1. Technical Field
The present subject matter relates to home automation networking. It further relates to initialization and setup of networked home automation devices.
2. Description of Related Art
Providing home automation functionality using networking means is well known in the art. Control of lighting and appliances can be accomplished using systems from many different companies such as X10, Insteon® and Echelon. These systems all require some kind of initialization and setup of the devices to communicate properly on the network. In some cases some of the initialization and setup is pre-defined in the device with no mechanism for the user to easily configure the device for their particular installation. But in many cases, a way for the user to configure the device at the time of installation is required.
US Pat. App. No. 2009/0237006 filed Mar. 18, 2008 by inventors Champion et al. shows a method and apparatus for identifying a group of devices where a controller receives a color identifying value over a communication channel from a management network and then combines the light emitted by the at least two LEDs into an identifying color that identifies a group of devices. In U.S. Pat. No. 4,918,690 issues on Apr. 17, 1990, the inventors Markkula et al. describe a network for sensing, communicating and controlling where each cell in the network is assigned a group identification number.
Inventor Dolin describes an apparatus and method for network node identification and network configuration in U.S. Pat. No. 5,519,878 issued on May 21, 1996. In Dolin's system, each device in the home automation network contains a unique ID that is obtained at the time of installation and then placed on a machine readable medium such as a bar code sticker. The bar code stickers for each device are then placed on paper floor plan to show the physical location of that device. The paper floor plan with the stickers is then read by an automatic configuration device to determine the physical location of each device for future use.
However, neither Champion et al., Markkula et al. nor Dolin address the ability of a user to set the network group or other parameters using a control mechanism on the device itself.
In US Pat. App. No. 2009/0267540, inventors Chemel at al. show an intelligent LED lighting system with mesh networking connectivity. Chemel et al. describe a power management module (PMM) with light module identification. Each light module may have identifying information programmed into it, and can communicate that information to the PMM, which can in turn store and communicate that information to a user or installer to aid in replacement or commissioning. The information may be stored in a nonvolatile memory onboard the light module, and communicated via a digital bus to the PMM. The information may be stored passively on the light module, such as via a series of jumpers or dip switches, and can be read by the PMM. The passive storage may include electrical contacts with encoded bit pattern stored in an optics holder. The passive storage may include passive RFID.
X10 markets a series of home automation control modules such as the PLM03 Lamp Module Receiver. Many X10 modules include two rotary control dials that the user can set at installation to allow each separate module to be independently controlled. One dial is for the “House Code” and can be set to a letter ranging from “A” to “P” while the other dial is for the “Unit Number” which can be set to a number ranging from 1 to 16.
It should be noted that neither the system described by Chemel et al. nor X10 devices address simplifying the way that the user can identify the location or other parameters of a device.
It therefore is important to provide a new method for the user to very easily configure a networked device for the home. The method should be very easy to remember and provide a simple means to configure at least the location or other basic parameter important to the networking of the device.
Various embodiments of the present subject matter disclose methods and apparatus for configuring a networked device. One disclosed method comprises generating a selected color code corresponding to a color selected from a plurality of colors, each color of the plurality of colors having a corresponding color code and sending the selected color code over a network. In some embodiments, the plurality of colors have at least one locking color and one or more non-locking colors and the networked device changes a state of the networked device in response to a command received over the network only if the color selected is one of the one or more non-locking colors. In at least one embodiment, the command received over the network is an On/Off command and the state of the network device being changed is an On/Off state. In some embodiments the state of the networked device is set to On if the color selected is the at least one locking color. And in some embodiments the networked device responds to a request for status information from the network independent of the color selected. In another embodiment the networked light bulb receives a local control action and changes the state of the networked lighting apparatus in response to the local control action only if the color selected is one of the one or more non-locking colors. In some embodiments the local control command is an On/Off command and the state of the network device being changed by the local control command is an On/Off state.
One embodiment is a networked device comprising means for controlling a state of the networked device, means for connecting to a network, means for allowing a user to select a color from a plurality of colors, the plurality of colors having at least one locking color and one or more non-locking colors, and means for generating a selected color code corresponding to the color selected by the user, each color of the plurality of colors having a corresponding color code. In that embodiment the networked device submits the selected color code over the network but changes the state of the networked device in response to a command from the network only if the color selected by the user is one of the one or more non-locking colors. In some embodiments the networked device also responds to requests for status information from the network independent of the color selected by the user. In some embodiments, the networked device further comprises means for allowing the user enter a local control command wherein the means for controlling the networked device changes the state of the networked device in response to the local control command only if the color selected by the user is one of the one or more non-locking colors. And in some embodiments that means for controlling the networked device controls the On/Off state.
In another embodiment, a networked device is comprised of a controller, a network adapter communicatively coupled to the controller, and a color selection mechanism communicatively coupled to the controller. The color selection mechanism allows a user to select a color from a plurality of colors, the plurality of colors having at least one locking color and one or more non-locking colors. The color selection mechanism communicates information corresponding to the color selected by the user to the controller and the controller converts the information communicated by the color selection mechanism to a color code corresponding to the color selected by the user. The controller communicates the color code to the network adapter and the network adapter sends the color code out over the network. If the network adapter receives a message from the network to change a state of the networked device it is communicated to the controller, but the controller changes the state of the networked device in response to the message to change the state of the networked device communicated by the network adapter only if the color selected by the user is one of the one or more non-locking colors.
In some embodiments, the network adapter connects to a wireless network such as Wi-Fi, Z-wave or Zigbee and in some embodiments the controller and the network adapter are integrated on a single integrated circuit. In other embodiments, the network adapter receives a status request message over the network and communicates it to the controller; and the controller responds to the status request message by communicating a response message to the network adapter to send out over the network, the controller responding independent of the color selected by the user. Yet another embodiment includes a local control interface communicatively coupled to the controller, the local control interface allows the user to enter a local control command to request a change to the state of the networked device and the controller changes the state of the networked device in response to the local control command only if the color selected by the user is one of the one or more non-locking colors.
In some embodiments the color selection mechanism may be a graphical user interface. In some embodiments the color selection mechanism may have a rotary switch with a rotatable shaft and an output communicatively coupled to the controller and a color wheel having a center, an edge and a colored area, the center of the color wheel coupled to the shaft of the rotary switch and the colored area divided into sections, each section imprinted with a section color selected from the plurality of colors. As the color wheel is rotated by user manipulation of the edge, the colored area of the color wheel and the rotatable shaft of the rotary switch also rotate and the output of the rotary switch communicates current rotational position information corresponding to the color selected by the user to the controller. The position of the color wheel may be indicated by a selection mark in close physical proximity to the section of the colored area of the color wheel imprinted with the section color corresponding to the color selected by the user at the current position. In other embodiments, the position of the color wheel may be indicated by the color of section of the colored area that is visible through an aperture in an outer housing of the networked device and the color wheel is mounted so that a portion of the edge protrudes from the outer housing of the networked device allowing the user is able to manipulate the edge to rotate the color wheel about the axis. In some embodiments the color wheel may also include visible tactilely recognizable symbols.
The accompanying drawings, which are incorporated in and constitute part of the specification, illustrate various embodiments of the invention. Together with the general description, the drawings serve to explain the principles of the invention. In the drawings:
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant teachings. However, it should be apparent to those skilled in the art that the present teachings may be practiced without such details. In other instances, well known methods, procedures and components have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the present concepts. A number of descriptive terms and phrases are used in describing the various embodiments of this disclosure. These descriptive terms and phrases are used to convey a generally agreed upon meaning to those skilled in the art unless a different definition is given in this specification. Some descriptive terms and phrases are presented in the following paragraphs for clarity.
The term “network” refers to a bidirectional communication medium and protocol to allow a plurality of devices to communicate with each other.
The term “networked device” refers to any device that can communicate over a network.
Reference now is made in detail to the examples illustrated in the accompanying drawings and discussed below.
After the color code has been transmitted 507, the controller 402 may enable monitoring 508 of the status of the device. A networked device may allow the network controller or other network devices to query its current state, current power usage, current condition of its consumables used by the networked device, diagnostic information or other information available to the networked device that other devices on the network might find useful. The controller 402 then determines 509 if the color selected is the locking color, in this case white. If the locking color has been selected, the controller then turns (or leaves) the device in an operating “on” state but ignores 510 all control requests that may come in over the network. In some embodiments, the controller may also ignore all local control requests such as the user pressing the power button 408 if the locking color has been selected.
If the color selected 509 on the color selection mechanism 420 is not white, the controller 402 then is enabled to receive 511 control packets over the network. If the control packet tells the controller 402 to turn the device On 512, the controller 402 controls the thyristor 406 to allow the socket 304 to be energized 514. If the control packet tells the controller 402 to turn the device Off 512, the controller 402 controls the thyristor 406 to isolate the socket 304 from electrical power, turning it off 513. Depending on the capability of the networked device, many states other than the On/Off state may be controlled. On occasion new incoming state change requests may be received 515. Those state change requests may come over the network or they may be received from a local user interface on the device. Whenever a new state change request is received 515, the controller 402 checks to see if the color selected by the user on the color selection device 220 has changed 516. In some embodiments, the act of changing the color may generate a state change request. If the color has changed 516, the controller 402 sends the new color out over the network to let the network controller know that the user has changed the color code on the device. The controller then proceeds through the same set of steps 508-514 as described in the initial power-up sequence. If the color has not changed 516, there is no need to rebroadcast the color code or recheck to see if the color is white, so the controller simply receives 511 the control packet and takes appropriate action 512-514.
A cross section of a wall 609 of the networked device shows the edge 602 protruding through the wall and a portion of the colored area 603 visible through an opening in the wall 609. Exterior view 640 shows the outside of the networked device with the wall 641 having an opening 642. In this embodiment, the opening 642 has a wider section at the bottom to allow the edge 602 to protrude from the wall 641 while keeping the upper portion of the opening 642 narrower so that can be mostly filled with one section of the color wheel. In the position shown, section 614 is filling most of opening 642. To help make it even clearer which color is selected, an indicator arrow 643 is included on the wall 641 pointing at the current color. The color selection mechanism 600 may be designed to provide a detent at each section 610-619 of the colored area 603 to make it easy for the user to center the desired section. in the opening 642.
A cross section of a wall 709 of the networked device shows the edge 702 protruding through the wall and a portion of the angled side 701 visible through an opening in the wall 709. Exterior view 740 shows the outside of the networked device with the wall 741 having an opening 742. In the position shown, section 713 is filling most of opening 742. To help make it even clearer which color is selected, and indicator arrow 743 is included on the wall 741 pointing at the current color. The color selection mechanism 700 may be designed to provide a detent at each section 710-717 to make it easy for the user to center the desired section in the opening 742.
One embodiment may use multicolored LEDs, a set or red, green and blue LEDs, or other colored lights to indicate the color chosen to the user. The user may push a button to cycle between the different colors or a capacitive sensing switch or other proximity or touch device could be used to select a color. In other embodiment, voice recognition might be used to detect the color being spoken, or a video camera could be used and a color sample put into the view of the video camera. Any method for the user to enter a color selection could be used in some embodiments.
Unless otherwise indicated, all numbers expressing quantities of elements, optical characteristic properties, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the preceding specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings of the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviations found in their respective testing measurements.
The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to an element described as “an LED” may refer to a single LED, two LEDs or any other number of LEDs. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
As used herein, the term “coupled” includes direct and indirect connections. Moreover, where first and second devices are coupled, intervening devices including active devices may be located there between.
Any element in a claim that does not explicitly state “means for” performing a specified function, or “step for” performing a specified function, is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C. §112, ¶ 6. In particular the use of “step of” in the claims is not intended to invoke the provision of 35 U.S.C. §112, ¶ 6.
The description of the various embodiments provided above is illustrative in nature and is not intended to limit the invention, its application, or uses. Thus, variations that do not depart from the gist of the invention are intended to be within the scope of the embodiments of the present invention. Such variations are not to be regarded as a departure from the intended scope of the present invention.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/254,709 entitled “HYBRID LIGHT” and filed on Oct. 25, 2009, then entire contents of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4858141 | Hart et al. | Aug 1989 | A |
4918690 | Markkula et al. | Apr 1990 | A |
5258656 | Pawlick | Nov 1993 | A |
5301122 | Halpern | Apr 1994 | A |
5483153 | Leeb et al. | Jan 1996 | A |
5519878 | Dolin, Jr. | May 1996 | A |
5650771 | Lee | Jul 1997 | A |
5717325 | Leeb et al. | Feb 1998 | A |
5754963 | Nunneley et al. | May 1998 | A |
6038523 | Akahane et al. | Mar 2000 | A |
6160551 | Naughton et al. | Dec 2000 | A |
6476729 | Liu | Nov 2002 | B1 |
6492897 | Mowery | Dec 2002 | B1 |
6501463 | Dahley et al. | Dec 2002 | B1 |
6987444 | Bub et al. | Jan 2006 | B2 |
6993417 | Osann, Jr. | Jan 2006 | B2 |
7355523 | Sid | Apr 2008 | B2 |
7579711 | Menas et al. | Aug 2009 | B2 |
7772718 | Lee et al. | Aug 2010 | B2 |
7844353 | Bejean et al. | Nov 2010 | B2 |
7876255 | Conway et al. | Jan 2011 | B2 |
7885917 | Kuhns et al. | Feb 2011 | B2 |
7956546 | Hasnain | Jun 2011 | B2 |
7961111 | Tinaphong et al. | Jun 2011 | B2 |
7970542 | Bent et al. | Jun 2011 | B2 |
8013545 | Jonsson | Sep 2011 | B2 |
8049655 | Conway et al. | Nov 2011 | B2 |
20020152045 | Dowling et al. | Oct 2002 | A1 |
20030025840 | Arling | Feb 2003 | A1 |
20030050737 | Osann | Mar 2003 | A1 |
20030197772 | Iwatsuki et al. | Oct 2003 | A1 |
20060202557 | Menas et al. | Sep 2006 | A1 |
20060271544 | Devarakonda et al. | Nov 2006 | A1 |
20070135973 | Petite | Jun 2007 | A1 |
20070297112 | Gilbert | Dec 2007 | A1 |
20080094210 | Paradiso et al. | Apr 2008 | A1 |
20080201268 | Duncan | Aug 2008 | A1 |
20080270937 | Poulet et al. | Oct 2008 | A1 |
20090059603 | Recker et al. | Mar 2009 | A1 |
20090202250 | Dizechi et al. | Aug 2009 | A1 |
20090234512 | Ewing et al. | Sep 2009 | A1 |
20090236909 | Aldag et al. | Sep 2009 | A1 |
20090237006 | Champion et al. | Sep 2009 | A1 |
20090267540 | Chemel et al. | Oct 2009 | A1 |
20090322159 | DuBose et al. | Dec 2009 | A1 |
20100005331 | Somasundaram et al. | Jan 2010 | A1 |
20100084992 | Valois et al. | Apr 2010 | A1 |
20100090542 | Johnson et al. | Apr 2010 | A1 |
20100141153 | Recker et al. | Jun 2010 | A1 |
20100145542 | Chapel et al. | Jun 2010 | A1 |
20100191487 | Rada et al. | Jul 2010 | A1 |
20110031819 | Gunwall | Feb 2011 | A1 |
20110062874 | Knapp | Mar 2011 | A1 |
20110098867 | Jonsson et al. | Apr 2011 | A1 |
20110309735 | Parker et al. | Dec 2011 | A1 |
20120126699 | Zittel et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
2001-307505 | Nov 2001 | JP |
2006-525640 | Nov 2006 | JP |
2008-123727 | May 2008 | JP |
10-2002-0034855 | May 2002 | KR |
03-026358 | Mar 2003 | WO |
2003026358 | Mar 2003 | WO |
2003077100 | Sep 2003 | WO |
2005039144 | Apr 2005 | WO |
2009084016 | Jul 2009 | WO |
2009097400 | Aug 2009 | WO |
2011050224 | Apr 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20110098831 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
61254709 | Oct 2009 | US |