The present disclosure relates to homogeneously dispersed multimetal catalysts. Exemplary embodiments include oxygen-evolving and CO2 reduction catalysts for the production of chemically stored energy from electricity. Embodiments include multimetal oxy-hydroxides. Embodiments of the present disclosure include methods of production of the catalysts.
Efficient, cost-effective and long-lived electrolysers are a crucial missing piece along the path to practical energy storage. Energy storage is important in a number of application areas including the storage of energy obtained from renewable sources, including electricity (1, 2). One limiting factor in improving water-splitting technologies is the oxygen evolution reaction (OER). The most efficient available catalysts require a substantial overpotential to reach the desired current densities ˜10 mA cm−2 (2, 3) even in favorable electrolyte pH (typically pH˜13-14). To date, the best OER catalysts in alkaline media are NiFe oxy-hydroxide materials which typically require an overpotential of over 280 mV at a current density of 10 mA cm−2. Materials based on earth-abundant first-row (3d) transition metals, including 3d metal oxy-hydroxides (4, 5), oxide perovskites (6), cobalt phosphate composites (7), nickel borate composites (8), and molecular complexes (9, 10), are of interest in overcoming these limitations and improving catalysts.
A drawback to current OER electrode compositions is the lack of fine control over the adsorption energetics of the various OER intermediates (O, OH, and OOH) with respect to the adsorption energetics optimal for maximum efficiency OER. Intercalation of additional elements, so called modulators, into the active catalyst matrix can be used to modulate the activity of the nearby active catalytic atomic sites. However, the choice of modulator is limited to elements of similar atomic size to that of the host matrix, whereas significantly larger or smaller elements tend to phase segregate due to lattice mismatch and strain accumulation, thus limiting the effect of modulators to the few nearest sites in the host matrix (11-13).
The present disclosure provides a substantially homogeneously dispersed multimetal oxy-hydroxide catalyst comprising at least two metals, at least one metal being a transition metal, and at least a second metal which is structurally dissimilar to the at least one metal, such that the multimetal oxy-hydroxide is characterized by being substantially homogeneously dispersed on sub-10 nm scale and generally not crystalline. In an embodiment, a multimetal catalyst can be produced from this multimetal oxy-hydroxide catalyst by exposing the later to a reducing environment.
An exemplary reducing environment is provided by electrochemically reducing the homogeneously dispersed multimetal oxy-hydroxide catalyst.
The present disclosure provides a substantially homogeneously dispersed multimetal oxy-hydroxide catalyst comprising at least two metals, at least one of the metals being from a first class of metals which includes Ni, Fe and Co, and at least one metal or non-metal which are structurally dissimilar to the metal in the first class, the at least one metal being from a second class of metals which are structurally dissimilar to the metals in the first class and includes W, Mo, Mn, Mg, Cr, Ba, Sb, Bi, Sn, Ce, Pb, Ir and Re, and the non-metal being one of B and P.
The present disclosure provides a homogeneously dispersed multimetal oxy-hydroxide catalyst made using multimetals with at least one of them being structurally dissimilar to the other metals, comprising:
a homogeneously dispersed multimetal oxy-hydroxide catalyst coated on said conductive substrate, said homogeneously dispersed multimetal oxy-hydroxide comprising a first metal being iron (Fe),
In this embodiment, when the second metal is cobalt, a ratio of the Fe:Co:M3 being 1:X:Y, wherein X ranges from about 0.1 to about 10, and Y ranges from about 0.001 to about 10.
When the second metal is cobalt, a ratio of the Fe:Co:M3 being 1:X:Y, wherein X ranges from about 0.5 to about 1.5, Y ranges from about 0.5 to about 1.5.
When the second metal is nickel, a ratio of the Fe:Ni:M3 being 1:X:Y, wherein X ranges from about 0.1 to about 10, and Y ranges from about 0.001 to about 10.
When the second metal is nickel, a ratio of the Fe:Ni:M3 being 1:X:Y, wherein X ranges from about 5 to about 10, Y ranges from about 0.5 to about 1.5.
When the second metal is cobalt and the third element is tungsten (W), including a fourth element which is molybdenum (Mo) and a ratio of the Fe:Co:W:Mo being about 1:X:Y:Z, wherein X ranges from about 0.1 to about 10, Y ranges from about 0.001 to about 10, and Z ranges from about 0.001 to about 10. A preferred ratio 1:X:Y:Z is about 1:1:0.5:0.5.
When the second metal is both cobalt (Co) and nickel (Ni), the third element is phosphorus (P) and a broad ratio of the FeCoNiP is 1:0.1-10:1-100:0.001-10. A more preferred ratio of the FeCoNiP is 1:1:9:0.1.
These homogeneously dispersed multimetal oxy-hydroxide catalysts have shown excellent efficacy as oxygen evolution electrodes.
The present disclosure provides a method for producing a homogeneously dispersed multimetal oxy-hydroxide catalyst for oxygen evolution, comprising:
a) dissolving metal salt precursors for at least three different metals in a first polar organic solvent to produce a first solution containing metal ions of the at least three different metals, a first metal being iron (Fe),
b) chilling the first solution;
c) mixing trace amounts of water in the first polar organic solvent to produce a second solution;
d) chilling the second solution;
e) mixing the chilled first solution together with the chilled second solution and optionally with an agent selected to control a rate of hydrolysis of all the metals and letting the mixture react over a preselected period of time to form a gel;
f) soaking the gel in a second polar organic solvent to remove unreacted precursors and any unreacted agent from the gel; and
g) drying the gel in the absence of annealing to produce an uncrystallised powder aerogel, wherein the uncrystallised powder aerogel is characterized by being a homogeneously dispersed multimetal oxy-hydroxide catalyst material.
In an embodiment there is provided a method for producing a homogeneously dispersed multimetal catalyst for CO2 reduction, comprising:
Thus, the present disclosure provides CO2 reduction reaction catalysts prepared starting from the homogeneously dispersed multimetal oxy-hydroxide and electrochemically reducing it. The present disclosure provides a CO2 reduction reaction catalyst, comprising: a homogeneous mixture of Cu with a second metal M, including one of Cerium (Ce), Bismuth (Bi), Tin (Sn) and Lead (Pb). A broad ratio of the Cu:M being 1:X, where X ranges from about 0.01 to about 10. A preferred narrower range in the particular example of the Cu:Ce is 1:X, where X ranges from about 0.1 to about 1.
A further understanding of the functional and advantageous aspects of the disclosure can be realized by reference to the following detailed description and drawings.
Embodiments will now be described, by way of example only, with reference to the drawings, in which:
Table 1. Oxygen evolution reaction parameters for gelled multimetal FeCoW oxyhydroxide compared with the state-of-the-art NiFeOOH tested on GCE in the same environment. Each sample was repeated independently three times.
Table 2. Oxygen evolution reaction overpotential for gelled multimetal oxyhydroxides compared with the state-of-the-art NiFeOOH tested on GCE in the same environment.
Various embodiments and aspects of the disclosure will be described with reference to details discussed below. The following description and drawings are illustrative of the disclosure and are not to be construed as limiting the disclosure. Numerous specific details are described to provide a thorough understanding of various embodiments of the present disclosure. However, in certain instances, well-known or conventional details are not described in order to provide a concise discussion of embodiments of the present disclosure.
As used herein, the terms “comprises” and “comprising” are to be construed as being inclusive and open ended, and not exclusive. Specifically, when used in the specification and claims, the terms “comprises” and “comprising” and variations thereof mean the specified features, steps or components are included. These terms are not to be interpreted to exclude the presence of other features, steps or components.
As used herein, the term “exemplary” means “serving as an example, instance, or illustration,” and should not be construed as preferred or advantageous over other configurations disclosed herein.
As used herein, the terms “about” and “approximately” are meant to cover variations that may exist in the upper and lower limits of the ranges of values, such as variations in properties, parameters, and dimensions.
As used herein the phrase “metal oxy-hydroxide” means a compound with a general composition Me2(Ox(OH)2(1-x))n, where n is the metal valence, and x can be anywhere in the range from 0 (including 0) up to 1 (including 1), i.e. pure metal oxide (x=1), pure metal hydroxides (x=0), and mixtures of thereof, (0<x<1).
As used herein the phrase “structurally dissimilar metals” means metal atoms with a covalent radii differing by more than about 6%.
As used herein the phrase “homogenously dispersed multimetal oxy-hydroxide” means a material in which extended regions exist where the claimed metals are distributed in a common oxy-hydroxide framework, homogeneously on a length scale of few nanometers, as detectable using such experimental techniques as TEM, EDX, EELS, but with the general idea that the material should be homogeneous on atomic level, i.e. at least some metal atoms connect to more than one species of metallic atoms through a bridging oxygen (or bridging hydroxide), thus allowing for electronic modulation by the neighboring metal(s) in order to tune the adsorption energetics of the OER intermediates.
The catalysts produced and disclosed herein are characterized by being amorphous, in order to allow for a “homogeneous dispersion” of “structurally dissimilar metals” which otherwise tend to phase separate due to strain if in crystalline form.
It is contemplated that only the homogeneously mixed regions on the surface of the catalyst provide the enhanced activity. For sake of clarity, it is not contemplated the entire surface is required to be covered with the homogeneous mixture.
As used herein the term “electrode” means an electronically conductive substrate coated with the present homogeneously dispersed multimetal oxy-hydroxides, with the latter being referred to as a catalyst.
Earth-abundant first-row (3d) transition-metal-based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials significantly above thermodynamic requirements. Non-3d high-valency metals, such as tungsten, can modulate 3d metal oxy-hydroxides beyond what is achievable with conventional 3d alloys, allowing one to tune the adsorption energies for OER intermediates (O, OH, and OOH) closer to the thermodynamic optimum energy values. This is achievable when the catalytically active metal site has more than one type of metal in its next-nearest neighbor shell (with the nearest neighbor being oxygen). Increasing the amount of such active sites requires metals to be mixed homogeneously within the materials. However, this is hardly achievable in a crystalline structure when metal atomic radii differ by more than ˜6%. The mismatching elements tend to phase-separate to release the strain energy.
The present inventors have developed a room-temperature synthesis to produce homogenously dispersed multimetal oxy-hydroxide materials with an atomically homogeneous metal, oxygen and hydroxide distribution. The present disclosure provides a catalyst of a spatially homogeneously distributed set of metal oxy-hydroxides with sufficiently different structural properties. One metal is from a first class, the “active site” (corresponding to Co, Fe, Ni, Mn, Ti, Cu and Zn) and at least one metal or non-metal is from a second class, the “modulator” (wherein the metal may be any one of W, Sn, Mn, Ba, Cr, Ir, Re, Mo, Sb, Bi, Sn, Pb, Ce, Mg, and the non-metal may be B or P), which tunes the adsorption energetics of the reaction intermediates on the “active site”. While Zinc (Zn) is not technically a “transition metal”, it is contemplated to behave as one for various electrochemical reactions.
The inventors have discovered that a broader choice of metal oxy-hydroxides can be mixed with various combinations of two (2) or more metals which exhibit excellent efficacy as catalysts. A key requirement for these mixed metal oxy-hydroxides is that they are homogenously dispersed as described above, and ideally, but not limited to, full coverage of the surface. While it is contemplated that full coverage of the surface would give the best results, without being limited by any theory, the inventors believe excellent catalytic activity is achievable with only partial coverage.
The above metal oxy-hydroxides can be used as oxygen evolution reaction electrodes and CO2 reduction reaction electrodes. The inventors contemplate that when the above metal oxy-hydroxides are exposed to reducing conditions during the CO2 reduction reaction, they will lose their oxy-hydroxyde structure due to reduction but may maintain the homogeneity of the mixture of metals.
Possible non-electrochemical reducing conditions include exposing the as-formed catalysts to a hydrogen gas atmosphere, heating up to but not exceeding 300° C. (otherwise the catalyst will be annealed and will phase-separate). Alternatively, the catalysts may be formed into electrodes and subjected to electrochemical reducing conditions using an aqueous solution which may be neutral or alkaline, and using a negative reducing potential, i.e. anything below 0 V RHE.
In an exemplary such experiment, the solution was CO2-saturated 0.5M KHCO3 used for CO2 reduction reaction. However it will be understood that the solution does not need to contain CO2 or KHCO3 or anything else specific for the catalyst material to reduced. It also does not require high negative voltage. Anything <0 vs. RHE should be enough to effect reduction of the catalyst material.
In specific embodiments, the multimetal oxy-hydroxide based OER electrodes contain three (3) or more metals selected to optimize binding of OER intermediates (O, OH, OOH) to the surface of the electrode which is required for efficient electrolysis. The electrode materials are homogenously dispersed multimetal oxy-hydroxides of structurally dissimilar metals which are coated onto a conductive substrate. In specific embodiments, these multimetal oxy-hydroxides all include iron (Fe). In specific embodiments, the second metal may be cobalt (Co) or nickel (Ni) or both. In specific embodiments, when the second metal is cobalt, additional elements (M3) may include any one of tungsten (W), molybdenum (Mo), tin (Sn), and chromium (Cr), a broad ratio of the Fe:Co:M3 being 1:X:Y, where X ranges from about 0.1 to about 10, Y ranges from about 0.001 to about 10. A preferred narrower range of the Fe:Co:M3 is 1:X:Y, wherein X ranges from about 0.5 to about 1.5, Y ranges from about 0.5 to about 1.5.
In specific embodiments, when the second metal is nickel, additional elements may include any one of antimony (Sb), rhenium (Re), iridium (Ir), Barium (Ba), magnesium (Mg) and manganese (Mn), a broad ratio of the Fe:Ni:M3 being 1:X:Y, where X ranges from about 1 to about 100, Y ranges from about 0.001 to about 10. A preferred narrower range of the Fe:Co:M3 is 1:X:Y, where X ranges from about 5 to about 10, Y ranges from about 0.5 to about 1.5.
In specific embodiments, when the second and third metals are nickel and cobalt, the fourth element may be any one of phosphorus (P) and boron (B), a broad ratio of the Fe:Co:Ni:M4 being 1:X:Y:Z, where X ranges from about 0.1 to about 10, Y ranges from about 1 to about 100, Z ranges from 0.001 to 10. A preferred narrower range of the Fe:Co:Ni:M4 is 1:X:Y:Z, where X ranges from about 0.9 to about 1.1, Y ranges from about 8 to about 10, Z ranges from about 0.05 to about 0.2.
In specific embodiments relevant for CO2 reduction reaction, the first metal is copper (Cu), and the second metal (M2) is any one of Cerium (Ce), Bismuth (Bi), Tin (Sn) and Lead (Pb). A broad ratio of the Cu:M2 being 1:X, where X ranges from about 0.01 to about 10. A preferred narrower range of the Cu:Ce is 1:X, where X ranges from about 0.1 to about 1.
The room-temperature synthesis disclosed herein to produce amorphous oxy-hydroxide materials with an atomically homogeneous metal distribution includes dissolving inorganic metal salt precursors for at least three different metals in a first polar organic solvent to produce a first solution containing metal ions of the at least three different metals. Various salts may be used including chlorides, nitrates, sulphates (depending on solubility in the polar organic solvents used) just to mention a few non-limiting inorganic salts.
A first metal is iron (Fe), and a second metal may be either cobalt (Co), or nickel (Ni). When the second metal is cobalt, third element may be any one of tungsten (W), molybdenum (Mo), tin (Sn), chromium (Cr), and nickel (Ni). The ranges of the concentration of these different components is as discussed above. When the second metal is nickel, the third element may be any one of antimony (Sb), rhenium (Re), iridium (Ir), Barium (Ba), Magnesium (Mg) and Manganese (Mn) with the composition ranges given above. When the second and third metals are nickel and cobalt, the fourth element may be any one of phosphorus (P) and boron (B). The synthesis method includes chilling the first solution to a temperature in the range between about −10° C. and 0° C. A second solution comprised of trace amounts of water dissolved in the first polar organic solvent is then produced and then chilled to −10° C. to about 0° C. Various polar organic solvents that may be used include, but are not limited to methanol, ethanol, 2-propanol, and butanol.
The amount of trace water required is determined by calculating the mole number of positive charge of cations, e.g., assuming 1 mole of M2+ needs 2 moles of H2O.
The first and second chilled solutions are then mixed together and optionally mixed with an agent selected to control a rate of hydrolysis of one or two constituent metals and letting the mixture react over a preselected period of time from about 10 mins to about 48 hours to form and age a gel at room temperature.
A preferred narrow time range is about 12 hours to about 36 hours. It will be understood that it may not be necessary to control the rate of hydrolysis of all the metals when the hydrolysis rate of the corresponding precursors are comparable, enabling homogeneous dispersion. When the hydrolysis rate of the corresponding precursors are different, the hydrolysis controlling agent is required. A preferred agent is an epoxide, which acts as a proton scavenger coordinating the hydrolysis rate. Various epoxides that may be used include, but are not limited to propylene oxide, cis-2,3-exposybutane, 1,2-epoxybutane, glycidol, epichlorohydrin, epibromohydrin, epifluorohydrin, 3,3, -dimethyloxetane, and trimethylene.
Trace amount of water are used to slow down all metal precursors' hydrolysis rate, and the epoxide is used to increase the hydrolysis rate of those precursors which have too slow of a hydrolysis rate, and to drive polycondensation reactions and prevent precipitation.
After the mixture has sat undisturbed long enough for the gelation process to complete, the resulting gel is soaked in a second polar organic solvent to remove unreacted precursors and any unreacted hydrolysis inducing agent from the gel. Various polar organic solvents that are useful for this include but not limited to acetone, ethanol, benzene and diethyl ether.
Once the gel has been cleared of the unreacted reagents, the gel is dried to produce a powder aerogel. A preferred method for drying the gel includes using supercritical CO2 liquid. However other methods may be used including other supercritical fluid drying, freeze drying, and vacuum drying.
The powdered aerogel is then mixed with a mixture of water, an adhesion agent and an organic solvent to produce a slurry. The adhesion agent in this step may include, but is not limited to Nafion solution, polyvinylidene fluoride (PVDF) solution and polytetrafluoroethylene (PTFE) solution. The organic solvent in this step may include, but is not limited to ethanol, methanol, 2-propanol and dimethyl formamide.
The slurry is then spread over a conductive substrate and dried to form a film, thereby producing a mixed metal oxide film which is characterized by being a homogenously dispersed amorphous metal oxide. The thickness of this film may be in a range from about 10 nm to about 10 um. A preferred thickness for a good performance in catalysis applications is in a range from about 400 nm to about 2 um.
The present catalysts made of amorphous homogeneously dispersed multimetal oxy-hydroxides for OER are very advantageous over the OER electrodes based on crystallized mixed metal oxides since in the present we have a priori control over the homogenous distribution of the active metal-oxy-hydroxide sites. The presence of different metal sites in close proximity provides fine tuning of the OER energetics. In the conventional OER mixed metal oxide electrodes this fine tuning does not a priori exist since the different metal oxide components are phase separated. Since these conventional starting catalysts are a dispersion of metal oxides this dispersion may become hydroxylated during operation of the OER, but the distribution of metal active sites is not controlled as they advantageously are with the present method.
The present catalysts made of amorphous homogeneously dispersed multimetal oxy-hydroxides derived catalysts for CO2 reduction are very advantageous, thanks to the significant interactions between different metal atoms.
The homogeneously dispersed structurally dissimilar multimetal oxy-hydroxide electrodes produced in accordance with the present disclosure will now be illustrated with the following non-limiting examples.
Exemplary Mixed Metal Oxy-Hydroxide Synthesis
Gelled FeCoW oxy-hydroxides (G-FeCoW) were synthesized using a modified aqueous sol-gel technique as discussed above. Anhydrous FeCl3 (0.9 mmol), CoCl2 (0.9 mmol) and WCl6 (0.9 mmol) were first dissolved in ethanol (2 mL) in a vial. A solution of deionized water (DI) (0.18 mL) in ethanol (2 mL) was prepared in a separate vial. All solutions mentioned above were cooled in an ice bath for 2 h in order to prevent uncontrolled hydrolysis and condensation which may lead to the formation of precipitate rather than gel formation. The Fe, Co and W precursors were then mixed with an ethanol-water mixture to form a clear solution. To this solution, propylene oxide (≈1 mL) was then slowly added, forming a dark green gel. The FeCoW wet-gel was aged for 1 day to promote network formation, immersed in acetone, which was replaced periodically for 5 days before the gel was supercritically dried using CO2. The resulting aerogel powder was not annealed, as this would cause loss of control over the OER energetics as discussed above.
After supercritical drying with CO2, the gel transformed into an amorphous metal oxy-hydroxide aerogel powder. From inductively coupled plasma optical emission spectrometry (ICP-OES) analysis, we determined the molar ratio of Fe:Co:W to be 1:1.02:0.70. High resolution transmission electron microscopy (HRTEM) (
To evaluate the change of oxidation states of metal elements during OER, we performed XAS on G-FeCoW and A-FeCoW samples before and after OER; the latter condition is realized by oxidizing samples at +1.4 V versus the reversible hydrogen electrode (RHE) in the OER region. XAS in total electron yield (TEY) mode provides information on the near-surface chemistry (below 10 nm). We acquired TEY data at the Fe and Co L-edges on samples prepared ex situ. For comparison, on the same samples we also measured in situ XAS (i.e., during OER) at the Fe and Co K-edges via fluorescent yield, a measurement that mainly probes chemical changes in the bulk. TEY XAS spectra in
The white lines of W L3-edge XANES spectra of all samples in
We compared the OER performance of our gelled sample G-FeCoW with that of the reference samples state-of-the-art NiFeOOH and A-FeCoW. Electrochemical measurements were performed using a three-electrode system connected to an electrochemical workstation (Autolab PGSTAT302N) with built-in electrochemical impedance spectroscopy (EIS) analyzer. The working electrode was a Glassy-Carbon Electrode (GCE) (diameter: 3 mm, area: 0.072 cm2) from CH Instruments. Ag/AgCl (with saturated KCl as the filling solution) and platinum foil were used as reference and counter electrodes, respectively. 4 mg of catalyst powder was dispersed in 1 ml mixture of water and ethanol (4:1,v/v), and then 80 μl (microliters) of Nafion solution (5 wt % in water) was added. The suspension was immersed in an ultrasonic bath for 30 min to prepare a homogeneous ink. The working electrode was prepared by depositing 5 μl catalyst ink onto GCE (catalyst loading 0.21 mg cm−2). To load the catalyst on a Ni foam (thickness: 1.6 mm, Sigma) for stability measurements, 20 mg of catalyst was dispersed in a mixture containing 2 ml of water and 2 ml ethanol, followed by the addition of 100 μL Nafion solution. The suspension was sonicated for 30 min to prepare a homogeneous ink. Ni foam with a fixed area of 0.5×0.5 cm2 coated with water resistant silicone glue was drop-casted with 20 μL of the catalyst ink.
Representative OER currents of the samples were measured for drop-casted thin films (thickness ˜500 nm) on a glass carbon electrode (GCE) (
The intrinsic activity of G-FeCoW was further confirmed by determining the mass activities and turnover frequency (TOFs) for this catalyst (
aobtained from at the current density of 10 mA cm−2 with no iR correction;
bobtained at the overpotential of 300 mV with 95% iR correction, assuming 3d metals as active sites;
cobtained at the overpotential of 300 mV with 95% iR correction;
dthe active numbers of 3d metals were obtained from the integration of Co redox features and molar ratio of Fe and Co;
ecalculated from the reported data in ref. (13, 14) and (12).
The operating stability of the OER catalysts is essential to their application. To characterize the performance stability of the G-FeCoW catalysts, we ran water oxidation on the catalyst deposited on gold-plated Ni foam under constant current of 30 mA cm−2 continuously for 550 hours. We observed no appreciable increase in potential in this time interval (
Preparation of FeCoMo Oxy-Hydroxides
In this example, the steps of synthesis were identical to Example 1 except for changing the metal salts as precursors and the amount of water. Anhydrous FeCl3 (0.9 mmol), CoCl2 (0.9 mmol) and MoCl5 (0.9 mmol) were first dissolved in ethanol (2 mL) in a vial. A solution of deionized water (DI) (0.17 mL) in ethanol (2 mL) was prepared in a separate vial. The steps of preparing electrodes for performance measurements and testing process were identical to Example 1. As shown in
330 mVa
atested in CO2-saturated 0.5M KHCO3 on gold foam
Preparation of FeCoMoW Oxy-Hydroxides
In this example, the steps of synthesis were identical to Example 1 except for changing the metal salts as precursors and the amount of water. Anhydrous FeCl3 (0.7 mmol), CoCl2 (0.7 mmol), WCl6 (0.7 mmol) and MoCl5 (0.7 mmol) were first dissolved in ethanol (2 mL) in a vial. A solution of deionized water (DI) (0.21 mL) in ethanol (2 mL) was prepared in a separate vial. The steps of preparing electrodes for performance measurements and testing process were identical to Example 1. As shown in
Preparation of FeCoCr Oxy-Hydroxides
In this example, the steps of synthesis were identical to Example 1 except for changing the metal salts as precursors and the amount of water. Anhydrous FeCl3 (0.9 mmol), CoCl2 (0.9 mmol), and CrCl3.6H2O (0.9 mmol) were first dissolved in ethanol (2 mL) in a vial. A solution of deionized water (DI) (0.04 mL) in ethanol (2 mL) was prepared in a separate vial. The steps of preparing electrodes for performance measurements and testing process were identical to Example 1. As shown in
Preparation of FeNiSb Oxy-Hydroxides
In this example, the steps of synthesis were identical to Example 1 except for changing the metal salts as precursors and the amount of water. Anhydrous FeCl3 (0.28 mmol), NiCl2.6H2O (2.45 mmol) were first dissolved in ethanol (2 mL) in a vial. A solution of SbCl3 (0.27 mmol) dissolved in ethanol (2 mL) was prepared in a separate vial. No additional water was needed. After chilling, the two solutions mixed quickly, and propylene oxide (≈1 mL) was then slowly added, forming a gel. The steps of preparing electrodes for performance measurements and testing process were identical to Example 1. As shown in
Preparation of FeNiMn Oxy-Hydroxides
In this example, the steps of synthesis were identical to Example 1 except for changing the metal salts as precursors and the amount of water. Anhydrous FeCl3 (0.28 mmol), NiCl2.6H2O (2.45 mmol) and MnCl2 (0.28 mmol) were first dissolved in ethanol (4 mL) in a vial. No additional water was needed. The solution mentioned above was cooled in an ice bath for 2 h in order to prevent uncontrolled hydrolysis and condensation which may lead to the formation of precipitate rather than gel formation. To this solution, propylene oxide (≈1 mL) was then slowly added, forming a gel. The steps of preparing electrodes for performance measurements and testing process were identical to Example 1. As shown in
Preparation of FeNiBa Oxy-Hydroxides
In this example, the steps of synthesis were identical to Example 1 except for changing the metal salts as precursors and the amount of water. Anhydrous FeCl3 (0.28 mmol), NiCl2.6H2O (2.45 mmol) were first dissolved in ethanol (2 mL) in a vial. A solution of BaF2 (0.28 mmol) dissolved in ethanol (2 mL) was prepared in a separate vial. No additional water was needed. The solution mentioned above was cooled in an ice bath for 2 h in order to prevent uncontrolled hydrolysis and condensation which may lead to the formation of precipitate rather than gel formation. The two solutions mixed quickly, and propylene oxide (≈1 mL) was then slowly added, forming a gel. The steps of preparing electrodes for performance measurements and testing process were identical to Example 1. As shown in
Preparation of FeNiRe Oxy-Hydroxides
In this example, the steps of synthesis were identical to Example 1 except for changing the metal salts as precursors and the amount of water. Anhydrous FeCl3 (0.28 mmol), NiCl2.6H2O (2.45 mmol) were first dissolved in ethanol (2 mL) in a vial. A solution of ReCl5 (0.28 mmol) dissolved in ethanol (2 mL) was prepared in a separate vial. No additional water was needed. The solution mentioned above was cooled in an ice bath for 2 h in order to prevent uncontrolled hydrolysis and condensation which may lead to the formation of precipitate rather than gel formation. The two solutions mixed quickly, and propylene oxide (≈1 mL) was then slowly added, forming a gel. The steps of preparing electrodes for performance measurements and testing process were identical to Example 1. As shown in
Preparation of FeNiIr Oxy-Hydroxides
In this example, the steps of synthesis were identical to Example 1 except for changing the metal salts as precursors and the amount of water. Anhydrous FeCl3 (0.28 mmol), NiCl2.6H2O (2.45 mmol) were first dissolved in ethanol (2 mL) in a vial. A solution of IrCl3 (0.28 mmol) dissolved in ethanol (2 mL) was prepared in a separate vial. No additional water was needed. The solution mentioned above was cooled in an ice bath for 2 h in order to prevent uncontrolled hydrolysis and condensation which may lead to the formation of precipitate rather than gel formation. The two solutions mixed quickly, and propylene oxide (≈1 mL) was then slowly added, forming a gel. The steps of preparing electrodes for performance measurements and testing process were identical to Example 1. As shown in
Preparation of FeNiCoP Oxy-Hydroxides
In this example, the steps of synthesis were identical to Example 1 except for changing the metal salts as precursors and the amount of water. Anhydrous FeCl3 (0.27 mmol), NiCl2.6H2O (2.45 mmol) and CoCl2 (0.27 mmol) were first dissolved in ethanol (2 mL) in a vial. A solution of KH2PO4 (0.27 mmol) dissolved in ethanol (2 mL) mixed with deionized water (DI) (0.23 ml) was prepared in a separate vial. The solution mentioned above was cooled in an ice bath for 2 h in order to prevent uncontrolled hydrolysis and condensation which may lead to the formation of precipitate rather than gel formation. The two solutions mixed quickly, and propylene oxide (≈1 mL) was then slowly added, forming a gel. The steps of preparing electrodes for performance measurements and testing process were identical to Example 1, except that the electrolyte was changed into CO2-saturated 0.5 M KHCO3. As shown in
Preparation of CuCe Oxy-Hydroxide and its Electrochemical Reduction
In this example, the steps of synthesis were identical to Example 1 except for changing the metal salts as precursors and the amount of water. Anhydrous CuCl2 (2.45 mmol), and CeCl3 (0.27 mmol) were first dissolved in ethanol (2 mL) in a vial. A solution of ethanol (2 mL) mixed with deionized water (DI) (0.11 ml) was prepared in a separate vial. The solution mentioned above was cooled in an ice bath for 2 h in order to prevent uncontrolled hydrolysis and condensation which may lead to the formation of precipitate rather than gel formation. The two solutions mixed quickly, and propylene oxide (≈1 mL) was then slowly added, forming a gel. The steps of preparing electrodes for performance measurements and testing system were identical to Example 1. To reduce our CuCe oxy-hydroxide into alloys, the working electrodes were run under cyclic voltammetric technique between −0.6V and −2.2V (vs. Ag/AgCl reference electrode) for three cycles, with a scanning rate of 50 mV/s. As shown in
Summary of Non-Limiting Exemplary Oxygen Evolution Electrodes
An embodiment of an oxygen evolution electrode includes a conductive substrate and a homogeneously dispersed multimetal oxy-hydroxide catalyst coated on the conductive substrate. The homogeneously dispersed multimetal oxy-hydroxide catalyst comprises at least iron (Fe), cobalt (Co) and tungsten (W), a ratio of the Fe:Co:W being about 1:X:Y, where X ranges from about 0.1 to about 10, Y ranges from about 0.001 to about 10. In an embodiment of a 02 evolution electrode, a preferred ratio of Fe:Co:W is about 1:1:0.7.
In another embodiment, the electrode may include molybdenum, with a ratio of the Fe:Co:W:Mo being about 1:X:Y:Z, wherein X ranges from about 0.1 to about 10, Y ranges from about 0.001 to about 10, and Z ranges from about 0.001 to about 10. In an embodiment of a 02 evolution electrode, a preferred ratio of the Fe:Co:W:Mo is about 1:1:0.5:0.5.
Another oxygen evolution electrode includes at least iron (Fe), cobalt (Co) and molybdenum (Mo), a ratio of the Fe:Co:Mo being about 1:X:Y, where X ranges from about 0.1 to about 10, and Y ranges from about 0.001 to about 10. In a more preferred electrode X ranges from about 0.9 to about 1.1, Y ranges from about 0.6 to about 0.9.
Another oxygen evolution electrode includes at least iron (Fe), cobalt (Co), nickel (Ni), and phosphorus (P), a ratio of the Fe:Co:Ni:P being about 1:X:Y:Z, where X ranges from about 0.1 to about 10, Y ranges from about 1 to about 100, and Z ranges from about 0.001 to about 10. In a more preferred electrode X ranges from about 0.9 to about 1.1, Y ranges from about 8 to about 10, and Z ranges from about 0.05 to about 0.2.
Another oxygen evolution electrode includes at least iron (Fe), cobalt (Co), nickel (Ni), and boron (B), a ratio of the Fe:Co:Ni:B being about 1:X:Y:Z, where X ranges from about 0.1 to about 10, Y ranges from about 1 to about 100, and Z ranges from about 0.001 to about 10. In a more preferred electrode X ranges from about 0.9 to about 1.1, Y ranges from about 8 to about 10, Z ranges from about 0.05 to about 0.2.
Another oxygen evolution electrode includes at least iron (Fe), nickel (Ni), and magnesium (Mg), a ratio of the Fe:Ni:Mg being about 1:X:Y, where X ranges from about 1 to about 100, and Y ranges from about 0.001 to about 10. In a more preferred electrode X ranges from about 4 to about 8, Y ranges from about 0.4 to about 0.8. In another preferred electrode X is 6, and Y is 0.6.
The present disclosure provides substantially homogeneously dispersed multimetal oxy-hydroxide catalyst comprising at least two metals, at least one metal being a transition metal, and at least one additional metal which is structurally dissimilar to at least one metal in the mixture, such that the multimetal oxy-hydroxide is characterized by being substantially homogeneously dispersed and generally not crystalline. A key feature of the present materials is that the presence of the structurally dissimilar metal results in sufficient strain produced in the final multimetal oxy-hydroxide material to prevent crystallization from occurring. The resulting materials are specifically not annealed at temperatures that would induce crystallization in order to avoid the expected phase segregation that would occur during crystallization.
Particular embodiments include the transition metal being any one of Ni, Fe, Co, Mn, Ti, Cu and Zn, and at least a second element being any one of W, Mo, Mn, Cr, Ba, Sb, Bi, Sn, Pb, Ce, Mg, Ir, Re, B and P.
Put another way, the present disclosure provides a substantially homogeneously dispersed multimetal oxy-hydroxide catalyst comprising at least two metals, at least one of the metals being from a first class of metals which includes Ni, Fe, Co, Mn, Ti, Cu and Zn, and at least one metal or non-metal from a second class which are structurally dissimilar to the metals in the first class and includes W, Mo, Mn, Mg, Cr, Ba, Sb, Bi, Sn, Pb, Ce, Ir, Re, B and P. In this embodiment, the metals from the second class “modulate” the energy levels of the final catalyst to give better adsorption energetics of the intermediates of the electrochemical reaction for which the catalyst is designed.
While the catalysts produced herein have shown great efficacy and provide reduced overpotentials at given current densities for the oxygen evolution reaction, it will be appreciated that the design principles disclosed herein may be employed for designing catalysts for other electrochemical reactions, so that the present electrocatalysts are not restricted to the OER.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, one of skill in the art will appreciate that certain changes and modifications may be practiced within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
20150292095 | Haber et al. | Oct 2015 | A1 |
20150368811 | Gray et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
2625922 | Apr 2007 | CA |
2719157 | Oct 2009 | CA |
2002208399 | Jul 2002 | JP |
2010026131 | Mar 2010 | WO |
Entry |
---|
Smith et al (“Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis”, Science, 2013, vol. 340, Issue 6128, pp. 60-63 and supplemental information). (Year: 2013). |
Mendoza-Garcia et al (“Controlled Anisotropic Growth of Co—Fe—P from Co—Fe—O Nanoparticles”, Adgewandte Communications, 2015, 54, pp. 9642-9645). (Year: 2015). |
Trotochaud et al (“Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution”, Journal of the American Chemical Society, 2012, 134, pp. 17253-17261). (Year: 2012). |
Fan et al (“Study of Electrodeposited Nickel-Molybdenum, Nickel-Tungsten, Cobalt-Molybdenum, and Cobalt-Tungsten as Hydrogen Electrodes in Alkaline Water Electrolysis”, Journal of The Electrochemical Society, vol. 141, No. 2, 1994, pp. 382-387). (Year: 1994). |
Masa et al (Abstract of “Amorphous Cobalt Boride (Co2B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution”, Advanced Energy Materials, Jan. 7, 2016). (Year: 2016). |
Zhu et al (“A study of the electrochemistry of nickel hydroxide electrodes with various additives”, Journal of Power Sources, 56, 1995, p. 75-79). (Year: 1995). |
Diaz-Morales et al (“Guidelines for the Rational Design of Ni-Based Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction”, American Chemical Society Catalysis, 5, 2015, pp. 5380-5387) (Year: 2015). |
McCrory et al (“Benchmarking Hydrogen Evolving Reaction and Oxygen EvolvingReaction Electrocatalysts for Solar Water Splitting Devices”, Journal of the American Chemical Society, 137, 2015, pp. 4347-4357) (Year: 2015). |
Smith et al (“Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel”, Journal of the American Chemical Society, 135, 2013, pp. 11580-11586) (Year: 2013). |
Lutterman et al (“A Self-Healing Oxygen-Evolving Catalyst”, Journal of the American Chemical Society, vol. 131, No. 11, 2009, pp. 3838-3839) (Year: 2009). |
Burke et al (“Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism”, Journal of The Electrochemical Society, 137 10, 2015, pp. 3638-3648) (Year: 2015). |
Chemelewski et al (“Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting”, Journal of the American Chemical Society, 2014, 136, pp. 2843-2850) (Year: 2014). |
Masa et al (“Amorphous Cobalt Boride (Co2B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution”, Advanced Energy Materials, Jan. 7, 2016) (Year: 2016). |
Smith et al (“Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis”, Science, vol. 340, 2013, pp. 60-63). (Year: 2013). |
Liu et al (“Synthesis and electrochemical performance of amorphous nickel hydroxide codoped with Fe3+ and CO32−”, Ionics, 2010, 16, pp. 215-219). (Year: 2010). |
Hassan et al. (“Electroless Ni—B supported on carbon for direct alcohol fuel cell applications”, International Journal of Hydrogen Energy, 36, 2011, pp. 849-856). (Year: 2011). |
Ozerova et al (“Cobalt borate catalysts for hydrogen production via hydrolysis of sodium borohydride”, Journal of Alloys and Compounds, 513, 2012, pp. 266-272). (Year: 2012). |
Fisher et al (“Investigation Into the Microstructure of Iron-Chromium Oxyhydroxide Fine Particles”, Hyperfine Interactions C, 2001, pp. 367-370 of Fisher) (Year: 2001). |
International Search Report PCT/CA2017/050106 dated May 23, 2017. |
Written Opinion PCT/CA2017/050106 dated May 23, 2017. |
C. R. Cox, J. Z. Lee, D. G. Nocera, T. Buonassisi, Proc. Natl. Acad. Sci. U.S.A., (2014). |
J. Luo et al., Science 345, 1593 (2014). |
M. Schreier et al., Nat. Commun. 6, (2015). |
R. D. L. Smith et al., Science 340, 60 (2013). |
D. Friebelet al., J. Am. Chem. Soc. 137, 1305 (2015). |
J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 334, 1383 (2011). |
M. W. Kanan, D. G. Nocera, Science 321, 1072 (2008). |
M. Dincă, Y. Surendranath, D. G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 107, 10337 (2010). |
F. M. Toma et al., Nat. Chem. 2, 826 (2010). |
Q. Yin et al., Science 328, 342 (2010). |
J. A. Haber, E. Anzenburg, J. Yano, C. Kisielowski, J. M. Gregoire, Advanced Energy Materials 5, 1402307 (2015). |
D. Friebel et al., PCCP 15, 17460 (2013). |
W. Ma et al., ACS Nano 9, 1977 (2015). |
R. Ma, J. Liang, K. Takada, T. Sasaki, J. Am. Chem. Soc. 133, 613 (2011). |
Number | Date | Country | |
---|---|---|---|
20170218528 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
62288648 | Jan 2016 | US | |
62312266 | Mar 2016 | US |