The present disclosure relates to a system and method for providing improved home automation control. More specifically, the present invention relates to a system and method that utilizes near field communication to provide improved home automation control.
Other aspects of the present disclosure will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Detailed examples of the present disclosure are provided herein; however, it is to be understood that the disclosed examples are merely exemplary and may be embodied in various and alternative forms. It is not intended that these examples illustrate and describe all possible forms of the disclosure. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the disclosure.
The aspects disclosed herein provide a home management system and a method of managing a home management system.
Devices or programs that are in communication with one another need not be in continuous communication with each other unless expressly specified otherwise. In addition, devices or programs that are in communication with one another may communicate directly or indirectly through one or more intermediaries.
For purposes of this disclosure, an home management system, a first network device, a second network device or any combination thereof can include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, entertainment, or other purposes. For example, an home management system, a first network device, a second network device or any combination thereof can include any combination of a personal computer, a PDA, a consumer electronic device, a media device, a smart phone, a cellular or mobile phone, a smart device, a tablet, a television, a smart utility meter, an advanced metering infrastructure, a smart energy device, an energy display device, a home automation controller, an energy hub, a smart energy gateway, a set-top box, a digital media subscriber system, a cable modem, a fiber optic enabled communications device, a media gateway, a home media management system, a network server or storage device, an energy substation, a vehicle charging station, a renewable energy production device, a renewable energy control device, an energy storage management system, a smart appliance, an HVAC system, a water pump, a heat pump, a hot water heater, a thermostat, an energy controller, an irrigation system, a lighting system, an alarm system, a smart power outlet, an energy detection device, a power measurement device, a power measurement unit (PMU), an air handler, a wireless air damper, a humidity control system, a heat and motion sensing device, a smart power outlet, a switch router, wireless router, or other network communication device, or any other suitable device or system, and can vary in size, shape, performance, functionality, and price.
For purposes of this disclosure, a wireless technology may include but is not limited to, IEEE 802.15-based wireless communication, Zigbee® communication, INSETEON communication, X10 communication protocol, Z-Wave® communication, Bluetooth® communication, Wi-Fi® communication, IEEE 802.11-based communication, WiMAX® communication, IEEE 802.16-based communication, various proprietary wireless communications, or any combination thereof.
According to the present disclosure, a system and method for providing home automation control using near field communication (NFC) is provided. NFC standards cover communication protocols and data exchange formats, and are based on existing radio-frequency identification (RFID) standards, including ISO/IEC 14443 and FeliCa, which are hereby incorporated by reference as though set forth fully herein. The standards include ISO/IEC 18092 and those defined by the NFC Forum, which are hereby incorporated by reference. According to an aspect of the disclosure, the system can be employed at a site that includes a variety of different network devices. The site may be any location, such as residential or commercial site, and the network devices can include any device that operates within the site and can connect to a wireless network or otherwise communicate wirelessly. Exemplary network devices include, but are not limited to, a personal computer, a consumer electronic device, a media device, a watch, a smart utility meter, an advanced metering infrastructure, a smart energy device, an energy display device, a home automation controller, an energy hub, a smart energy gateway, a set-top box, a digital media subscriber system, a cable modem, a fiber optic enabled communications device, a media gateway, a home media management system, a network server, an energy substation, a vehicle charging station, a renewable energy production device, a renewable energy control device, an energy storage management system, a smart appliance, an HVAC system, a water pump, a heat pump, a hot water heater, a thermostat, an energy controller, an irrigation system, a lighting system, an alarm system, a smart power outlet, an energy detection device, a power measurement device, a power measurement unit (PMU), an air handler, a wireless air damper, a humidity control system, a heat and motion sensing device, a smart power outlet, a switch router, a wireless router, an automated blind, a tinted window glass system, a television, a coffee maker, and/or a garage door.
With reference to
According to still another aspect, the system 100 can also include a plurality of passive NFC IC chips 120, such as RFID tags, that are disposed in selected locations 10 throughout the site 5. The RFID tags 120 are passive chips that contain a unique identifier that can be programmably mapped to certain information relevant to the operation of the system once the identifier has been read and processed. Pursuant to an aspect, the RFID tags 120 can be associated with various devices 122 within the home, such as a coaster, device charger, or any other suitable structure that may be configured to engage with a mobile device 112, 114. The devices 122 may have the RFID tags 120 embedded therein and may be configured such that the mobile device 112, 114 can be placed in close proximity therewith, such as by resting thereon. By engaging the mobile device 112, 114 with the device 122, the RFID reader 118 on the mobile device 112, 114 is brought into close proximity with the RFID tag 120 in the device 122. When this occurs, the RFID tag 120 is powered up and the unique identifier can be obtained by the RFID reader 118. Alternatively, instead of an RFID tag, a barcode or other suitable passive device may be utilized that contains a unique identifier that can be read and which is mapped to information to be employed in connection with the system. As shown, according to a further aspect, the system 100 may also include a controller 124, which can serve as the hub or brains of the system 100. The controller 124 can also include wireless capabilities such that it is part of the wireless network 110.
According to an aspect of the system 100, a mobile device 112, 114 can be brought into communication with the RFID tag 120 by resting the mobile device 112, 114 on the device 122 such that the RFID reader 118 reads the unique identifier stored on the RFID tag 120. Upon the reading of the RFID tag 120, the mobile application 116 on the mobile device 112, 114 can be triggered. According to an aspect, the mobile device 112, 114 can then communicate with the controller 124 and can transmit the information that was read from the RFID tag 120 to the controller 124 for its use. In accordance with an aspect, the information on each RFID tag 120 may be associated with a specific action related to home automation control. Upon receiving the information on the RFID tag 120, the controller 124 can effectuate the necessary action. It will be appreciated that various RFID tags 120 can be associated with different structures disposed in different locations 10 at the site 5 for communication with the mobile devices 112, 114. Each of the RFID tags 120 can be mapped such that different actions or functions can be effectuated by the controller 124. The information associated with each of the RFID tags 120 can be programmed by a user, for example, through the mobile application, by web based access, or at the controller 124, such as through a touchscreen interface. This allows for customized home automation control through the use of various RFID tags.
In accordance another aspect, the system may be utilized to automate energy management. According to this aspect, a system 200 may be disposed at a residential location, such as at a home. In this exemplary example, the system 200 includes a temperature controller 202, such as a thermostat that can control the operation of an HVAC system at the home. The system 200 may also include a wireless network 204 to which the temperature controller 202 is connected. While a single temperature controller 202 is illustrated, the system 200 may alternatively contain multiple controllers. The system 200 also may include a plurality of mobile devices 206, 208 that are associated with the controller 202 and the system 200. The mobile devices 206, 208 may also be configured to connect to the wireless network 204. According to an aspect, the controller 202 can serve as a gateway which authenticates the mobile devices 206, 208 to permit them access to the system 200. Each mobile device 206, 208 may include a mobile application 218 disposed thereon that allows a user to interact with the controller 202 through interaction with a GUI displayed on the mobile device 206, 208. Pursuant to an aspect, each mobile device 206, 208 can include an RFID reader 210.
Additionally, the system 200 may include a plurality of devices disposed in different locations throughout the home, which each contain a unique passive RFID tag 212 associated therewith. For example, the system 200 can include a first device 214 disposed in a bedroom of the home. According to this example, the system 200 may also include a second device 216 located in a kitchen of the home. According to an aspect, the RFID tags can be embedded in each of the devices 214, 216. As discussed previously, the devices 214, 216 may be any structure configured to communicate with a mobile device 206, 208, such as a pad, a coaster, an inductive charger or the like. Any number of devices with unique RFID tags may be employed in the home. The devices may take on a variety of different shapes, sizes and configurations, and can also be located in any location or room within the home.
According to an aspect, each of the passive RFID tags 212 can contain a unique identifier that the system may map with specific functions or operations. When one of the mobile devices 206, 208 is rested on one of the devices or otherwise brought into communication therewith, the RFID reader 210 on the mobile device 206, 208 can read the unique identifier of the RFID tag 212 and can trigger communication with the temperature controller 202 via the mobile application 218 stored thereon. Based on the unique identifier associated with each RFID tag 212, the temperature controller 202 can take a specific action that is mapped to that unique RFID tag 212.
According to an exemplary aspect, the RFID tag 212 for the first device 214 can be mapped such that when one of the mobile devices 206, 208 is placed thereon or brought into communication therewith, the temperature controller 202 can lower the temperature of the home to a specific set point, such as a night time temperature. Pursuant to another aspect, the RFID tag 212 in the second device 216 can be mapped such that when one of the mobile devices 206, 208 is placed thereon or brought into communication therewith, the temperature controller 202 can raise the temperature of the home to a specific set point, such as if a person has arrived home or gets up in the morning. According to a further aspect, the system can be configured to effectuate action when a mobile device 206, 208 is taken out of communication with an RFID tag.
According to still another aspect, the system 200 can also include a plurality of network devices that are located in the home that can each access the wireless network 204. The controller 202 may regulate the authentication of these devices such that until they are recognized they cannot be joined to the network 204. According to this example, a first network device 220 can be configured as an alarm system. A second network device 222 can be configured as a garage door system. A third network device 224 can be configured as a lighting system. A fourth network device can be configured as a coffee maker system. The system 202 may include more or less network devices and the network devices can be configured as a variety of different apparatus.
According to a further aspect, the various RFID tags can be mapped to effectuate modification of the temperature in the home as well as changes in various operating conditions of one or more of the network devices. According to an example, the RFID tag 212 in the first device 214 can be mapped such that when read by the RFID reader 210 associated with one of the mobile devices 206, 208, the temperature controller 202 not only lowers the temperature set point as discussed above, it can effectuate a change in the operating condition of the first network device 220, the second network device 222 and the third network device 224. For example, the RFID tag 220 in the first device 214 can be mapped such that when one of the mobile devices 206, 208 is brought into close proximity therewith, the alarm system may be turned on, the garage door may be closed, and the lighting system can be turned off.
According to a further example, the RFID tag 212 in the second device 216 can be mapped such that when read by the RFID reader 210 associated with one of the mobile devices 206, 208, the temperature controller 202 not only raises the temperature set point as discussed above, it effectuates a change in the operating condition of the first network device 220, the third network device 224 and the fourth network device 226. For example, the RFID tag 220 in the second device 216 can be mapped such that when one of the mobile devices 206, 208 is brought into close proximity therewith, the alarm system may be turned off, the lighting system may be turned on, and the coffee maker may be turned on. It will be appreciated that each RFID tag can be mapped to effectuate different functions and actions with respect to the temperature controller and the network devices and the described network devices, functions, and combinations are merely exemplary. Obviously, the system may be configured to perform more, less or different functions as desired.
According to still another aspect of the disclosure, the NFC chip (i.e. RFID tag) 300 may also include a temperature sensor 302 associated therewith. According to a further aspect, the sensor 302 can be integrated as part of the NFC chip 300. The NFC chip 300 and the temperature sensor 302 may be incorporated in a device 304 located within the site. As discussed above, the device 304 may be configured to receive a mobile device 306 such that an RFID reader 308 in the mobile device 306 can communicate with the NFC chip 300. According to an aspect, when the mobile device 306 comes into close proximity with the device 304, the RFID reader 308 will read the RFID tag 310 so that the RFID reader 308 can obtain the unique identifier from the RFID tag 310. Concurrently therewith, the ambient temperature reading from the temperature sensor 302 may be transmitted to the RFID reader 308. In accordance with an aspect, the mobile device 306 can transmit the unique identifier and the ambient temperature reading for use by a controller 312 such as a temperature controller. With this information, the controller 312 can automatically adjust the temperature set point in the room where the temperature sensor is located to optimize comfort. In addition to temperature, other information such as time could also be employed to optimize the home automation control system.
Alternatively, the system can include an external temperature sensor that can be used to measure the temperature in the room and communicate that to the NFC chip 300 having a bus or other interface capable of connecting to an external chip. The temperature and identifier could then be communicated to the RFID reader 308 on the mobile device when the mobile device is brought into close proximity to the device having the RFID tag 300. The unique identifier and temperature reading may then be transmitted to the controller 312.
It will be appreciated that the system can be configured to perform a variety of different functions. According to a still a further aspect, the system 400 can be configured such that when a mobile device 402 is brought into proximity with one of the devices 404, the RFID tag 406 is powered up by the RFID reader 408 on the mobile device 402. In accordance with this aspect, the RFID tag 406 contains an identifier that is mapped such that the mobile device 402 through the mobile application disposed thereon will initiate communication with an iCloud server 410 to perform a sync operation such as to upload any new photographs, applications, or the like stored on the mobile devices. Alternatively, the unique identifier on the RFID tag 406 can be mapped such that the mobile application will initiate communication with a local storage 412, such as a memory of a personal computer, to effectuate a sync operation. It will be appreciated that the system can perform a variety of other functions through the utilization of the NFC system.
Note that not all of the activities described above in the general description or the examples are required, that a portion of a specific activity may not be required, and that one or more further activities may be performed in addition to those described. Still further, the sequences in which activities are listed are not necessarily the order in which they are performed.
The specification and illustrations of the embodiments described herein are intended to provide a general understanding of the structure of the various embodiments. The specification and illustrations are not intended to serve as an exhaustive and comprehensive description of all of the elements and features of apparatus and systems that use the structures or methods described herein. Many other embodiments may be apparent to those of skill in the art upon reviewing the disclosure. Other embodiments may be used and derived from the disclosure, such that a structural substitution, logical substitution, or another change may be made without departing from the scope of the disclosure. Accordingly, the disclosure is to be regarded as illustrative rather than restrictive.
Certain features are, for clarity, described herein in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features that are, for brevity, described in the context of a single embodiment, may also be provided separately or in any sub combination. Further, reference to values stated in ranges includes each and every value within that range.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any feature(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature of any or all the claims.
The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover any and all such modifications, enhancements, and other embodiments that fall within the scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
Although only a few exemplary embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the embodiments of the present disclosure. Accordingly, all such modifications are intended to be included within the scope of the embodiments of the present disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures.
The subject application claims priority to U.S. Provisional Application Ser. No. 61/749,742 entitled “Home Automation Using Near Field Communication”, filed on Jan. 7, 2013, which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1568584 | Blankenship | Jan 1926 | A |
2042633 | Richardson | Jun 1936 | A |
2427965 | Henderson | Sep 1947 | A |
2931006 | Klumpp, Jr. | Mar 1960 | A |
2960677 | Stearn et al. | Nov 1960 | A |
3194957 | Caldwell et al. | Jul 1965 | A |
3237148 | Ege | Feb 1966 | A |
3531759 | Hansen | Sep 1970 | A |
3675183 | Drake | Jul 1972 | A |
3808602 | Foster et al. | Apr 1974 | A |
4407447 | Sayegh | Oct 1983 | A |
4437716 | Cooper | Mar 1984 | A |
4497031 | Froehling et al. | Jan 1985 | A |
4645286 | Isban et al. | Feb 1987 | A |
5127575 | Beerbaum | Jul 1992 | A |
5274571 | Hesse et al. | Dec 1993 | A |
5289362 | Liebl et al. | Feb 1994 | A |
5461390 | Hoshen | Oct 1995 | A |
5476221 | Seymour | Dec 1995 | A |
5537339 | Naganuma et al. | Jul 1996 | A |
5544036 | Brown, Jr. et al. | Aug 1996 | A |
5566084 | Cmar | Oct 1996 | A |
5595342 | McNair et al. | Jan 1997 | A |
5682949 | Ratcliffe et al. | Nov 1997 | A |
5725148 | Hartman | Mar 1998 | A |
5729442 | Frantz | Mar 1998 | A |
5764146 | Baldwin et al. | Jun 1998 | A |
5812949 | Taketsugu | Sep 1998 | A |
5819840 | Wilson et al. | Oct 1998 | A |
5884072 | Rasmussen | Mar 1999 | A |
5964625 | Farley | Oct 1999 | A |
5987379 | Smith | Nov 1999 | A |
6014080 | Layson, Jr. | Jan 2000 | A |
6073019 | Lowdon | Jun 2000 | A |
6108614 | Lincoln et al. | Aug 2000 | A |
6128661 | Flanagin et al. | Oct 2000 | A |
6175078 | Bambardekar et al. | Jan 2001 | B1 |
6353180 | DeBartolo, Jr. et al. | Mar 2002 | B1 |
6400956 | Richton | Jun 2002 | B1 |
6442639 | McElhattan et al. | Aug 2002 | B1 |
6478233 | Shah | Nov 2002 | B1 |
6483028 | DeBartolo, Jr. et al. | Nov 2002 | B2 |
6553418 | Collins et al. | Apr 2003 | B1 |
6623311 | Dehan | Sep 2003 | B1 |
6636893 | Fong | Oct 2003 | B1 |
6684087 | Yu et al. | Jan 2004 | B1 |
6785542 | Blight et al. | Aug 2004 | B1 |
6785630 | Kolk et al. | Aug 2004 | B2 |
6850252 | Hoffberg | Feb 2005 | B1 |
6868293 | Schurr et al. | Mar 2005 | B1 |
6975958 | Bohrer et al. | Dec 2005 | B2 |
6976366 | Starling et al. | Dec 2005 | B2 |
6980659 | Elliott | Dec 2005 | B1 |
6999757 | Bates et al. | Feb 2006 | B2 |
7016751 | Nordquist et al. | Mar 2006 | B2 |
7031945 | Donner | Apr 2006 | B1 |
7082460 | Hansen et al. | Jul 2006 | B2 |
7083109 | Pouchak | Aug 2006 | B2 |
7099483 | Inagaki | Aug 2006 | B2 |
7114554 | Bergman et al. | Oct 2006 | B2 |
7127328 | Ransom | Oct 2006 | B2 |
7127734 | Amit | Oct 2006 | B1 |
7130719 | Ehlers et al. | Oct 2006 | B2 |
7139564 | Hebert | Nov 2006 | B2 |
7140551 | De Pauw et al. | Nov 2006 | B2 |
7155305 | Hayes et al. | Dec 2006 | B2 |
7159789 | Schwendinger et al. | Jan 2007 | B2 |
7188003 | Ransom et al. | Mar 2007 | B2 |
7197011 | Fong | Mar 2007 | B2 |
7216021 | Matsubara et al. | May 2007 | B2 |
7222800 | Wruck | May 2007 | B2 |
7224966 | Caspi et al. | May 2007 | B2 |
7252230 | Sheikh | Aug 2007 | B1 |
7257397 | Shamoon et al. | Aug 2007 | B2 |
7343226 | Ehlers et al. | Mar 2008 | B2 |
7349761 | Cruse | Mar 2008 | B1 |
7363053 | Dalton et al. | Apr 2008 | B2 |
7403838 | Deen et al. | Jul 2008 | B2 |
7444401 | Keyghobad et al. | Oct 2008 | B1 |
7451017 | McNally | Nov 2008 | B2 |
7460827 | Schuster et al. | Dec 2008 | B2 |
7477617 | Chen et al. | Jan 2009 | B2 |
7510126 | Rossi et al. | Mar 2009 | B2 |
7525425 | Diem | Apr 2009 | B2 |
7526539 | Hsu | Apr 2009 | B1 |
7554437 | Axelsen | Jun 2009 | B2 |
7565225 | Dushane | Jul 2009 | B2 |
7567844 | Thomas et al. | Jul 2009 | B2 |
7574208 | Hanson et al. | Aug 2009 | B2 |
7574283 | Wang et al. | Aug 2009 | B2 |
7590703 | Cashman et al. | Sep 2009 | B2 |
7644591 | Singh et al. | Jan 2010 | B2 |
7665670 | Ahmed | Feb 2010 | B2 |
7668532 | Shamoon et al. | Feb 2010 | B2 |
7671544 | Clark et al. | Mar 2010 | B2 |
7693581 | Callaghan et al. | Apr 2010 | B2 |
7706928 | Howell et al. | Apr 2010 | B1 |
7715951 | Forbes et al. | May 2010 | B2 |
7747739 | Bridges et al. | Jun 2010 | B2 |
7752309 | Keyghobad et al. | Jul 2010 | B2 |
7761910 | Ransom | Jul 2010 | B2 |
7775453 | Hara | Aug 2010 | B2 |
7783738 | Keyghobad et al. | Aug 2010 | B2 |
7792946 | Keyghobad et al. | Sep 2010 | B2 |
7798417 | Snyder et al. | Sep 2010 | B2 |
7812766 | Leblanc et al. | Oct 2010 | B2 |
7813831 | McCoy et al. | Oct 2010 | B2 |
7865252 | Clayton | Jan 2011 | B2 |
7881816 | Mathiesen et al. | Feb 2011 | B2 |
7884727 | Tran | Feb 2011 | B2 |
7886166 | Schnekendorf et al. | Feb 2011 | B2 |
7895257 | Helal et al. | Feb 2011 | B2 |
7908019 | Ebrom et al. | Mar 2011 | B2 |
7908116 | Steinberg et al. | Mar 2011 | B2 |
7908117 | Steinberg et al. | Mar 2011 | B2 |
7912559 | McCoy et al. | Mar 2011 | B2 |
7917914 | McCoy et al. | Mar 2011 | B2 |
7918406 | Rosen | Apr 2011 | B2 |
7921429 | McCoy et al. | Apr 2011 | B2 |
7941530 | Ha et al. | May 2011 | B2 |
7949615 | Ehlers et al. | May 2011 | B2 |
7953518 | Kansal et al. | May 2011 | B2 |
7973707 | Verechtchiagine | Jul 2011 | B2 |
7975051 | Saint Clair et al. | Jul 2011 | B2 |
7979163 | Terlson et al. | Jul 2011 | B2 |
8005780 | McCoy et al. | Aug 2011 | B2 |
8010237 | Cheung et al. | Aug 2011 | B2 |
8010418 | Lee | Aug 2011 | B1 |
8010812 | Forbes, Jr. et al. | Aug 2011 | B2 |
8019445 | Marhoefer | Sep 2011 | B2 |
8024073 | Imes et al. | Sep 2011 | B2 |
8028049 | Ellis et al. | Sep 2011 | B1 |
8028302 | Glotzbach et al. | Sep 2011 | B2 |
8032233 | Forbes, Jr. et al. | Oct 2011 | B2 |
8042048 | Wilson et al. | Oct 2011 | B2 |
8049592 | Wang et al. | Nov 2011 | B2 |
8063775 | Reed et al. | Nov 2011 | B2 |
8082065 | Imes et al. | Dec 2011 | B2 |
8090477 | Steinberg | Jan 2012 | B1 |
8091765 | Jiang et al. | Jan 2012 | B2 |
8091795 | McLellan et al. | Jan 2012 | B1 |
8099195 | Imes et al. | Jan 2012 | B2 |
8099198 | Gurin | Jan 2012 | B2 |
8108076 | Imes et al. | Jan 2012 | B2 |
8117299 | Narayanaswami et al. | Feb 2012 | B2 |
8126685 | Nasle | Feb 2012 | B2 |
8131401 | Nasle | Mar 2012 | B2 |
8140279 | Subbloie | Mar 2012 | B2 |
8140667 | Keyghobad et al. | Mar 2012 | B2 |
8176112 | Hicks, IIII et al. | May 2012 | B2 |
8204979 | Vutharkar et al. | Jun 2012 | B2 |
8214270 | Schaefer et al. | Jul 2012 | B2 |
8280556 | Besore et al. | Oct 2012 | B2 |
8306634 | Nguyen et al. | Nov 2012 | B2 |
8350694 | Trundle et al. | Jan 2013 | B1 |
8355865 | Wagner et al. | Jan 2013 | B2 |
8406783 | Eitan et al. | Mar 2013 | B2 |
8406933 | Nagel et al. | Mar 2013 | B2 |
8461725 | Stubbs | Jun 2013 | B1 |
8498572 | Schooley | Jul 2013 | B1 |
9080782 | Sheikh | Jul 2015 | B1 |
20020073217 | Ma et al. | Jun 2002 | A1 |
20020147006 | Coon et al. | Oct 2002 | A1 |
20020194500 | Bajikar | Dec 2002 | A1 |
20020196151 | Troxler | Dec 2002 | A1 |
20020198984 | Goldstein et al. | Dec 2002 | A1 |
20030120817 | Ott et al. | Jun 2003 | A1 |
20030122684 | Porter et al. | Jul 2003 | A1 |
20030149734 | Aaltonen et al. | Aug 2003 | A1 |
20030210126 | Kanazawa | Nov 2003 | A1 |
20040034484 | Solomita, Jr. et al. | Feb 2004 | A1 |
20040078153 | Bartone et al. | Apr 2004 | A1 |
20040087314 | Duncan | May 2004 | A1 |
20040119600 | Hampton | Jun 2004 | A1 |
20040133314 | Ehlers et al. | Jul 2004 | A1 |
20040193329 | Ransom et al. | Sep 2004 | A1 |
20040212493 | Stilp | Oct 2004 | A1 |
20040212500 | Stilp | Oct 2004 | A1 |
20050038326 | Mathur | Feb 2005 | A1 |
20050040247 | Pouchak | Feb 2005 | A1 |
20050040250 | Wruck | Feb 2005 | A1 |
20050044427 | Dunstan et al. | Feb 2005 | A1 |
20050060575 | Trethewey et al. | Mar 2005 | A1 |
20050090267 | Kotzin | Apr 2005 | A1 |
20050131583 | Ransom | Jun 2005 | A1 |
20050143863 | Ruane et al. | Jun 2005 | A1 |
20050144437 | Ransom et al. | Jun 2005 | A1 |
20050172056 | Ahn | Aug 2005 | A1 |
20050194457 | Dolan | Sep 2005 | A1 |
20050242945 | Perkinson | Nov 2005 | A1 |
20050246561 | Wu et al. | Nov 2005 | A1 |
20060012489 | Yokota et al. | Jan 2006 | A1 |
20060063522 | McFarland | Mar 2006 | A1 |
20060097063 | Zeevi | May 2006 | A1 |
20060099971 | Staton et al. | May 2006 | A1 |
20060102732 | Garrett et al. | May 2006 | A1 |
20060122715 | Schroeder et al. | Jun 2006 | A1 |
20060161635 | Lamkin et al. | Jul 2006 | A1 |
20060179079 | Kolehmainen | Aug 2006 | A1 |
20060190538 | Hwang | Aug 2006 | A1 |
20060205354 | Pirzada | Sep 2006 | A1 |
20060224901 | Lowe | Oct 2006 | A1 |
20060253590 | Nagy | Nov 2006 | A1 |
20060253894 | Bookman et al. | Nov 2006 | A1 |
20060265489 | Moore | Nov 2006 | A1 |
20060276175 | Chandran | Dec 2006 | A1 |
20060283965 | Mueller et al. | Dec 2006 | A1 |
20070032225 | Konicek et al. | Feb 2007 | A1 |
20070037554 | Freeny | Feb 2007 | A1 |
20070037605 | Logan | Feb 2007 | A1 |
20070043477 | Ehlers et al. | Feb 2007 | A1 |
20070043478 | Ehlers et al. | Feb 2007 | A1 |
20070045431 | Chapman et al. | Mar 2007 | A1 |
20070054616 | Culbert | Mar 2007 | A1 |
20070055760 | McCoy et al. | Mar 2007 | A1 |
20070060171 | Sudit et al. | Mar 2007 | A1 |
20070061050 | Hoffknecht | Mar 2007 | A1 |
20070061266 | Moore et al. | Mar 2007 | A1 |
20070061487 | Moore et al. | Mar 2007 | A1 |
20070112939 | Wilson et al. | May 2007 | A1 |
20070114295 | Jenkins | May 2007 | A1 |
20070115902 | Shamoon et al. | May 2007 | A1 |
20070124026 | Troxell et al. | May 2007 | A1 |
20070136217 | Johnson et al. | Jun 2007 | A1 |
20070155401 | Ward et al. | Jul 2007 | A1 |
20070156265 | McCoy et al. | Jul 2007 | A1 |
20070156864 | McCoy et al. | Jul 2007 | A1 |
20070156882 | McCoy et al. | Jul 2007 | A1 |
20070158442 | Chapman et al. | Jul 2007 | A1 |
20070160022 | McCoy et al. | Jul 2007 | A1 |
20070162158 | McCoy et al. | Jul 2007 | A1 |
20070168486 | McCoy et al. | Jul 2007 | A1 |
20070176771 | Doyle | Aug 2007 | A1 |
20070188319 | Upton | Aug 2007 | A1 |
20070190939 | Abel | Aug 2007 | A1 |
20070197236 | Ahn et al. | Aug 2007 | A1 |
20070200712 | Arneson | Aug 2007 | A1 |
20070221741 | Wagner et al. | Sep 2007 | A1 |
20070240173 | McCoy et al. | Oct 2007 | A1 |
20070241203 | Wagner et al. | Oct 2007 | A1 |
20070249319 | Faulkner et al. | Oct 2007 | A1 |
20070273307 | Westrick et al. | Nov 2007 | A1 |
20070274241 | Brothers | Nov 2007 | A1 |
20070282748 | Saint Clair et al. | Dec 2007 | A1 |
20070285510 | Lipton et al. | Dec 2007 | A1 |
20070287410 | Bae et al. | Dec 2007 | A1 |
20070287473 | Dupray | Dec 2007 | A1 |
20070288610 | Saint Clair et al. | Dec 2007 | A1 |
20070288975 | Cashman et al. | Dec 2007 | A1 |
20080004904 | Tran | Jan 2008 | A1 |
20080017722 | Snyder et al. | Jan 2008 | A1 |
20080046878 | Anderson | Feb 2008 | A1 |
20080082838 | Achariyakosol et al. | Apr 2008 | A1 |
20080099568 | Nicodem et al. | May 2008 | A1 |
20080103610 | Ebrom et al. | May 2008 | A1 |
20080104208 | Ebrom et al. | May 2008 | A1 |
20080104212 | Ebrom et al. | May 2008 | A1 |
20080109830 | Giotzbach et al. | May 2008 | A1 |
20080127325 | Ebrom et al. | May 2008 | A1 |
20080137670 | Ebrom et al. | Jun 2008 | A1 |
20080177678 | Di Martini et al. | Jul 2008 | A1 |
20080177994 | Mayer | Jul 2008 | A1 |
20080188963 | McCoy | Aug 2008 | A1 |
20080218307 | Schoettle | Sep 2008 | A1 |
20080219186 | Bell et al. | Sep 2008 | A1 |
20080219227 | Michaelis | Sep 2008 | A1 |
20080219239 | Bell et al. | Sep 2008 | A1 |
20080221737 | Josephson et al. | Sep 2008 | A1 |
20080248751 | Pirzada | Oct 2008 | A1 |
20080249642 | Chen | Oct 2008 | A1 |
20080262820 | Nasle | Oct 2008 | A1 |
20080270562 | Jin et al. | Oct 2008 | A1 |
20080271123 | Ollis et al. | Oct 2008 | A1 |
20080272934 | Wang et al. | Nov 2008 | A1 |
20080277486 | Seem et al. | Nov 2008 | A1 |
20080277487 | Mueller et al. | Nov 2008 | A1 |
20080281472 | Podgorny et al. | Nov 2008 | A1 |
20080281666 | Kessman et al. | Nov 2008 | A1 |
20080291855 | Bata et al. | Nov 2008 | A1 |
20080305644 | Noda et al. | Dec 2008 | A1 |
20080313310 | Vasa et al. | Dec 2008 | A1 |
20090001182 | Siddaramanna et al. | Jan 2009 | A1 |
20090005061 | Ward et al. | Jan 2009 | A1 |
20090012704 | Franco et al. | Jan 2009 | A1 |
20090037938 | Frank | Feb 2009 | A1 |
20090062970 | Forbes, Jr. et al. | Mar 2009 | A1 |
20090063122 | Nasle | Mar 2009 | A1 |
20090063228 | Forbes, Jr. | Mar 2009 | A1 |
20090065596 | Seem et al. | Mar 2009 | A1 |
20090076749 | Nasle | Mar 2009 | A1 |
20090082015 | Ravi | Mar 2009 | A1 |
20090082888 | Johansen | Mar 2009 | A1 |
20090083167 | Subbloie | Mar 2009 | A1 |
20090093688 | Mathur | Apr 2009 | A1 |
20090098857 | De Atley | Apr 2009 | A1 |
20090098880 | Lindquist | Apr 2009 | A1 |
20090100492 | Hicks, III et al. | Apr 2009 | A1 |
20090103535 | McCoy et al. | Apr 2009 | A1 |
20090112522 | Rasmussen | Apr 2009 | A1 |
20090113037 | Pouchak | Apr 2009 | A1 |
20090129301 | Belimpasakis | May 2009 | A1 |
20090132070 | Ebrom et al. | May 2009 | A1 |
20090135836 | Veillette | May 2009 | A1 |
20090138099 | Veillette | May 2009 | A1 |
20090157529 | Ehlers et al. | Jun 2009 | A1 |
20090160626 | Jeon et al. | Jun 2009 | A1 |
20090164049 | Nibler et al. | Jun 2009 | A1 |
20090170431 | Pering | Jul 2009 | A1 |
20090170483 | Barnett | Jul 2009 | A1 |
20090187499 | Mulder et al. | Jul 2009 | A1 |
20090193217 | Korecki et al. | Jul 2009 | A1 |
20090195349 | Frader-Thompson et al. | Aug 2009 | A1 |
20090204837 | Raval et al. | Aug 2009 | A1 |
20090240381 | Lane | Sep 2009 | A1 |
20090248702 | Schwartz et al. | Oct 2009 | A1 |
20090267787 | Pryor et al. | Oct 2009 | A1 |
20090270138 | Raveendran | Oct 2009 | A1 |
20090302994 | Rhee et al. | Dec 2009 | A1 |
20090305644 | Rhee et al. | Dec 2009 | A1 |
20090312968 | Phillips | Dec 2009 | A1 |
20090313689 | Nystrom | Dec 2009 | A1 |
20090316671 | Rolf et al. | Dec 2009 | A1 |
20100017126 | Holcman et al. | Jan 2010 | A1 |
20100034386 | Choong et al. | Feb 2010 | A1 |
20100035587 | Bennett | Feb 2010 | A1 |
20100035613 | Schroter | Feb 2010 | A1 |
20100063867 | Proctor, Jr. et al. | Mar 2010 | A1 |
20100066507 | Myllymaeki | Mar 2010 | A1 |
20100069035 | Johnson | Mar 2010 | A1 |
20100069087 | Chow et al. | Mar 2010 | A1 |
20100070100 | Finlinson et al. | Mar 2010 | A1 |
20100070101 | Benes et al. | Mar 2010 | A1 |
20100075656 | Howarter et al. | Mar 2010 | A1 |
20100077466 | Lowe | Mar 2010 | A1 |
20100081375 | Rosenblatt et al. | Apr 2010 | A1 |
20100081468 | Brothers | Apr 2010 | A1 |
20100082174 | Weaver | Apr 2010 | A1 |
20100082176 | Chang | Apr 2010 | A1 |
20100082431 | Ramer et al. | Apr 2010 | A1 |
20100087932 | McCoy et al. | Apr 2010 | A1 |
20100088261 | Montalvo | Apr 2010 | A1 |
20100094475 | Masters et al. | Apr 2010 | A1 |
20100094737 | Lambird | Apr 2010 | A1 |
20100099410 | Sweeney et al. | Apr 2010 | A1 |
20100100253 | Fausak et al. | Apr 2010 | A1 |
20100113061 | Holcman | May 2010 | A1 |
20100115314 | Sultenfuss | May 2010 | A1 |
20100121499 | Besore et al. | May 2010 | A1 |
20100123414 | Antonopoulos | May 2010 | A1 |
20100127854 | Helvick et al. | May 2010 | A1 |
20100127889 | Vogel et al. | May 2010 | A1 |
20100130178 | Bennett et al. | May 2010 | A1 |
20100130213 | Vendrow et al. | May 2010 | A1 |
20100138764 | Hatambeiki et al. | Jun 2010 | A1 |
20100141437 | Karam et al. | Jun 2010 | A1 |
20100145534 | Forbes, Jr. et al. | Jun 2010 | A1 |
20100152997 | De Silva et al. | Jun 2010 | A1 |
20100156665 | Krzyzanowski et al. | Jun 2010 | A1 |
20100159936 | Brisebois et al. | Jun 2010 | A1 |
20100161148 | Forbes, Jr. et al. | Jun 2010 | A1 |
20100161149 | Nguyen et al. | Jun 2010 | A1 |
20100164713 | Wedig et al. | Jul 2010 | A1 |
20100165861 | Rrdland et al. | Jul 2010 | A1 |
20100169030 | Parlos et al. | Jul 2010 | A1 |
20100174643 | Schaefer et al. | Jul 2010 | A1 |
20100179670 | Forbes, Jr. et al. | Jul 2010 | A1 |
20100179672 | Beckmann et al. | Jul 2010 | A1 |
20100179708 | Watson et al. | Jul 2010 | A1 |
20100187219 | Besore et al. | Jul 2010 | A1 |
20100188239 | Rockwell | Jul 2010 | A1 |
20100188279 | Shamilian et al. | Jul 2010 | A1 |
20100191352 | Quail | Jul 2010 | A1 |
20100193592 | Simon et al. | Aug 2010 | A1 |
20100198713 | Forbes, Jr. et al. | Aug 2010 | A1 |
20100207728 | Roscoe et al. | Aug 2010 | A1 |
20100217450 | Beal et al. | Aug 2010 | A1 |
20100217451 | Kouda et al. | Aug 2010 | A1 |
20100217452 | McCord et al. | Aug 2010 | A1 |
20100217549 | Galvin et al. | Aug 2010 | A1 |
20100217550 | Crabtree et al. | Aug 2010 | A1 |
20100217642 | Crubtree et al. | Aug 2010 | A1 |
20100217651 | Crabtree et al. | Aug 2010 | A1 |
20100217837 | Ansari et al. | Aug 2010 | A1 |
20100218108 | Crabtree et al. | Aug 2010 | A1 |
20100222935 | Forbes, Jr. et al. | Sep 2010 | A1 |
20100228854 | Morrison et al. | Sep 2010 | A1 |
20100235008 | Forbes, Jr. et al. | Sep 2010 | A1 |
20100241275 | Crawford et al. | Sep 2010 | A1 |
20100249955 | Sitton | Sep 2010 | A1 |
20100250590 | Galvin | Sep 2010 | A1 |
20100256823 | Cherukuri et al. | Oct 2010 | A1 |
20100257539 | Narayanan et al. | Oct 2010 | A1 |
20100261465 | Rhoads et al. | Oct 2010 | A1 |
20100262298 | Johnson et al. | Oct 2010 | A1 |
20100262299 | Cheung et al. | Oct 2010 | A1 |
20100262336 | Rivas et al. | Oct 2010 | A1 |
20100272192 | Varadarajan et al. | Oct 2010 | A1 |
20100289643 | Trundle et al. | Nov 2010 | A1 |
20100299265 | Walters et al. | Nov 2010 | A1 |
20100299517 | Jukic et al. | Nov 2010 | A1 |
20100305773 | Cohen | Dec 2010 | A1 |
20100315235 | Adegoke et al. | Dec 2010 | A1 |
20100315438 | Horodezky et al. | Dec 2010 | A1 |
20100317332 | Bathiche et al. | Dec 2010 | A1 |
20100317371 | Westerinen et al. | Dec 2010 | A1 |
20100318198 | Smith et al. | Dec 2010 | A1 |
20100324956 | Lopez et al. | Dec 2010 | A1 |
20100324962 | Nesler et al. | Dec 2010 | A1 |
20100332373 | Crabtree et al. | Dec 2010 | A1 |
20110004350 | Cheifetz et al. | Jan 2011 | A1 |
20110004355 | Wang et al. | Jan 2011 | A1 |
20110004513 | Hoffberg | Jan 2011 | A1 |
20110015797 | Gilstrap | Jan 2011 | A1 |
20110015802 | Imes | Jan 2011 | A1 |
20110016023 | Zakas | Jan 2011 | A1 |
20110022239 | Forbes, Jr. et al. | Jan 2011 | A1 |
20110022242 | Bukhin et al. | Jan 2011 | A1 |
20110029655 | Forbes, Jr. et al. | Feb 2011 | A1 |
20110039518 | Maria | Feb 2011 | A1 |
20110040666 | Crabtree et al. | Feb 2011 | A1 |
20110046792 | Imes et al. | Feb 2011 | A1 |
20110046798 | Imes et al. | Feb 2011 | A1 |
20110046799 | Imes et al. | Feb 2011 | A1 |
20110046800 | Imes et al. | Feb 2011 | A1 |
20110046801 | Imes et al. | Feb 2011 | A1 |
20110047482 | Arthurs et al. | Feb 2011 | A1 |
20110051823 | Imes et al. | Mar 2011 | A1 |
20110054699 | Imes et al. | Mar 2011 | A1 |
20110054710 | Imes et al. | Mar 2011 | A1 |
20110061014 | Frader-Thompson et al. | Mar 2011 | A1 |
20110063126 | Kennedy et al. | Mar 2011 | A1 |
20110063999 | Erdmann et al. | Mar 2011 | A1 |
20110069719 | Fries, IV et al. | Mar 2011 | A1 |
20110077789 | Sun | Mar 2011 | A1 |
20110098869 | Seo et al. | Apr 2011 | A1 |
20110106326 | Anunobi et al. | May 2011 | A1 |
20110106327 | Zhou et al. | May 2011 | A1 |
20110106681 | Cockerell et al. | May 2011 | A1 |
20110113090 | Peeri | May 2011 | A1 |
20110115875 | Sadwick et al. | May 2011 | A1 |
20110117878 | Barash et al. | May 2011 | A1 |
20110117927 | Doyle | May 2011 | A1 |
20110138024 | Chen et al. | Jun 2011 | A1 |
20110148626 | Acevedo | Jun 2011 | A1 |
20110153525 | Benco et al. | Jun 2011 | A1 |
20110160881 | Grey | Jun 2011 | A1 |
20110172837 | Forbes, Jr. | Jul 2011 | A1 |
20110173542 | Imes et al. | Jul 2011 | A1 |
20110202185 | Imes et al. | Aug 2011 | A1 |
20110202195 | Finch et al. | Aug 2011 | A1 |
20110202293 | Kobraei et al. | Aug 2011 | A1 |
20110211584 | Mahmoud | Sep 2011 | A1 |
20110214060 | Imes et al. | Sep 2011 | A1 |
20110224838 | Imes et al. | Sep 2011 | A1 |
20110227704 | Padmanabhan et al. | Sep 2011 | A1 |
20110231020 | Ramachandran et al. | Sep 2011 | A1 |
20110237185 | Murray | Sep 2011 | A1 |
20110246606 | Barbeau et al. | Oct 2011 | A1 |
20110246898 | Imes et al. | Oct 2011 | A1 |
20110251725 | Chan | Oct 2011 | A1 |
20110257809 | Forbes, Jr. et al. | Oct 2011 | A1 |
20110258022 | Forbes, Jr. et al. | Oct 2011 | A1 |
20110264290 | Drew | Oct 2011 | A1 |
20110264296 | Drake et al. | Oct 2011 | A1 |
20110282497 | Josephson et al. | Nov 2011 | A1 |
20110295393 | Lindahl | Dec 2011 | A1 |
20110296169 | Palmer | Dec 2011 | A1 |
20110302431 | Diab et al. | Dec 2011 | A1 |
20110307101 | Imes et al. | Dec 2011 | A1 |
20110316664 | Olcott et al. | Dec 2011 | A1 |
20120022709 | Taylor | Jan 2012 | A1 |
20120061480 | Deligiannis et al. | Mar 2012 | A1 |
20120106672 | Shelton | May 2012 | A1 |
20120126020 | Filson et al. | May 2012 | A1 |
20120157058 | Lowe | Jun 2012 | A1 |
20120169249 | Loveland et al. | Jul 2012 | A1 |
20120179547 | Besore et al. | Jul 2012 | A1 |
20120189140 | Hughes et al. | Jul 2012 | A1 |
20120244805 | Haikonen | Sep 2012 | A1 |
20120312874 | Jonsson | Dec 2012 | A1 |
20120315848 | Smith | Dec 2012 | A1 |
20130052946 | Chatterjee | Feb 2013 | A1 |
20130076491 | Brandsma | Mar 2013 | A1 |
20130083805 | Lu | Apr 2013 | A1 |
20130085620 | Lu | Apr 2013 | A1 |
20130086245 | Lu | Apr 2013 | A1 |
20130086375 | Lyne | Apr 2013 | A1 |
20130087629 | Stefanski et al. | Apr 2013 | A1 |
20130092741 | Loh | Apr 2013 | A1 |
20130099010 | Filson et al. | Apr 2013 | A1 |
20130109404 | Husney | May 2013 | A1 |
20130181819 | McLaren | Jul 2013 | A1 |
20130238140 | Malchiondo | Sep 2013 | A1 |
20140006131 | Causey | Jan 2014 | A1 |
20140181521 | Hemphill | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
1814260 | Aug 2007 | EP |
H0879840 | Mar 1996 | JP |
2006092035 | Apr 2006 | JP |
0227639 | Apr 2002 | WO |
2007109557 | Sep 2007 | WO |
2008134460 | Nov 2008 | WO |
2009034720 | Mar 2009 | WO |
2009036764 | Mar 2009 | WO |
2009067251 | May 2009 | WO |
2009097400 | Aug 2009 | WO |
Entry |
---|
Peffer, T., et al. “A Tale of Two Houses: The Human Dimension of Demand Response Enabling Technology from a Case Study of an Adaptive Wireless Thermostat,” ACEEE Summer Study on Energy Efficiency in Buildings, 2008. |
BAYweb Thermostat system, Nov. 11, 2009. |
Stigge, B. “Informed Home Energy Behavior: Developing a tool for homeowners to monitor, plan and learn about energy conservation,” Massachusetts Institute of Technology, 2001. |
Inncom e529/X529 thermostat and logic board system, Issued Sep. 12, 2006. |
Seligman, C., et al. Behavior Approaches to Residential Energy Conservation. “Saving Energy in the Home.” Ballinger Publishing Co., 1978. |
Slavin, Alison Jane and Trundle, Stephen Scott, Remote Thermostat Control/Energy Monitoring, U.S. Appl. No. 61/179,224, filed May 18, 2009; 14 pages. |
Gupta, Manu, A Persuasive GPS-Controlled Thermostat System, Royal Institute of Technology, Stockholm, Sweden, Jun. 2006; Pune Institute of Computer Technology, University of Pune, India, Jun. 2003 and Massachusetts Institute of Technology, Sep. 2008; 89 pages. |
“A step-by-step guide to installing the 1st generation Nest Learning Thermostat,” Article #1161, 2013 Nest Labs. pp. 1-6. http://http://support.nest.com/article/A-step-by-step-guide-to-installing-the-1st-generation-Nest-Learning-Thermostat, last accessed Feb. 1, 2013. |
Klym et al., The Evolution of RFID Networks: The Potential for Disruptive Innovation, Mar. 2006, MIT Communication Futures Program, pp. 1-20. |
Pering et al., Spontaneous Marriages of Mobile Devices and Interactive Space, Communication of the ACM, Sep. 2005, pp. 53-59. |
Jaring et al., Improving Mobile Solution Workflows and Usability Using Near Field Communication Technology, 2007, Springer-Verlag Berlin Heidelberg, pp. 358-373. |
“Wi-Fi”, Wikipedia, printed Jul. 8, 2013. |
Inncom International, Inc. “Installation User Manual”, Revision 3.1, Sep. 12, 2006, pp. 1-36. |
BAYweb Thermostat Owners Manual, Bay Controls, LLC, published Nov. 11, 2009. |
Gupta, Manu, Intille, Stephen S. and Larson, Kent, Adding GPS-Control to Traditional Thermostats: AN Exploration of Potential Energy Savings and Design Challenges. House—n. Massachusetts Institute of Technology, Cambridge, MA 02142 USA. 2009, Springer-Verlag Berlin, Heideberg. |
Mozer, M., et al. The Neurothermostat: Predictive Optimal Control of Residential Heating Systems. “Advances in Neural Information Processing Systems 9.” MIT Press, 1997. |
“Request-Response”, Wikipedia, Jul. 25, 2013. |
e4 Smart Digital Thermostat—E529, Inncom by Honeywell, revised Aug. 2012 (Aug. 2012). |
Number | Date | Country | |
---|---|---|---|
20140191848 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61749742 | Jan 2013 | US |