outputted through the sound output unit 181 may satisfy the emotional aspect of a user, and since there is enough difference between the values, frequencies may be clearly distinguished, and also, a communication success rate may be improved.
Referring to
Referring to
Typically, a packet may be divided into several frames and a signal sound may be outputted through a method of putting an Inter Frame Space (IFS) between frames. However, such a method may need to detect a preamble (that is, a pattern signal representing the start of each frame) when a signal sound is received and processed, and even if a signal sound is accurately outputted within a predetermined symbol time according to a communication environment, a delay may occur at the reception side that receives the signal sound. In this case, accuracy in detecting a preamble is deteriorated. In a home appliance according to an embodiment, since an entire signal sound is outputted completely in one frame, a single preamble search may be enough. Therefore, the typical limitations may be resolved.
Referring to
In more detail, the controller 170 or Micom may add the FCS on diagnosis data. The FCS may be added data for performing an error detection process (for example, a CRC-8 method) in order to identify whether a frame is correctly transmitted.
Then, the controller 170 may encode the diagnosis data having the FCS added. Such an encoding method may vary, and thus, may include a 1/2 Convolution Encoding method, for example. Especially, the 1/2 Convolution Encoding method may be used in a forward error correction (FEC) method for recovering a symbol error, and in order to restore a bit error, may use a convolutional code through the FEC method.
The encoding may be based on a 1/2 code rate (i.e. one bit is inputted and two bits are outputted). At this point, since the 1/2 code rate requires a lot of redundant bits, a puncturing algorithm may be used in order to reduce the number of redundant bits. Additionally, the tail symbol may be an additional symbol generated during a convolutional encoding process.
The interleaving may be a technique for mixing the order of symbols and transmitting them, which is used when continuous errors occur during signal sound transmission. The interleaving process may interleave the sections of the payload (refer to
Moreover, the signal sound outputted according to the configured frame through the home appliance may be transmitted to the management device 290 through the input from the external terminal 230 and a communication network. Then, the management device 290 may detect the preamble according to a pre-agreed protocol, and may obtain the diagnosis data (i.e. payload) through deinterleaving, tail symbol detecting, decoding, and FCS detection processes.
Especially, the decoding may use a Viterbi decoding algorithm, which is easily executed on PC-based software, and such an algorithm may be advantageous to reduce errors in a way of selecting bit patterns having less error from all expectable bit patterns.
Referring to
Although the preferred embodiments have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the disclosure as disclosed in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2012-0072381 | Jul 2012 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
3910322 | Hardesty et al. | Oct 1975 | A |
4146754 | Rose | Mar 1979 | A |
4241337 | Prada | Dec 1980 | A |
4766505 | Nakano et al. | Aug 1988 | A |
4797656 | Keppler | Jan 1989 | A |
4897659 | Mellon | Jan 1990 | A |
4897857 | Wakatsuki et al. | Jan 1990 | A |
4916439 | Estes et al. | Apr 1990 | A |
4977394 | Manson et al. | Dec 1990 | A |
5103214 | Curran et al. | Apr 1992 | A |
5210784 | Wang et al. | May 1993 | A |
5268666 | Michel et al. | Dec 1993 | A |
5287084 | Sone | Feb 1994 | A |
5452344 | Larson | Sep 1995 | A |
5506892 | Kojima et al. | Apr 1996 | A |
5586174 | Bogner et al. | Dec 1996 | A |
5664218 | Kim et al. | Sep 1997 | A |
5757643 | Kuroda et al. | May 1998 | A |
5774529 | Johannsen et al. | Jun 1998 | A |
5787724 | Pohl | Aug 1998 | A |
5864828 | Atkins | Jan 1999 | A |
5939992 | Devries et al. | Aug 1999 | A |
5940915 | Nam | Aug 1999 | A |
5987105 | Jenkins et al. | Nov 1999 | A |
6121593 | Mansbery et al. | Sep 2000 | A |
6157313 | Emmermann | Dec 2000 | A |
6370890 | Roh | Apr 2002 | B2 |
6424252 | Adler | Jul 2002 | B1 |
6727814 | Saltzstein et al. | Apr 2004 | B2 |
6759954 | Myron et al. | Jul 2004 | B1 |
6763458 | Watanabe et al. | Jul 2004 | B1 |
6778868 | Imamura et al. | Aug 2004 | B2 |
6784801 | Watanabe et al. | Aug 2004 | B2 |
6870480 | Suzuki et al. | Mar 2005 | B2 |
6873255 | Gallagher | Mar 2005 | B2 |
6906617 | Van der Meulen | Jun 2005 | B1 |
7010612 | Si et al. | Mar 2006 | B1 |
7135982 | Lee | Nov 2006 | B2 |
7174264 | Yasukawa et al. | Feb 2007 | B2 |
7208916 | Boatwright | Apr 2007 | B1 |
7243174 | Sheahan et al. | Jul 2007 | B2 |
7266164 | Jeon et al. | Sep 2007 | B2 |
7280643 | Howard et al. | Oct 2007 | B2 |
7337457 | Pack et al. | Feb 2008 | B2 |
7363031 | Aisa | Apr 2008 | B1 |
7383644 | Lyu et al. | Jun 2008 | B2 |
7439439 | Hayes et al. | Oct 2008 | B2 |
7509824 | Park et al. | Mar 2009 | B2 |
7558700 | Yamashita et al. | Jul 2009 | B2 |
7574269 | Cenedese et al. | Aug 2009 | B2 |
7631063 | Ho et al. | Dec 2009 | B1 |
7648476 | Bock et al. | Jan 2010 | B2 |
7653512 | Cheung et al. | Jan 2010 | B2 |
7750227 | Hayes et al. | Jul 2010 | B2 |
7843819 | Benveniste | Nov 2010 | B1 |
7965632 | Sugaya | Jun 2011 | B2 |
8027752 | Castaldo et al. | Sep 2011 | B2 |
8040234 | Ebrom et al. | Oct 2011 | B2 |
8045636 | Lee et al. | Oct 2011 | B1 |
8132049 | Yasukawa et al. | Mar 2012 | B2 |
8204189 | Rhodes et al. | Jun 2012 | B2 |
8325054 | Kim et al. | Dec 2012 | B2 |
8346508 | Kim et al. | Jan 2013 | B2 |
8391255 | Ribiere et al. | Mar 2013 | B2 |
8428910 | Papadimitriou et al. | Apr 2013 | B2 |
8739057 | Cheong | May 2014 | B2 |
20020029575 | Okamoto | Mar 2002 | A1 |
20020032491 | Imamura et al. | Mar 2002 | A1 |
20020078742 | Kim | Jun 2002 | A1 |
20020097161 | Deeds | Jul 2002 | A1 |
20020116959 | Ohta et al. | Aug 2002 | A1 |
20020120728 | Braatz et al. | Aug 2002 | A1 |
20030000240 | Pahl | Jan 2003 | A1 |
20030028345 | Watkins et al. | Feb 2003 | A1 |
20030058101 | Watanabe et al. | Mar 2003 | A1 |
20030110363 | Bachot et al. | Jun 2003 | A1 |
20030128850 | Kimura et al. | Jul 2003 | A1 |
20030144010 | Dollinger | Jul 2003 | A1 |
20030167782 | Roh et al. | Sep 2003 | A1 |
20030196492 | Remboski et al. | Oct 2003 | A1 |
20040032853 | D'Amico et al. | Feb 2004 | A1 |
20040132444 | Herrmann | Jul 2004 | A1 |
20040158333 | Ha et al. | Aug 2004 | A1 |
20040211228 | Nishio et al. | Oct 2004 | A1 |
20040249903 | Ha et al. | Dec 2004 | A1 |
20040261468 | Lueckenbach | Dec 2004 | A1 |
20050015890 | Kim et al. | Jan 2005 | A1 |
20050028034 | Gantman et al. | Feb 2005 | A1 |
20050029976 | Terry et al. | Feb 2005 | A1 |
20050062600 | Olsen | Mar 2005 | A1 |
20050086979 | Son et al. | Apr 2005 | A1 |
20050129200 | Forrest et al. | Jun 2005 | A1 |
20050134472 | Jang et al. | Jun 2005 | A1 |
20050162909 | Wooldridge | Jul 2005 | A1 |
20050222859 | Ha | Oct 2005 | A1 |
20060048405 | Baek et al. | Mar 2006 | A1 |
20060066758 | Higashihara | Mar 2006 | A1 |
20060089818 | Norell et al. | Apr 2006 | A1 |
20060136544 | Atsmon et al. | Jun 2006 | A1 |
20060168740 | Ha et al. | Aug 2006 | A1 |
20060259199 | Gjerde et al. | Nov 2006 | A1 |
20070097622 | Leech | May 2007 | A1 |
20070113595 | Harwood et al. | May 2007 | A1 |
20070114293 | Gugenheim | May 2007 | A1 |
20070137265 | Shikamori et al. | Jun 2007 | A1 |
20070175883 | Miu et al. | Aug 2007 | A1 |
20070189323 | Swoboda et al. | Aug 2007 | A1 |
20070219756 | Frankel et al. | Sep 2007 | A1 |
20070254604 | Kim | Nov 2007 | A1 |
20070272286 | Curtius et al. | Nov 2007 | A1 |
20080007520 | Lee | Jan 2008 | A1 |
20080036619 | Rhodes et al. | Feb 2008 | A1 |
20080037011 | Rookie | Feb 2008 | A1 |
20080072383 | Bextermoller et al. | Mar 2008 | A1 |
20080122648 | Ebrom et al. | May 2008 | A1 |
20080181058 | Hayakawa | Jul 2008 | A1 |
20090036778 | Cohen et al. | Feb 2009 | A1 |
20090067102 | Cline et al. | Mar 2009 | A1 |
20090077167 | Baum | Mar 2009 | A1 |
20090160637 | Maeng | Jun 2009 | A1 |
20090165471 | Rafalovich | Jul 2009 | A1 |
20090165475 | Wasserman | Jul 2009 | A1 |
20090169434 | Ogusu | Jul 2009 | A1 |
20090217682 | Son | Sep 2009 | A1 |
20090248245 | Sumiya | Oct 2009 | A1 |
20090257354 | Hannel | Oct 2009 | A1 |
20090282308 | Gutsche et al. | Nov 2009 | A1 |
20090289536 | Park | Nov 2009 | A1 |
20090323913 | Lee et al. | Dec 2009 | A1 |
20090323914 | Lee et al. | Dec 2009 | A1 |
20100023938 | Lee et al. | Jan 2010 | A1 |
20100027770 | Park et al. | Feb 2010 | A1 |
20100037401 | Bae et al. | Feb 2010 | A1 |
20100040213 | Park | Feb 2010 | A1 |
20100116060 | Murayama | May 2010 | A1 |
20100262865 | Kim | Oct 2010 | A1 |
20100318324 | Kim et al. | Dec 2010 | A1 |
20110018729 | Kim et al. | Jan 2011 | A1 |
20110022358 | Han et al. | Jan 2011 | A1 |
20110054845 | Han et al. | Mar 2011 | A1 |
20110060553 | Han et al. | Mar 2011 | A1 |
20110074589 | Han | Mar 2011 | A1 |
20110200189 | True et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
2 722 912 | Nov 2009 | CA |
1212304 | Mar 1999 | CN |
1343862 | Apr 2002 | CN |
1393672 | Jan 2003 | CN |
1409886 | Apr 2003 | CN |
1424843 | Jun 2003 | CN |
1690685 | Nov 2005 | CN |
2797999 | Jul 2006 | CN |
101447119 | Jun 2009 | CN |
101680693 | Mar 2010 | CN |
102017519 | Apr 2011 | CN |
102017520 | Apr 2011 | CN |
102017593 | Apr 2011 | CN |
102388572 | Mar 2012 | CN |
102388574 | Mar 2012 | CN |
102498691 | Jun 2012 | CN |
102915004 | Feb 2013 | CN |
103053136 | Apr 2013 | CN |
0 038 687 | Oct 1981 | EP |
0 510 519 | Oct 1992 | EP |
0 617 557 | Sep 1994 | EP |
0 691 060 | Jan 1996 | EP |
0 742 308 | Nov 1996 | EP |
0 846 991 | Jun 1998 | EP |
0 851 054 | Jul 1998 | EP |
0 887 989 | Dec 1998 | EP |
1 186 694 | Mar 2002 | EP |
1 186 695 | Mar 2002 | EP |
2 180 648 | Apr 2010 | EP |
04-241563 | Aug 1992 | JP |
4-358497 | Dec 1992 | JP |
04-358497 | Dec 1992 | JP |
07-239176 | Sep 1995 | JP |
11-127254 | May 1999 | JP |
11-127254 | Nov 1999 | JP |
2001-345949 | Dec 2001 | JP |
2001-353395 | Dec 2001 | JP |
2002-000988 | Jan 2002 | JP |
2002-011274 | Jan 2002 | JP |
2002-031471 | Jan 2002 | JP |
2002-045590 | Feb 2002 | JP |
2002-85887 | Mar 2002 | JP |
2002-162149 | Jun 2002 | JP |
2002-279091 | Sep 2002 | JP |
2003-172578 | Jun 2003 | JP |
2004-085071 | Mar 2004 | JP |
2004-215125 | Jul 2004 | JP |
2005-061757 | Mar 2005 | JP |
2005-273943 | Oct 2005 | JP |
2007-267956 | Oct 2007 | JP |
2008-003562 | Jan 2008 | JP |
10-1991-0020404 | Dec 1991 | KR |
10-1996-0003308 | Jan 1996 | KR |
10-1997-0019443 | Apr 1997 | KR |
10-0127232 | Oct 1997 | KR |
10-0143209 | Aug 1998 | KR |
10-1999-020285 | Mar 1999 | KR |
20-1999-0040564 | Dec 1999 | KR |
20-0162050 | Dec 1999 | KR |
10-2000-0018678 | Apr 2000 | KR |
10-2001-0036913 | May 2001 | KR |
10-2001-0055394 | Jul 2001 | KR |
10-2002-0020831 | Mar 2002 | KR |
10-2002-0030426 | Apr 2002 | KR |
10-2002-0039959 | May 2002 | KR |
10-2003-0000189 | Jan 2003 | KR |
10-2004-0050767 | Jun 2004 | KR |
10-2004-0095017 | Nov 2004 | KR |
10-2005-0062747 | Jun 2005 | KR |
10-2005-0097282 | Oct 2005 | KR |
10-2006-0056973 | May 2006 | KR |
10-2006-0103014 | Sep 2006 | KR |
10-0641974 | Nov 2006 | KR |
10-2007-0013090 | Jan 2007 | KR |
10-2008-0068447 | Jul 2008 | KR |
10-0887575 | Mar 2009 | KR |
10-2009-0114309 | Nov 2009 | KR |
10-2009-0115066 | Nov 2009 | KR |
10-2009-0115078 | Nov 2009 | KR |
10-2010-0112950 | Oct 2010 | KR |
10-2011-0010375 | Feb 2011 | KR |
10-2011-0010378 | Feb 2011 | KR |
WO 0111575 | Feb 2001 | WO |
WO 0150669 | Jul 2001 | WO |
WO 2005106096 | Nov 2005 | WO |
WO 2008010670 | Jan 2008 | WO |
WO 2008117981 | Oct 2008 | WO |
WO 2009134090 | Nov 2009 | WO |
WO 2011087329 | Apr 2011 | WO |
Entry |
---|
Chinese Office Action dated Dec. 16, 2013.(translation). |
European Office Action dated Jan. 7, 2014. (11803799.3). |
European Office Action dated Jan. 7, 2014. (11803798.5). |
Australian Office Action dated Jan. 13, 2014. |
Korean Office Action dated Jan. 28, 2014. |
Japanese Office Action dated Feb. 4, 2014. |
Korean Office Action dated Feb. 26, 2014. |
Korean Office Action dated Feb. 28, 2014. |
Chinese Office Action dated Mar. 4, 2014. |
Chinese Office Action dated Mar. 5, 2014. |
U.S. Office Action issued in U.S. Appl. No. 13/588,164 dated Apr. 3, 2015. |
U.S. Final Office Action issued in U.S. Appl. No. 13/562,704 dated Apr. 9, 2015. |
Russian Office Action issued in Application No. 2013130254 dated Jan. 23, 2015. |
U.S. Office Action issued in U.S. Appl. No. 12/432,184 dated May 22, 2014. |
Korean Office Action dated May 26, 2014. |
U.S. Notice of Allowance issued in U.S. Appl. No. 12/757,339 dated May 28, 2014. |
U.S. Office Action issued in U.S. Appl. No. 13/382,334 dated Jun. 5, 2014. |
U.S. Office Action issued in U.S. Appl. No. 12/842,649 dated Aug. 15, 2014. |
U.S. Notice of Allowance issued in U.S. Appl. No. 13/382,334 dated Nov. 12, 2014. |
Japanese Office Action dated Oct. 29, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/847,272 dated Dec. 2, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/847,284 dated Dec. 4, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/847,406 dated Dec. 17, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/847,306 dated Dec. 17, 2013. |
Australian Office Action dated Sep. 22, 2014. |
Chinese Office Action dated Oct. 8, 2014. |
U.S. Office Action issued in U.S. Appl. No. 13/562,704 dated Nov. 19, 2014. |
U.S. Notice of Allowance issued in U.S. Appl. No. 12/842,649 dated Dec. 10, 2014. |
Chinese Office Action dated Oct. 30, 2014. |
Japanese Office Action dated Nov. 18, 2014. |
Chinese Office Action dated Dec. 3, 2014. |
U.S. Notice of Allowance issued in U.S. Appl. No. 13/922,669 dated Dec. 31, 2014. |
Milica Stojanovic; “Recent Advances in High-Speed underwater Acoustic Communications”; IEEE Journal of Oceanice Engineering, IEEE Service Center; Piscataway, NJ; vol. 21, No. 2; Apr. 1, 1996; pp. 125-136 (XP011042321). |
Creber, R. K. et al.; “Performance of Undersea Acoustic Networking Using RTS/CTS Handshaking and ARQ Retransmission”; Oceans, 2001 MTS/IEEE Conference and Exhibition; Nov. 5-8, 2001; Piscataway, NJ; IEEE, vol. 4; Nov. 5, 2001; pp. 2083-2086 (XP010566758). |
International Search Report dated Dec. 18, 2009 issued in Application No. PCT/KR2009/002288. |
International Search Report dated Dec. 21, 2009 issued in Application No. PCT/KR2009/002199. |
International Search Report dated Jan. 4, 2010 issued in Application No. PCT/KR2009/002211. |
International Search Report dated Aug. 23, 2010 issued in Application No. PCT/KR2010/000319. |
International Search Report dated Dec. 1, 2010 issued in Application No. PCT/KR2010/002222. |
International Search Report dated Dec. 1, 2010 issued in Application No. PCT/KR2010/002211. |
International Search Report dated Apr. 25, 2011 issued in Application No. PCT/KR 2010/004407. |
International Search Report dated May 26, 2011 issued in Application No. PCT/KR2010/005108. |
International Search Report issued in Application No. PCT/KR2011/000311 dated Jul. 28, 2011. |
European Search Report dated Oct. 14, 2011 issued in Application No. 09 73 8950. |
United States Office Action dated Dec. 27, 2011 issued in U.S. Appl. No. 12/432,184. |
Russian Office Action dated Feb. 7, 2012. (with translation). |
United States Office Action dated Feb. 10, 2012 issued in U.S. Appl. No. 12/568,022. |
United States Office Action dated Feb. 14, 2012 issued in U.S. Appl. No. 12/431,910. |
United States Office Action dated Mar. 1, 2012 issued in U.S. Appl. No. 12/846,040. |
U.S. Office Action issued in U.S. Appl. No. 12/431,903 dated Mar. 8, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/431,893 dated Mar. 19, 2012. |
International Search Report issued in PCT Application No. KR2011/004949 dated Mar. 20, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/432,132 dated Mar. 20, 2012. |
International Search Report issued in PCT Application No. KR2011/004948 dated Mar. 26, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/757,205 dated Apr. 2, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/432,111 dated May 2, 2012. |
European Search Report dated May 8, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/757,246 dated May 18, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/757,339 dated May 22, 2012. |
U.S. Notice of Allowance issued in U.S. Appl. No. 12/568,022 dated Jun. 11, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/757,213 dated Jun. 25, 2012. |
Russian Office Action issued in Application No. 2010144513/08 dated Jun. 27, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/603,810 dated Jul. 5, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/431,910 dated Jul. 23, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/431,893 dated Jul. 31, 2012. |
Notice of Allowance issued in U.S. Appl. No. 12/842,679 dated Aug. 1, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/431,903 dated Aug. 2, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/432,184 dated Aug. 7, 2012. |
Korean Office Action dated Aug. 13, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/432,132 dated Aug. 15, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/551,827 dated Aug. 16, 2012. |
Notice of Allowance issued in U.S. Appl. No. 12/846,040 dated Aug. 17, 2012. |
Japanese Office Action dated Sep. 11, 2012. |
Notice of Allowance issued in U.S. Appl. No. 12/757,205 dated Sep. 14, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/847,303 dated Sep. 14, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/757,232 dated Sep. 18, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/432,111 dated Nov. 15, 2012. |
Chinese Office Action dated Nov. 16, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/431,910 dated Dec. 5, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/757,213 dated Dec. 13, 2012. |
European Search Report dated Dec. 17, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/432,132 dated Dec. 19, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/850,240 dated Dec. 27, 2012. |
U.S. Office Action issued in U.S. Appl. No. 12/846,013 dated Dec. 28, 2012. |
European Search Report dated Jan. 2, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/431,903 dated Jan. 2, 2013. |
U.S. Notice of Allowance issued in U.S. Appl. No. 12/847,303 dated Jan. 11, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/757,246 dated Jan. 17, 2013. |
Ethem M Sözer; “Simulation and Rapid Prototyping Environment for Underwater Acoustic Communications: Reconfigurable Modem”; OCEANS-Europe 2005; MIT Sea Grant College Program; Cambridge, MA, 02139; IEEE; pp. 80-85 (XP10838461A). |
U.S. Office Action issued in U.S. Appl. No. 12/431,893 dated Jan. 29, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/757,339 dated Jan. 31, 2013. |
European Search Report dated Jan. 31, 2013. (10761908.2). |
European Search Report dated Jan. 31, 2013. (10797292.9). |
Japanese Office Action dated Feb. 12, 2013. (with translation). |
U.S. Office Action issued in U.S. Appl. No. 12/603,810 dated Feb. 13, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/551,827 dated Mar. 11, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/842,649 dated Mar. 22, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/757,232 dated Apr. 18, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/846,013 dated May 7, 2013. |
U.S. Notice of Allowance issued in U.S. Appl. No. 12/603,810 dated Jun. 12, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/432,111 dated Jun. 13, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/847,272 dated Jun. 27, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/757,213 dated Jun. 28, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/847,284 dated Jun. 28, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/847,406 dated Jul. 9, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/847,306 dated Jul. 9, 2013. |
Chinese Office Action dated Jun. 27, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/431,893 dated Jul. 30, 2013. |
U.S. Office Action issued in U.S. Appl. No. 12/757,339 dated Sep. 6, 2013. |
Chinese Office Action dated Feb. 3, 2016. |
European Search Report dated Feb. 5, 2016. |
U.S. Office Action issued in U.S. Appl. No. 13/522,066 dated Mar. 2, 2016. |
U.S. Office Action issued in U.S. Appl. No. 13/588,164 dated Mar. 17, 2016. |
U.S. Office Action issued in U.S. Appl. No. 13/808,403 dated Apr. 7, 2016. |
European Search Report dated Mar. 23, 2016. |
European Search Report dated Jun. 20, 2016. |
U.S. Office Action issues in U.S. Appl. No. 13/808,403 dated Aug. 4, 2016. |
U.S. Office Action issued in U.S. Appl. No. 13/588,164 dated Aug. 5, 2016. |
U.S. Office Action issued in U.S. Appl. No. 13/522,066 dated Aug. 25, 2016. |
U.S. Appl. No. 13/808,414, filed Jan. 4, 2013. |
U.S. Appl. No. 13/808,403, filed Jan. 4, 2013. |
U.S. Appl. No. 12/842,649, filed Jul. 23, 2010. |
U.S. Appl. No. 13/522,066, filed Jul. 13, 2012. |
U.S. Appl. No. 13/562,704, filed Jul. 31, 2012. |
U.S. Appl. No. 13/588,164, filed Aug. 17, 2012. |
Number | Date | Country | |
---|---|---|---|
20140015684 A1 | Jan 2014 | US |