Home automation using near field communication

Information

  • Patent Grant
  • 9716530
  • Patent Number
    9,716,530
  • Date Filed
    Tuesday, January 7, 2014
    10 years ago
  • Date Issued
    Tuesday, July 25, 2017
    7 years ago
Abstract
A system includes a network device that is disposed at a site and configured to communicate with a wireless network. A controller is disposed at the site and is in communication with the wireless network, and a passive device is disposed at the site and includes a unique identifier disposed thereon. The system further includes a mobile device associated with the site and which includes a communication chip. The communication chip is configured to read the unique identifier when the mobile device is placed in close proximity to the passive device, and a mobile application disposed on the mobile device is configured to transmit the unique identifier to the controller for use in controlling the network device.
Description
TECHNICAL FIELD

The present disclosure relates to a system and method for providing improved home automation control. More specifically, the present invention relates to a system and method that utilizes near field communication to provide improved home automation control.





BRIEF DESCRIPTION OF THE DRAWINGS

Other aspects of the present disclosure will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:



FIG. 1 is a schematic illustration of a home automation control system in accordance with an aspect of the present disclosure;



FIG. 2 is a schematic illustration of a home automation control system in accordance with another aspect of the present disclosure;



FIG. 3 is a schematic illustration of a home automation control system in accordance with still another aspect of the present disclosure; and



FIG. 4 is a schematic illustration of a home automation control system in accordance with yet another aspect of the present disclosure.





DETAILED DESCRIPTION OF THE DISCLOSURE

Detailed examples of the present disclosure are provided herein; however, it is to be understood that the disclosed examples are merely exemplary and may be embodied in various and alternative forms. It is not intended that these examples illustrate and describe all possible forms of the disclosure. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the disclosure.


The aspects disclosed herein provide a home management system and a method of managing a home management system.


Devices or programs that are in communication with one another need not be in continuous communication with each other unless expressly specified otherwise. In addition, devices or programs that are in communication with one another may communicate directly or indirectly through one or more intermediaries.


For purposes of this disclosure, an home management system, a first network device, a second network device or any combination thereof can include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, entertainment, or other purposes. For example, an home management system, a first network device, a second network device or any combination thereof can include any combination of a personal computer, a PDA, a consumer electronic device, a media device, a smart phone, a cellular or mobile phone, a smart device, a tablet, a television, a smart utility meter, an advanced metering infrastructure, a smart energy device, an energy display device, a home automation controller, an energy hub, a smart energy gateway, a set-top box, a digital media subscriber system, a cable modem, a fiber optic enabled communications device, a media gateway, a home media management system, a network server or storage device, an energy substation, a vehicle charging station, a renewable energy production device, a renewable energy control device, an energy storage management system, a smart appliance, an HVAC system, a water pump, a heat pump, a hot water heater, a thermostat, an energy controller, an irrigation system, a lighting system, an alarm system, a smart power outlet, an energy detection device, a power measurement device, a power measurement unit (PMU), an air handler, a wireless air damper, a humidity control system, a heat and motion sensing device, a smart power outlet, a switch router, wireless router, or other network communication device, or any other suitable device or system, and can vary in size, shape, performance, functionality, and price.


For purposes of this disclosure, a wireless technology may include but is not limited to, IEEE 802.15-based wireless communication, Zigbee® communication, INSETEON communication, X10 communication protocol, Z-Wave® communication, Bluetooth® communication, Wi-Fi® communication, IEEE 802.11-based communication, WiMAX® communication, IEEE 802.16-based communication, various proprietary wireless communications, or any combination thereof.


According to the present disclosure, a system and method for providing home automation control using near field communication (NFC) is provided. NFC standards cover communication protocols and data exchange formats, and are based on existing radio-frequency identification (RFID) standards, including ISO/IEC 14443 and FeliCa, which are hereby incorporated by reference as though set forth fully herein. The standards include ISO/IEC 18092 and those defined by the NFC Forum, which are hereby incorporated by reference. According to an aspect of the disclosure, the system can be employed at a site that includes a variety of different network devices. The site may be any location, such as residential or commercial site, and the network devices can include any device that operates within the site and can connect to a wireless network or otherwise communicate wirelessly. Exemplary network devices include, but are not limited to, a personal computer, a consumer electronic device, a media device, a watch, a smart utility meter, an advanced metering infrastructure, a smart energy device, an energy display device, a home automation controller, an energy hub, a smart energy gateway, a set-top box, a digital media subscriber system, a cable modem, a fiber optic enabled communications device, a media gateway, a home media management system, a network server, an energy substation, a vehicle charging station, a renewable energy production device, a renewable energy control device, an energy storage management system, a smart appliance, an HVAC system, a water pump, a heat pump, a hot water heater, a thermostat, an energy controller, an irrigation system, a lighting system, an alarm system, a smart power outlet, an energy detection device, a power measurement device, a power measurement unit (PMU), an air handler, a wireless air damper, a humidity control system, a heat and motion sensing device, a smart power outlet, a switch router, a wireless router, an automated blind, a tinted window glass system, a television, a coffee maker, and/or a garage door.


With reference to FIG. 1, according to an exemplary aspect, the home automation control system 100 can include a plurality of network devices 102, 104, 106, 108 that may be configured to communicate with a wireless network 110 located at a site 5. Any number of network devices may be employed at the site. According to a further aspect, the system 100 can also include one or more mobile devices 112, 114 that are each identified with the site 5. The mobile devices 112, 114 can be any suitable mobile device that may communicate with the wireless network 110, such as a mobile phone, a tablet, or a laptop computer. Any number of mobile devices can be employed with the system 100. In accordance with this exemplary aspect, each mobile device 112, 114 can include a mobile application 116 disposed thereon to assist in the effectuation of the home automation control system 100. Additionally, each mobile device 112, 114 can include an NFC chip 118 thereon, such as an RFID chip, that has RFID reading capabilities. An exemplary RFID chip that can be employed is a 24 LR series MCU chip available from STMicroelectronics. In accordance with another aspect, the mobile devices 112, 114 could also include a variety of other types of communication chips, including a Z-wave chip, a Zigbee chip, a WiFi chip, a power-line chip or other suitable communication chips depending upon the type of network employed at the site 5.


According to still another aspect, the system 100 can also include a plurality of passive NFC IC chips 120, such as RFID tags, that are disposed in selected locations 10 throughout the site 5. The RFID tags 120 are passive chips that contain a unique identifier that can be programmably mapped to certain information relevant to the operation of the system once the identifier has been read and processed. Pursuant to an aspect, the RFID tags 120 can be associated with various devices 122 within the home, such as a coaster, device charger, or any other suitable structure that may be configured to engage with a mobile device 112, 114. The devices 122 may have the RFID tags 120 embedded therein and may be configured such that the mobile device 112, 114 can be placed in close proximity therewith, such as by resting thereon. By engaging the mobile device 112, 114 with the device 122, the RFID reader 118 on the mobile device 112, 114 is brought into close proximity with the RFID tag 120 in the device 122. When this occurs, the RFID tag 120 is powered up and the unique identifier can be obtained by the RFID reader 118. Alternatively, instead of an RFID tag, a barcode or other suitable passive device may be utilized that contains a unique identifier that can be read and which is mapped to information to be employed in connection with the system. As shown, according to a further aspect, the system 100 may also include a controller 124, which can serve as the hub or brains of the system 100. The controller 124 can also include wireless capabilities such that it is part of the wireless network 110.


According to an aspect of the system 100, a mobile device 112, 114 can be brought into communication with the RFID tag 120 by resting the mobile device 112, 114 on the device 122 such that the RFID reader 118 reads the unique identifier stored on the RFID tag 120. Upon the reading of the RFID tag 120, the mobile application 116 on the mobile device 112, 114 can be triggered. According to an aspect, the mobile device 112, 114 can then communicate with the controller 124 and can transmit the information that was read from the RFID tag 120 to the controller 124 for its use. In accordance with an aspect, the information on each RFID tag 120 may be associated with a specific action related to home automation control. Upon receiving the information on the RFID tag 120, the controller 124 can effectuate the necessary action. It will be appreciated that various RFID tags 120 can be associated with different structures disposed in different locations 10 at the site 5 for communication with the mobile devices 112, 114. Each of the RFID tags 120 can be mapped such that different actions or functions can be effectuated by the controller 124. The information associated with each of the RFID tags 120 can be programmed by a user, for example, through the mobile application, by web based access, or at the controller 124, such as through a touchscreen interface. This allows for customized home automation control through the use of various RFID tags.


In accordance another aspect, the system may be utilized to automate energy management. According to this aspect, a system 200 may be disposed at a residential location, such as at a home. In this exemplary example, the system 200 includes a temperature controller 202, such as a thermostat that can control the operation of an HVAC system at the home. The system 200 may also include a wireless network 204 to which the temperature controller 202 is connected. While a single temperature controller 202 is illustrated, the system 200 may alternatively contain multiple controllers. The system 200 also may include a plurality of mobile devices 206, 208 that are associated with the controller 202 and the system 200. The mobile devices 206, 208 may also be configured to connect to the wireless network 204. According to an aspect, the controller 202 can serve as a gateway which authenticates the mobile devices 206, 208 to permit them access to the system 200. Each mobile device 206, 208 may include a mobile application 218 disposed thereon that allows a user to interact with the controller 202 through interaction with a GUI displayed on the mobile device 206, 208. Pursuant to an aspect, each mobile device 206, 208 can include an RFID reader 210.


Additionally, the system 200 may include a plurality of devices disposed in different locations throughout the home, which each contain a unique passive RFID tag 212 associated therewith. For example, the system 200 can include a first device 214 disposed in a bedroom of the home. According to this example, the system 200 may also include a second device 216 located in a kitchen of the home. According to an aspect, the RFID tags can be embedded in each of the devices 214, 216. As discussed previously, the devices 214, 216 may be any structure configured to communicate with a mobile device 206, 208, such as a pad, a coaster, an inductive charger or the like. Any number of devices with unique RFID tags may be employed in the home. The devices may take on a variety of different shapes, sizes and configurations, and can also be located in any location or room within the home.


According to an aspect, each of the passive RFID tags 212 can contain a unique identifier that the system may map with specific functions or operations. When one of the mobile devices 206, 208 is rested on one of the devices or otherwise brought into communication therewith, the RFID reader 210 on the mobile device 206, 208 can read the unique identifier of the RFID tag 212 and can trigger communication with the temperature controller 202 via the mobile application 218 stored thereon. Based on the unique identifier associated with each RFID tag 212, the temperature controller 202 can take a specific action that is mapped to that unique RFID tag 212.


According to an exemplary aspect, the RFID tag 212 for the first device 214 can be mapped such that when one of the mobile devices 206, 208 is placed thereon or brought into communication therewith, the temperature controller 202 can lower the temperature of the home to a specific set point, such as a night time temperature. Pursuant to another aspect, the RFID tag 212 in the second device 216 can be mapped such that when one of the mobile devices 206, 208 is placed thereon or brought into communication therewith, the temperature controller 202 can raise the temperature of the home to a specific set point, such as if a person has arrived home or gets up in the morning. According to a further aspect, the system can be configured to effectuate action when a mobile device 206, 208 is taken out of communication with an RFID tag.


According to still another aspect, the system 200 can also include a plurality of network devices that are located in the home that can each access the wireless network 204. The controller 202 may regulate the authentication of these devices such that until they are recognized they cannot be joined to the network 204. According to this example, a first network device 220 can be configured as an alarm system. A second network device 222 can be configured as a garage door system. A third network device 224 can be configured as a lighting system. A fourth network device can be configured as a coffee maker system. The system 202 may include more or less network devices and the network devices can be configured as a variety of different apparatus.


According to a further aspect, the various RFID tags can be mapped to effectuate modification of the temperature in the home as well as changes in various operating conditions of one or more of the network devices. According to an example, the RFID tag 212 in the first device 214 can be mapped such that when read by the RFID reader 210 associated with one of the mobile devices 206, 208, the temperature controller 202 not only lowers the temperature set point as discussed above, it can effectuate a change in the operating condition of the first network device 220, the second network device 222 and the third network device 224. For example, the RFID tag 220 in the first device 214 can be mapped such that when one of the mobile devices 206, 208 is brought into close proximity therewith, the alarm system may be turned on, the garage door may be closed, and the lighting system can be turned off.


According to a further example, the RFID tag 212 in the second device 216 can be mapped such that when read by the RFID reader 210 associated with one of the mobile devices 206, 208, the temperature controller 202 not only raises the temperature set point as discussed above, it effectuates a change in the operating condition of the first network device 220, the third network device 224 and the fourth network device 226. For example, the RFID tag 220 in the second device 216 can be mapped such that when one of the mobile devices 206, 208 is brought into close proximity therewith, the alarm system may be turned off, the lighting system may be turned on, and the coffee maker may be turned on. It will be appreciated that each RFID tag can be mapped to effectuate different functions and actions with respect to the temperature controller and the network devices and the described network devices, functions, and combinations are merely exemplary. Obviously, the system may be configured to perform more, less or different functions as desired.


According to still another aspect of the disclosure, the NFC chip (i.e. RFID tag) 300 may also include a temperature sensor 302 associated therewith. According to a further aspect, the sensor 302 can be integrated as part of the NFC chip 300. The NFC chip 300 and the temperature sensor 302 may be incorporated in a device 304 located within the site. As discussed above, the device 304 may be configured to receive a mobile device 306 such that an RFID reader 308 in the mobile device 306 can communicate with the NFC chip 300. According to an aspect, when the mobile device 306 comes into close proximity with the device 304, the RFID reader 308 will read the RFID tag 310 so that the RFID reader 308 can obtain the unique identifier from the RFID tag 310. Concurrently therewith, the ambient temperature reading from the temperature sensor 302 may be transmitted to the RFID reader 308. In accordance with an aspect, the mobile device 306 can transmit the unique identifier and the ambient temperature reading for use by a controller 312 such as a temperature controller. With this information, the controller 312 can automatically adjust the temperature set point in the room where the temperature sensor is located to optimize comfort. In addition to temperature, other information such as time could also be employed to optimize the home automation control system.


Alternatively, the system can include an external temperature sensor that can be used to measure the temperature in the room and communicate that to the NFC chip 300 having a bus or other interface capable of connecting to an external chip. The temperature and identifier could then be communicated to the RFID reader 308 on the mobile device when the mobile device is brought into close proximity to the device having the RFID tag 300. The unique identifier and temperature reading may then be transmitted to the controller 312.


It will be appreciated that the system can be configured to perform a variety of different functions. According to a still a further aspect, the system 400 can be configured such that when a mobile device 402 is brought into proximity with one of the devices 404, the RFID tag 406 is powered up by the RFID reader 408 on the mobile device 402. In accordance with this aspect, the RFID tag 406 contains an identifier that is mapped such that the mobile device 402 through the mobile application disposed thereon will initiate communication with an iCloud server 410 to perform a sync operation such as to upload any new photographs, applications, or the like stored on the mobile devices. Alternatively, the unique identifier on the RFID tag 406 can be mapped such that the mobile application will initiate communication with a local storage 412, such as a memory of a personal computer, to effectuate a sync operation. It will be appreciated that the system can perform a variety of other functions through the utilization of the NFC system.


Note that not all of the activities described above in the general description or the examples are required, that a portion of a specific activity may not be required, and that one or more further activities may be performed in addition to those described. Still further, the sequences in which activities are listed are not necessarily the order in which they are performed.


The specification and illustrations of the embodiments described herein are intended to provide a general understanding of the structure of the various embodiments. The specification and illustrations are not intended to serve as an exhaustive and comprehensive description of all of the elements and features of apparatus and systems that use the structures or methods described herein. Many other embodiments may be apparent to those of skill in the art upon reviewing the disclosure. Other embodiments may be used and derived from the disclosure, such that a structural substitution, logical substitution, or another change may be made without departing from the scope of the disclosure. Accordingly, the disclosure is to be regarded as illustrative rather than restrictive.


Certain features are, for clarity, described herein in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features that are, for brevity, described in the context of a single embodiment, may also be provided separately or in any sub combination. Further, reference to values stated in ranges includes each and every value within that range.


Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any feature(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature of any or all the claims.


The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover any and all such modifications, enhancements, and other embodiments that fall within the scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.


Although only a few exemplary embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the embodiments of the present disclosure. Accordingly, all such modifications are intended to be included within the scope of the embodiments of the present disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures.

Claims
  • 1. A system comprising: a first network device and a second network device disposed at a site and configured to communicate with a wireless network, the first network device configured to perform a first operation of a plurality of operations of the first network device of at least a portion of the site and mapped to the second network device that is configured to perform a second operation of a plurality of operations of the second network device different than the first operation;a controller disposed at the site and in communication with the wireless network;at least one of a plurality of passive devices disposed at the site and including a unique identifier disposed thereon, the unique identifier associated with at least one of the plurality of operations of the first network device and the second network device;the controller configured to communicate with a mobile device associated with the site and including a communication chip disposed thereon, the communication chip configured to read the unique identifier when the mobile device is moved into communication with the at least one of the plurality of passive devices;a mobile application disposed on the mobile device and configured to transmit the unique identifier to the controller; andthe controller further configured to effectuate the first network device to perform the first operation and the second network device to perform the second operation different than the first operation in response to receiving the unique identifier from the mobile application.
  • 2. The system of claim 1, wherein the communication chip is a radio-frequency identification (RFID) reader and the unique identifier is an RFID tag.
  • 3. The system of claim 1, wherein the mobile device comprises at least one of: a mobile phone, a tablet, a watch, and a laptop computer.
  • 4. The system of claim 1, wherein the at least one of the plurality of passive devices comprises at least one of: a coaster, a pad, and an inductive charger.
  • 5. The system of claim 4, wherein the mobile device is further configured to read the unique identifier when the mobile device is placed on the at least one of the plurality of passive devices.
  • 6. The system of claim 1, wherein the unique identifier is programmable through at least one of: the mobile application, the controller, and a web-based server.
  • 7. The system of claim 1, wherein the first network device comprises a thermostat to automatically control the temperature and the unique identifier is associated with a temperature set-point for communication to the controller when the mobile device is disposed in close proximity to the at least one of the plurality of passive devices.
  • 8. The system of claim 1, wherein the second network device comprises an alarm system and the unique identifier is associated with an alarm on or off set-point for communication to the controller when the mobile device is disposed in close proximity to the at least one of the plurality of passive devices.
  • 9. The system of claim 1, wherein the second network device comprises a garage door system and the unique identifier is associated with a garage door open or closed position for communication to the controller when the mobile device is disposed in close proximity to the at least one of the plurality of passive devices.
  • 10. The system of claim 1, wherein the second network device comprises a coffee maker system and the unique identifier is associated with a coffee-maker on set-point for communication to the controller when the mobile device is disposed in close proximity to the at least one of the plurality of passive devices.
  • 11. The system of claim 1, wherein the second network device comprises a lighting system and the unique identifier is associated with a lighting system on or off set-point for communication to the controller when the mobile device is disposed in close proximity to the at least one of the plurality of passive devices.
  • 12. The system of claim 1, wherein the mobile application is further configured to allow a user to interact with the controller using a graphical user interface displayed on the mobile device.
  • 13. The system of claim 1, wherein each of the plurality of passive devices are each disposed in different locations throughout the site.
  • 14. The system of claim 1, wherein the at least one of the plurality of passive devices includes a temperature sensor configured to read an ambient temperature of the site, wherein the communication chip is further configured to read the ambient temperature when the mobile device is disposed in close proximity to the at least one of the plurality of passive devices, and wherein the mobile application is configured to transmit the unique identifier and the read ambient temperature to the controller for use in controlling at least one of the first and second network devices.
  • 15. The system of claim 1, wherein the communication chip is configured to power the at least one of the plurality of passive devices when the mobile device is disposed in closed proximity thereto.
  • 16. The system of claim 1, wherein the mobile device is configured to communicate with a cloud server and the mobile application is configured to synchronize data stored on the mobile device with the cloud server when the mobile device is disposed in close proximity to the at least one of the plurality of passive devices.
  • 17. The system of claim 16, wherein the mobile device is configured to communicate with a memory of a computer for storing the data stored on the mobile device and the mobile application is configured to synchronize the data stored on the mobile device with the memory of the computer when the mobile device is disposed in close proximity to the at least one of the plurality of passive devices.
  • 18. The system of claim 1, wherein the communication chip comprises at least one of: a Z-wave chip, a Zigbee chip, a WiFi chip, and a power-line chip.
  • 19. The system of claim 1, wherein the first network device includes at least one of: an HVAC system, a heat pump, and a thermostat; and wherein the second network device includes at least one of: a personal computer, a consumer electronic device, a media device, a smart utility meter, an advanced metering infrastructure, a smart energy device, an energy display device, a home automation controller, an energy hub, a smart energy gateway, a set-top box, a digital media subscriber system, a cable modem, a fiber optic enabled communications device, a media gateway, a home media management system, a network server, an energy substation, a vehicle charging station, a renewable energy production device, a renewable energy control device, an energy storage management system, a smart appliance, a water pump, a hot water heater, an energy controller, an irrigation system, a lighting system, an alarm system, a smart power outlet, an energy detection device, a power measurement device, a power measurement unit (PMU), an air handler, a wireless air damper, a humidity control system, a heat and motion sensing device, a switch router, a wireless router, an automated blind, a tinted window glass system, a television, a coffee maker, and a garage door.
  • 20. A system comprising: a first network device disposed at a site and configured to communicate with a wireless network and to perform a first operation of at least a portion of the site;a second network device disposed at the site, mapped to the first network device, and configured to communicate with the wireless network and to perform a second operation different than the first operation;a controller disposed at the site and in communication with the wireless network;a passive device disposed at the site and including a unique identifier disposed thereon, the unique identifier associated with the first operation of the first network device and the second operation of the second network device different than the first operation;the controller configured to communication with a mobile device associated with the site and including a communication chip disposed thereon, the communication chip configured to read the unique identifier when the mobile device is moved into communication with the passive device;a mobile application disposed on the mobile device and configured to transmit the unique identified to the controller; andthe controller further configured to effectuate the first network device to perform the first operation and the second network device to perform the second operation different than the first operation in response to receipt of the unique identifier from the mobile application.
CROSS-REFERENCE TO RELATED APPLICATIONS

The subject application claims priority to U.S. Provisional Application Ser. No. 61/749,742 entitled “Home Automation Using Near Field Communication”, filed on Jan. 7, 2013, which is hereby incorporated by reference herein.

US Referenced Citations (495)
Number Name Date Kind
1568584 Blankenship Jan 1926 A
2042633 Richardson Jun 1936 A
2427965 Henderson Sep 1947 A
2931006 Klumpp, Jr. Mar 1960 A
2960677 Stearn et al. Nov 1960 A
3194957 Caldwell et al. Jul 1965 A
3237148 Ege Feb 1966 A
3531759 Hansen Sep 1970 A
3675183 Drake Jul 1972 A
3808602 Foster et al. Apr 1974 A
4407447 Sayegh Oct 1983 A
4437716 Cooper Mar 1984 A
4497031 Froehling et al. Jan 1985 A
4645286 Isban et al. Feb 1987 A
5127575 Beerbaum Jul 1992 A
5274571 Hesse et al. Dec 1993 A
5289362 Liebl et al. Feb 1994 A
5461390 Hoshen Oct 1995 A
5476221 Seymour Dec 1995 A
5537339 Naganuma et al. Jul 1996 A
5544036 Brown, Jr. et al. Aug 1996 A
5566084 Cmar Oct 1996 A
5595342 McNair et al. Jan 1997 A
5682949 Ratcliffe et al. Nov 1997 A
5725148 Hartman Mar 1998 A
5729442 Frantz Mar 1998 A
5764146 Baldwin et al. Jun 1998 A
5812949 Taketsugu Sep 1998 A
5819840 Wilson et al. Oct 1998 A
5884072 Rasmussen Mar 1999 A
5964625 Farley Oct 1999 A
5987379 Smith Nov 1999 A
6014080 Layson, Jr. Jan 2000 A
6073019 Lowdon Jun 2000 A
6108614 Lincoln et al. Aug 2000 A
6128661 Flanagin et al. Oct 2000 A
6175078 Bambardekar et al. Jan 2001 B1
6353180 DeBartolo, Jr. et al. Mar 2002 B1
6400956 Richton Jun 2002 B1
6442639 McElhattan et al. Aug 2002 B1
6478233 Shah Nov 2002 B1
6483028 DeBartolo, Jr. et al. Nov 2002 B2
6553418 Collins et al. Apr 2003 B1
6623311 Dehan Sep 2003 B1
6636893 Fong Oct 2003 B1
6684087 Yu et al. Jan 2004 B1
6785542 Blight et al. Aug 2004 B1
6785630 Kolk et al. Aug 2004 B2
6850252 Hoffberg Feb 2005 B1
6868293 Schurr et al. Mar 2005 B1
6975958 Bohrer et al. Dec 2005 B2
6976366 Starling et al. Dec 2005 B2
6980659 Elliott Dec 2005 B1
6999757 Bates et al. Feb 2006 B2
7016751 Nordquist et al. Mar 2006 B2
7031945 Donner Apr 2006 B1
7082460 Hansen et al. Jul 2006 B2
7083109 Pouchak Aug 2006 B2
7099483 Inagaki Aug 2006 B2
7114554 Bergman et al. Oct 2006 B2
7127328 Ransom Oct 2006 B2
7127734 Amit Oct 2006 B1
7130719 Ehlers et al. Oct 2006 B2
7139564 Hebert Nov 2006 B2
7140551 De Pauw et al. Nov 2006 B2
7155305 Hayes et al. Dec 2006 B2
7159789 Schwendinger et al. Jan 2007 B2
7188003 Ransom et al. Mar 2007 B2
7197011 Fong Mar 2007 B2
7216021 Matsubara et al. May 2007 B2
7222800 Wruck May 2007 B2
7224966 Caspi et al. May 2007 B2
7252230 Sheikh Aug 2007 B1
7257397 Shamoon et al. Aug 2007 B2
7343226 Ehlers et al. Mar 2008 B2
7349761 Cruse Mar 2008 B1
7363053 Dalton et al. Apr 2008 B2
7403838 Deen et al. Jul 2008 B2
7444401 Keyghobad et al. Oct 2008 B1
7451017 McNally Nov 2008 B2
7460827 Schuster et al. Dec 2008 B2
7477617 Chen et al. Jan 2009 B2
7510126 Rossi et al. Mar 2009 B2
7525425 Diem Apr 2009 B2
7526539 Hsu Apr 2009 B1
7554437 Axelsen Jun 2009 B2
7565225 Dushane Jul 2009 B2
7567844 Thomas et al. Jul 2009 B2
7574208 Hanson et al. Aug 2009 B2
7574283 Wang et al. Aug 2009 B2
7590703 Cashman et al. Sep 2009 B2
7644591 Singh et al. Jan 2010 B2
7665670 Ahmed Feb 2010 B2
7668532 Shamoon et al. Feb 2010 B2
7671544 Clark et al. Mar 2010 B2
7693581 Callaghan et al. Apr 2010 B2
7706928 Howell et al. Apr 2010 B1
7715951 Forbes et al. May 2010 B2
7747739 Bridges et al. Jun 2010 B2
7752309 Keyghobad et al. Jul 2010 B2
7761910 Ransom Jul 2010 B2
7775453 Hara Aug 2010 B2
7783738 Keyghobad et al. Aug 2010 B2
7792946 Keyghobad et al. Sep 2010 B2
7798417 Snyder et al. Sep 2010 B2
7812766 Leblanc et al. Oct 2010 B2
7813831 McCoy et al. Oct 2010 B2
7865252 Clayton Jan 2011 B2
7881816 Mathiesen et al. Feb 2011 B2
7884727 Tran Feb 2011 B2
7886166 Schnekendorf et al. Feb 2011 B2
7895257 Helal et al. Feb 2011 B2
7908019 Ebrom et al. Mar 2011 B2
7908116 Steinberg et al. Mar 2011 B2
7908117 Steinberg et al. Mar 2011 B2
7912559 McCoy et al. Mar 2011 B2
7917914 McCoy et al. Mar 2011 B2
7918406 Rosen Apr 2011 B2
7921429 McCoy et al. Apr 2011 B2
7941530 Ha et al. May 2011 B2
7949615 Ehlers et al. May 2011 B2
7953518 Kansal et al. May 2011 B2
7973707 Verechtchiagine Jul 2011 B2
7975051 Saint Clair et al. Jul 2011 B2
7979163 Terlson et al. Jul 2011 B2
8005780 McCoy et al. Aug 2011 B2
8010237 Cheung et al. Aug 2011 B2
8010418 Lee Aug 2011 B1
8010812 Forbes, Jr. et al. Aug 2011 B2
8019445 Marhoefer Sep 2011 B2
8024073 Imes et al. Sep 2011 B2
8028049 Ellis et al. Sep 2011 B1
8028302 Glotzbach et al. Sep 2011 B2
8032233 Forbes, Jr. et al. Oct 2011 B2
8042048 Wilson et al. Oct 2011 B2
8049592 Wang et al. Nov 2011 B2
8063775 Reed et al. Nov 2011 B2
8082065 Imes et al. Dec 2011 B2
8090477 Steinberg Jan 2012 B1
8091765 Jiang et al. Jan 2012 B2
8091795 McLellan et al. Jan 2012 B1
8099195 Imes et al. Jan 2012 B2
8099198 Gurin Jan 2012 B2
8108076 Imes et al. Jan 2012 B2
8117299 Narayanaswami et al. Feb 2012 B2
8126685 Nasle Feb 2012 B2
8131401 Nasle Mar 2012 B2
8140279 Subbloie Mar 2012 B2
8140667 Keyghobad et al. Mar 2012 B2
8176112 Hicks, IIII et al. May 2012 B2
8204979 Vutharkar et al. Jun 2012 B2
8214270 Schaefer et al. Jul 2012 B2
8280556 Besore et al. Oct 2012 B2
8306634 Nguyen et al. Nov 2012 B2
8350694 Trundle et al. Jan 2013 B1
8355865 Wagner et al. Jan 2013 B2
8406783 Eitan et al. Mar 2013 B2
8406933 Nagel et al. Mar 2013 B2
8461725 Stubbs Jun 2013 B1
8498572 Schooley Jul 2013 B1
9080782 Sheikh Jul 2015 B1
20020073217 Ma et al. Jun 2002 A1
20020147006 Coon et al. Oct 2002 A1
20020194500 Bajikar Dec 2002 A1
20020196151 Troxler Dec 2002 A1
20020198984 Goldstein et al. Dec 2002 A1
20030120817 Ott et al. Jun 2003 A1
20030122684 Porter et al. Jul 2003 A1
20030149734 Aaltonen et al. Aug 2003 A1
20030210126 Kanazawa Nov 2003 A1
20040034484 Solomita, Jr. et al. Feb 2004 A1
20040078153 Bartone et al. Apr 2004 A1
20040087314 Duncan May 2004 A1
20040119600 Hampton Jun 2004 A1
20040133314 Ehlers et al. Jul 2004 A1
20040193329 Ransom et al. Sep 2004 A1
20040212493 Stilp Oct 2004 A1
20040212500 Stilp Oct 2004 A1
20050038326 Mathur Feb 2005 A1
20050040247 Pouchak Feb 2005 A1
20050040250 Wruck Feb 2005 A1
20050044427 Dunstan et al. Feb 2005 A1
20050060575 Trethewey et al. Mar 2005 A1
20050090267 Kotzin Apr 2005 A1
20050131583 Ransom Jun 2005 A1
20050143863 Ruane et al. Jun 2005 A1
20050144437 Ransom et al. Jun 2005 A1
20050172056 Ahn Aug 2005 A1
20050194457 Dolan Sep 2005 A1
20050242945 Perkinson Nov 2005 A1
20050246561 Wu et al. Nov 2005 A1
20060012489 Yokota et al. Jan 2006 A1
20060063522 McFarland Mar 2006 A1
20060097063 Zeevi May 2006 A1
20060099971 Staton et al. May 2006 A1
20060102732 Garrett et al. May 2006 A1
20060122715 Schroeder et al. Jun 2006 A1
20060161635 Lamkin et al. Jul 2006 A1
20060179079 Kolehmainen Aug 2006 A1
20060190538 Hwang Aug 2006 A1
20060205354 Pirzada Sep 2006 A1
20060224901 Lowe Oct 2006 A1
20060253590 Nagy Nov 2006 A1
20060253894 Bookman et al. Nov 2006 A1
20060265489 Moore Nov 2006 A1
20060276175 Chandran Dec 2006 A1
20060283965 Mueller et al. Dec 2006 A1
20070032225 Konicek et al. Feb 2007 A1
20070037554 Freeny Feb 2007 A1
20070037605 Logan Feb 2007 A1
20070043477 Ehlers et al. Feb 2007 A1
20070043478 Ehlers et al. Feb 2007 A1
20070045431 Chapman et al. Mar 2007 A1
20070054616 Culbert Mar 2007 A1
20070055760 McCoy et al. Mar 2007 A1
20070060171 Sudit et al. Mar 2007 A1
20070061050 Hoffknecht Mar 2007 A1
20070061266 Moore et al. Mar 2007 A1
20070061487 Moore et al. Mar 2007 A1
20070112939 Wilson et al. May 2007 A1
20070114295 Jenkins May 2007 A1
20070115902 Shamoon et al. May 2007 A1
20070124026 Troxell et al. May 2007 A1
20070136217 Johnson et al. Jun 2007 A1
20070155401 Ward et al. Jul 2007 A1
20070156265 McCoy et al. Jul 2007 A1
20070156864 McCoy et al. Jul 2007 A1
20070156882 McCoy et al. Jul 2007 A1
20070158442 Chapman et al. Jul 2007 A1
20070160022 McCoy et al. Jul 2007 A1
20070162158 McCoy et al. Jul 2007 A1
20070168486 McCoy et al. Jul 2007 A1
20070176771 Doyle Aug 2007 A1
20070188319 Upton Aug 2007 A1
20070190939 Abel Aug 2007 A1
20070197236 Ahn et al. Aug 2007 A1
20070200712 Arneson Aug 2007 A1
20070221741 Wagner et al. Sep 2007 A1
20070240173 McCoy et al. Oct 2007 A1
20070241203 Wagner et al. Oct 2007 A1
20070249319 Faulkner et al. Oct 2007 A1
20070273307 Westrick et al. Nov 2007 A1
20070274241 Brothers Nov 2007 A1
20070282748 Saint Clair et al. Dec 2007 A1
20070285510 Lipton et al. Dec 2007 A1
20070287410 Bae et al. Dec 2007 A1
20070287473 Dupray Dec 2007 A1
20070288610 Saint Clair et al. Dec 2007 A1
20070288975 Cashman et al. Dec 2007 A1
20080004904 Tran Jan 2008 A1
20080017722 Snyder et al. Jan 2008 A1
20080046878 Anderson Feb 2008 A1
20080082838 Achariyakosol et al. Apr 2008 A1
20080099568 Nicodem et al. May 2008 A1
20080103610 Ebrom et al. May 2008 A1
20080104208 Ebrom et al. May 2008 A1
20080104212 Ebrom et al. May 2008 A1
20080109830 Giotzbach et al. May 2008 A1
20080127325 Ebrom et al. May 2008 A1
20080137670 Ebrom et al. Jun 2008 A1
20080177678 Di Martini et al. Jul 2008 A1
20080177994 Mayer Jul 2008 A1
20080188963 McCoy Aug 2008 A1
20080218307 Schoettle Sep 2008 A1
20080219186 Bell et al. Sep 2008 A1
20080219227 Michaelis Sep 2008 A1
20080219239 Bell et al. Sep 2008 A1
20080221737 Josephson et al. Sep 2008 A1
20080248751 Pirzada Oct 2008 A1
20080249642 Chen Oct 2008 A1
20080262820 Nasle Oct 2008 A1
20080270562 Jin et al. Oct 2008 A1
20080271123 Ollis et al. Oct 2008 A1
20080272934 Wang et al. Nov 2008 A1
20080277486 Seem et al. Nov 2008 A1
20080277487 Mueller et al. Nov 2008 A1
20080281472 Podgorny et al. Nov 2008 A1
20080281666 Kessman et al. Nov 2008 A1
20080291855 Bata et al. Nov 2008 A1
20080305644 Noda et al. Dec 2008 A1
20080313310 Vasa et al. Dec 2008 A1
20090001182 Siddaramanna et al. Jan 2009 A1
20090005061 Ward et al. Jan 2009 A1
20090012704 Franco et al. Jan 2009 A1
20090037938 Frank Feb 2009 A1
20090062970 Forbes, Jr. et al. Mar 2009 A1
20090063122 Nasle Mar 2009 A1
20090063228 Forbes, Jr. Mar 2009 A1
20090065596 Seem et al. Mar 2009 A1
20090076749 Nasle Mar 2009 A1
20090082015 Ravi Mar 2009 A1
20090082888 Johansen Mar 2009 A1
20090083167 Subbloie Mar 2009 A1
20090093688 Mathur Apr 2009 A1
20090098857 De Atley Apr 2009 A1
20090098880 Lindquist Apr 2009 A1
20090100492 Hicks, III et al. Apr 2009 A1
20090103535 McCoy et al. Apr 2009 A1
20090112522 Rasmussen Apr 2009 A1
20090113037 Pouchak Apr 2009 A1
20090129301 Belimpasakis May 2009 A1
20090132070 Ebrom et al. May 2009 A1
20090135836 Veillette May 2009 A1
20090138099 Veillette May 2009 A1
20090157529 Ehlers et al. Jun 2009 A1
20090160626 Jeon et al. Jun 2009 A1
20090164049 Nibler et al. Jun 2009 A1
20090170431 Pering Jul 2009 A1
20090170483 Barnett Jul 2009 A1
20090187499 Mulder et al. Jul 2009 A1
20090193217 Korecki et al. Jul 2009 A1
20090195349 Frader-Thompson et al. Aug 2009 A1
20090204837 Raval et al. Aug 2009 A1
20090240381 Lane Sep 2009 A1
20090248702 Schwartz et al. Oct 2009 A1
20090267787 Pryor et al. Oct 2009 A1
20090270138 Raveendran Oct 2009 A1
20090302994 Rhee et al. Dec 2009 A1
20090305644 Rhee et al. Dec 2009 A1
20090312968 Phillips Dec 2009 A1
20090313689 Nystrom Dec 2009 A1
20090316671 Rolf et al. Dec 2009 A1
20100017126 Holcman et al. Jan 2010 A1
20100034386 Choong et al. Feb 2010 A1
20100035587 Bennett Feb 2010 A1
20100035613 Schroter Feb 2010 A1
20100063867 Proctor, Jr. et al. Mar 2010 A1
20100066507 Myllymaeki Mar 2010 A1
20100069035 Johnson Mar 2010 A1
20100069087 Chow et al. Mar 2010 A1
20100070100 Finlinson et al. Mar 2010 A1
20100070101 Benes et al. Mar 2010 A1
20100075656 Howarter et al. Mar 2010 A1
20100077466 Lowe Mar 2010 A1
20100081375 Rosenblatt et al. Apr 2010 A1
20100081468 Brothers Apr 2010 A1
20100082174 Weaver Apr 2010 A1
20100082176 Chang Apr 2010 A1
20100082431 Ramer et al. Apr 2010 A1
20100087932 McCoy et al. Apr 2010 A1
20100088261 Montalvo Apr 2010 A1
20100094475 Masters et al. Apr 2010 A1
20100094737 Lambird Apr 2010 A1
20100099410 Sweeney et al. Apr 2010 A1
20100100253 Fausak et al. Apr 2010 A1
20100113061 Holcman May 2010 A1
20100115314 Sultenfuss May 2010 A1
20100121499 Besore et al. May 2010 A1
20100123414 Antonopoulos May 2010 A1
20100127854 Helvick et al. May 2010 A1
20100127889 Vogel et al. May 2010 A1
20100130178 Bennett et al. May 2010 A1
20100130213 Vendrow et al. May 2010 A1
20100138764 Hatambeiki et al. Jun 2010 A1
20100141437 Karam et al. Jun 2010 A1
20100145534 Forbes, Jr. et al. Jun 2010 A1
20100152997 De Silva et al. Jun 2010 A1
20100156665 Krzyzanowski et al. Jun 2010 A1
20100159936 Brisebois et al. Jun 2010 A1
20100161148 Forbes, Jr. et al. Jun 2010 A1
20100161149 Nguyen et al. Jun 2010 A1
20100164713 Wedig et al. Jul 2010 A1
20100165861 Rrdland et al. Jul 2010 A1
20100169030 Parlos et al. Jul 2010 A1
20100174643 Schaefer et al. Jul 2010 A1
20100179670 Forbes, Jr. et al. Jul 2010 A1
20100179672 Beckmann et al. Jul 2010 A1
20100179708 Watson et al. Jul 2010 A1
20100187219 Besore et al. Jul 2010 A1
20100188239 Rockwell Jul 2010 A1
20100188279 Shamilian et al. Jul 2010 A1
20100191352 Quail Jul 2010 A1
20100193592 Simon et al. Aug 2010 A1
20100198713 Forbes, Jr. et al. Aug 2010 A1
20100207728 Roscoe et al. Aug 2010 A1
20100217450 Beal et al. Aug 2010 A1
20100217451 Kouda et al. Aug 2010 A1
20100217452 McCord et al. Aug 2010 A1
20100217549 Galvin et al. Aug 2010 A1
20100217550 Crabtree et al. Aug 2010 A1
20100217642 Crubtree et al. Aug 2010 A1
20100217651 Crabtree et al. Aug 2010 A1
20100217837 Ansari et al. Aug 2010 A1
20100218108 Crabtree et al. Aug 2010 A1
20100222935 Forbes, Jr. et al. Sep 2010 A1
20100228854 Morrison et al. Sep 2010 A1
20100235008 Forbes, Jr. et al. Sep 2010 A1
20100241275 Crawford et al. Sep 2010 A1
20100249955 Sitton Sep 2010 A1
20100250590 Galvin Sep 2010 A1
20100256823 Cherukuri et al. Oct 2010 A1
20100257539 Narayanan et al. Oct 2010 A1
20100261465 Rhoads et al. Oct 2010 A1
20100262298 Johnson et al. Oct 2010 A1
20100262299 Cheung et al. Oct 2010 A1
20100262336 Rivas et al. Oct 2010 A1
20100272192 Varadarajan et al. Oct 2010 A1
20100289643 Trundle et al. Nov 2010 A1
20100299265 Walters et al. Nov 2010 A1
20100299517 Jukic et al. Nov 2010 A1
20100305773 Cohen Dec 2010 A1
20100315235 Adegoke et al. Dec 2010 A1
20100315438 Horodezky et al. Dec 2010 A1
20100317332 Bathiche et al. Dec 2010 A1
20100317371 Westerinen et al. Dec 2010 A1
20100318198 Smith et al. Dec 2010 A1
20100324956 Lopez et al. Dec 2010 A1
20100324962 Nesler et al. Dec 2010 A1
20100332373 Crabtree et al. Dec 2010 A1
20110004350 Cheifetz et al. Jan 2011 A1
20110004355 Wang et al. Jan 2011 A1
20110004513 Hoffberg Jan 2011 A1
20110015797 Gilstrap Jan 2011 A1
20110015802 Imes Jan 2011 A1
20110016023 Zakas Jan 2011 A1
20110022239 Forbes, Jr. et al. Jan 2011 A1
20110022242 Bukhin et al. Jan 2011 A1
20110029655 Forbes, Jr. et al. Feb 2011 A1
20110039518 Maria Feb 2011 A1
20110040666 Crabtree et al. Feb 2011 A1
20110046792 Imes et al. Feb 2011 A1
20110046798 Imes et al. Feb 2011 A1
20110046799 Imes et al. Feb 2011 A1
20110046800 Imes et al. Feb 2011 A1
20110046801 Imes et al. Feb 2011 A1
20110047482 Arthurs et al. Feb 2011 A1
20110051823 Imes et al. Mar 2011 A1
20110054699 Imes et al. Mar 2011 A1
20110054710 Imes et al. Mar 2011 A1
20110061014 Frader-Thompson et al. Mar 2011 A1
20110063126 Kennedy et al. Mar 2011 A1
20110063999 Erdmann et al. Mar 2011 A1
20110069719 Fries, IV et al. Mar 2011 A1
20110077789 Sun Mar 2011 A1
20110098869 Seo et al. Apr 2011 A1
20110106326 Anunobi et al. May 2011 A1
20110106327 Zhou et al. May 2011 A1
20110106681 Cockerell et al. May 2011 A1
20110113090 Peeri May 2011 A1
20110115875 Sadwick et al. May 2011 A1
20110117878 Barash et al. May 2011 A1
20110117927 Doyle May 2011 A1
20110138024 Chen et al. Jun 2011 A1
20110148626 Acevedo Jun 2011 A1
20110153525 Benco et al. Jun 2011 A1
20110160881 Grey Jun 2011 A1
20110172837 Forbes, Jr. Jul 2011 A1
20110173542 Imes et al. Jul 2011 A1
20110202185 Imes et al. Aug 2011 A1
20110202195 Finch et al. Aug 2011 A1
20110202293 Kobraei et al. Aug 2011 A1
20110211584 Mahmoud Sep 2011 A1
20110214060 Imes et al. Sep 2011 A1
20110224838 Imes et al. Sep 2011 A1
20110227704 Padmanabhan et al. Sep 2011 A1
20110231020 Ramachandran et al. Sep 2011 A1
20110237185 Murray Sep 2011 A1
20110246606 Barbeau et al. Oct 2011 A1
20110246898 Imes et al. Oct 2011 A1
20110251725 Chan Oct 2011 A1
20110257809 Forbes, Jr. et al. Oct 2011 A1
20110258022 Forbes, Jr. et al. Oct 2011 A1
20110264290 Drew Oct 2011 A1
20110264296 Drake et al. Oct 2011 A1
20110282497 Josephson et al. Nov 2011 A1
20110295393 Lindahl Dec 2011 A1
20110296169 Palmer Dec 2011 A1
20110302431 Diab et al. Dec 2011 A1
20110307101 Imes et al. Dec 2011 A1
20110316664 Olcott et al. Dec 2011 A1
20120022709 Taylor Jan 2012 A1
20120061480 Deligiannis et al. Mar 2012 A1
20120106672 Shelton May 2012 A1
20120126020 Filson et al. May 2012 A1
20120157058 Lowe Jun 2012 A1
20120169249 Loveland et al. Jul 2012 A1
20120179547 Besore et al. Jul 2012 A1
20120189140 Hughes et al. Jul 2012 A1
20120244805 Haikonen Sep 2012 A1
20120312874 Jonsson Dec 2012 A1
20120315848 Smith Dec 2012 A1
20130052946 Chatterjee Feb 2013 A1
20130076491 Brandsma Mar 2013 A1
20130083805 Lu Apr 2013 A1
20130085620 Lu Apr 2013 A1
20130086245 Lu Apr 2013 A1
20130086375 Lyne Apr 2013 A1
20130087629 Stefanski et al. Apr 2013 A1
20130092741 Loh Apr 2013 A1
20130099010 Filson et al. Apr 2013 A1
20130109404 Husney May 2013 A1
20130181819 McLaren Jul 2013 A1
20130238140 Malchiondo Sep 2013 A1
20140006131 Causey Jan 2014 A1
20140181521 Hemphill Jun 2014 A1
Foreign Referenced Citations (10)
Number Date Country
1814260 Aug 2007 EP
H0879840 Mar 1996 JP
2006092035 Apr 2006 JP
0227639 Apr 2002 WO
2007109557 Sep 2007 WO
2008134460 Nov 2008 WO
2009034720 Mar 2009 WO
2009036764 Mar 2009 WO
2009067251 May 2009 WO
2009097400 Aug 2009 WO
Non-Patent Literature Citations (18)
Entry
Peffer, T., et al. “A Tale of Two Houses: The Human Dimension of Demand Response Enabling Technology from a Case Study of an Adaptive Wireless Thermostat,” ACEEE Summer Study on Energy Efficiency in Buildings, 2008.
BAYweb Thermostat system, Nov. 11, 2009.
Stigge, B. “Informed Home Energy Behavior: Developing a tool for homeowners to monitor, plan and learn about energy conservation,” Massachusetts Institute of Technology, 2001.
Inncom e529/X529 thermostat and logic board system, Issued Sep. 12, 2006.
Seligman, C., et al. Behavior Approaches to Residential Energy Conservation. “Saving Energy in the Home.” Ballinger Publishing Co., 1978.
Slavin, Alison Jane and Trundle, Stephen Scott, Remote Thermostat Control/Energy Monitoring, U.S. Appl. No. 61/179,224, filed May 18, 2009; 14 pages.
Gupta, Manu, A Persuasive GPS-Controlled Thermostat System, Royal Institute of Technology, Stockholm, Sweden, Jun. 2006; Pune Institute of Computer Technology, University of Pune, India, Jun. 2003 and Massachusetts Institute of Technology, Sep. 2008; 89 pages.
“A step-by-step guide to installing the 1st generation Nest Learning Thermostat,” Article #1161, 2013 Nest Labs. pp. 1-6. http://http://support.nest.com/article/A-step-by-step-guide-to-installing-the-1st-generation-Nest-Learning-Thermostat, last accessed Feb. 1, 2013.
Klym et al., The Evolution of RFID Networks: The Potential for Disruptive Innovation, Mar. 2006, MIT Communication Futures Program, pp. 1-20.
Pering et al., Spontaneous Marriages of Mobile Devices and Interactive Space, Communication of the ACM, Sep. 2005, pp. 53-59.
Jaring et al., Improving Mobile Solution Workflows and Usability Using Near Field Communication Technology, 2007, Springer-Verlag Berlin Heidelberg, pp. 358-373.
“Wi-Fi”, Wikipedia, printed Jul. 8, 2013.
Inncom International, Inc. “Installation User Manual”, Revision 3.1, Sep. 12, 2006, pp. 1-36.
BAYweb Thermostat Owners Manual, Bay Controls, LLC, published Nov. 11, 2009.
Gupta, Manu, Intille, Stephen S. and Larson, Kent, Adding GPS-Control to Traditional Thermostats: AN Exploration of Potential Energy Savings and Design Challenges. House—n. Massachusetts Institute of Technology, Cambridge, MA 02142 USA. 2009, Springer-Verlag Berlin, Heideberg.
Mozer, M., et al. The Neurothermostat: Predictive Optimal Control of Residential Heating Systems. “Advances in Neural Information Processing Systems 9.” MIT Press, 1997.
“Request-Response”, Wikipedia, Jul. 25, 2013.
e4 Smart Digital Thermostat—E529, Inncom by Honeywell, revised Aug. 2012 (Aug. 2012).
Related Publications (1)
Number Date Country
20140191848 A1 Jul 2014 US
Provisional Applications (1)
Number Date Country
61749742 Jan 2013 US